Orbits of $D\text{-}\mathrm{maximal}$ sets in $\mathscr E$

Peter M. Gerdes

April 19, 2012

* Joint work with Peter Cholak and Karen Lange.

글 🕨 🖌 글

Outline

2 Automorphisms

- Basic Work
- Advanced Automorphism Methods

3 \mathscr{D} -maximal sets

-

Notation

- ω is the natural numbers. $\overline{X} = w X$
- p[X] denotes the image of X under p.
- W_e is the domain of the *e*-th Turing machine
- A_s is the set of elements enumerated into A by stage s.
- All sets are c.e. unless otherwise noted. R_i is assumed to be computable

Lattice of C.E. Sets

Definition (Lattice of c.e. sets)

- $\langle \{W_e, e \in \omega\} . \subseteq \rangle = \mathscr{E}$ are the c.e. sets under inclusion.
- $\bullet \ \mathcal{E}^*$ is \mathcal{E} modulo the ideal \mathcal{F} of finite sets.

Question (Motivating Questions)

- What are the automorphisms of \mathscr{E} ? \mathscr{E}^* ?
- What are the definable classes? Orbits?

Simple Automorphisms

- Permutations p of ω induce maps $\Upsilon(A) = p[A]$ respecting \subseteq .
- Any permutation taking c.e. sets to c.e. sets is automatically an automorphism.
- Computable permutations (aka recursive isomorphisms) induce (ω many) automorphisms.

Theorem

All creative sets belong to the same orbit.

Proof.

It is well known that the creative sets are recursively isomorphic.

Basic Work Advanced Automorphism Methods

How Many Automorphisms?

Theorem (Lachlan)

There are 2^{ω} automorphisms of \mathscr{E}^* (and \mathscr{E})

Idea

- Build permutations as limit of computable permutations $p_f = \bigcup_{\sigma \in 2^{<\omega}} p_\sigma$ (Respects \subseteq).
- Ensure that $\Upsilon(W_e) = R \cup p_{\sigma}[W_{e_1}] \cup p_{\sigma}[W_{e_2}]$ where $W_e = R \cup W_{e_1} \cup W_{e_2}$. (Ensures images are c.e.).
- Build so if $\sigma \mid \tau$ then for some A, $p_{\sigma}(A) \neq^* p_{\tau}(A)$.

イロト イ理ト イヨト イヨト 三日

Basic Work Advanced Automorphism Methods

Building Continuum Many Automorphisms

Idea

Build $R_0 \supset R_1 \supset \ldots$ with members of R_e sharing the same e-state and leaving us free to define permutation on R_e as we wish. But first we see we have two choices for this permutation in non-trivial cases.

Lemma

If $R \supset_{\infty} R \cap W \supset_{\infty} \emptyset$ then there are computable permutations p_0, p_1 of R with $p_0[W \cap R] \neq^* p_1[W \cap R]$.

Proof.

Let $S \subset W \bigcap R$ infinite computable subset. Pick p_0 to be the identity and p_1 to exchange S and R - S, i.e., p_1 moves infinitely many points outside of W into W.

Basic Work Advanced Automorphism Methods

Glueing Permutations

Construction

Assume R_n, p_σ are defined. $(R_0 = \omega, p_\lambda = \emptyset)$

- If W_n almost avoids or contains R_n finitely modify R_{n+1}, p_σ to eliminate the exceptions.
- Otherwise let $R_{n+1} ⊂_{\infty} W_n ∩ R_n$. $W_n, R_n R_{n+1}$ satisfy the lemma.
 - For each maximal σ with p_{σ} defined let

 $p_{\sigma(\langle j \rangle)} = p_j \cup p_{\sigma}, j = 0, 1.$

• WLOG we insist W_{2n} is always a split of R_{2n} so this case occurs infinitely.

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶

Summarizing Construction

- $\bigcap R_n = \emptyset$ (infinitely often we lose the least element).
- $p_f = \bigcup_{\sigma \subset f} p_\sigma$ is a permutation of ω
- Images of c.e. sets are given by finitely many computable permutations on disjoint computable sets.
- R_{k+1} isn't split by $\{W_i | i \leq k\}$ so we can redefine/extend permutation on R_{k+1} .

Remark

Nifty but as Soare points out if p[A] = B built in this fashion then $(p_1 \circ p_2 \circ \ldots \circ p_n)[A] = B$.

Basic Work Advanced Automorphism Methods

Permutations and Automorphisms

Question

Are all automorphisms of \mathscr{E}^* induced by a permutation?

Remark

Since permutations respect \subseteq this would show every $\Upsilon^* \in \operatorname{Aut} \mathscr{E}^*$ is induced by some $\Upsilon \in \operatorname{Aut} \mathscr{E}$.

Theorem (?)

Every automorphism $\Upsilon(W_e) = W_{\upsilon(e)}$ is induced by a permutation $p \leq_{\Upsilon} \upsilon(e) \oplus 0'$.

(日) (四) (日) (日)

Basic Work Advanced Automorphism Methods

Proof Idea

Idea

After some point map x to y only if for all $i \le n$ $x \in W_i \iff y \in W_{v(e)}.$

Definition

The *e*-state (*e*-hat-state) of x is $\sigma(e, x)$ ($\hat{\sigma}(e, x)$) where:

$$\sigma(e, x) = \{i \le e | x \in W_i\}$$
$$\hat{\sigma}(e, x) = \{i \le e | x \in W_{\upsilon(i)}\}$$

E

- At stage 2n define p(x) for least $x \notin \text{dom } p$.
- Let e_{2n} be max s.t. $(\exists y)(y \notin \operatorname{rng} p \land \sigma(e, x) = \hat{\sigma}(e, y)).$
- Let p(x) be least such y.
- At odd stages define $p^{-1}(y)$ for least $y \notin \operatorname{dom} p^{-1}$.
- $\liminf_{n\to\infty} e_n = \infty$ so $p(W_e) =^* W_{\upsilon(e)}$
 - $|W_i| < \omega$ then eventually $W_i \subseteq \operatorname{dom} p, \operatorname{rng} p$

イロト イポト イヨト イヨト 二日

Advanced Automorphism Techniques

- Often we have A, B and want to build Υ with $\Upsilon(A) = B$.
- Difficult to directly build permutation with p[A] = B while sending c.e. set to c.e. sets.
- Easier to work in \mathscr{E}^* and effectively construct $W_{v(e)}$.
- Problem is respecting \subseteq^* .
 - Must ensure that $W_{v(e)}$ has same lattice of c.e. subsets/supersets as W_e .
 - Have to build $W_{\upsilon(e)}$ without knowing if $|W_e \cap A| = \infty, W_e \supseteq A, W_e \subseteq A$ or $W_e \supseteq \overline{A}$ at any stage.
 - To ensure Υ(W_e) is c.e. we need a somewhat effective grip on Υ

・ロト ・四ト ・ヨト ・

The Extension Theorem and Δ_3^0 Automorphisms

Definition

 $\mathscr{L}(A)$ are the c.e. sets containing A and $\mathscr{E}(A)$ are the c.e. sets contained in A (under inclusion).

- Want to build automorphism Υ with $\Upsilon(A) = B$.
- The Extension Theorem (Soare) and Modified Extension Theorem (Cholak) break up construction.
 - Build (sufficiently effective) automorphism of $\mathscr{L}^*(A)$ with $\mathscr{L}^*(B).$
 - Ensure (roughly) that (mod finite) elements fall into A and B in same e-state, e-hat-state.
- The Δ_3^0 automorphism method uses a complicated Π_2^0 tree construction to build Δ_3^0 automorphisms.

・ロト ・四ト ・ヨト ・ヨト

Some Results

- (Martin) h.h.s. sets and complete sets aren't invariant.
- (Soare) The maximal sets form an orbit
- (Downey, Stob) The hemi-maximal sets form an orbit.
- (Cholak, Downey, and Herrmann) The Hermann sets form an orbit.
- (Soare) Every (non-computable) c.e. set is automorphic to a high set.
- Hodgepodge of results about orbits of other classes of sets.

・ロト ・ 一下 ・ ・ ヨト・

Completeness

Question

Is every W_e automorphic to a Turing complete r.e. set?

Theorem (Harrington-Soare)

There is an \mathscr{E} definable property Q(A) satisfied only by incomplete sets.

Theorem (Cholak-Lange-Gerdes)

There are disjoint properties $Q_n(A), n \ge 2$ satisfied only by incomplete sets.

< ロト (同) (三) (三)

\mathcal{D} -maximal sets

Definition (Sets disjoint from A)

$$\mathscr{D}(A) = \{ B : \exists W (B \subseteq^* A \cup W \text{ and } W \cap A =^* \emptyset) \}$$

Let $\mathscr{E}_{\mathscr{D}(A)}$ be \mathscr{E} modulo $\mathscr{D}(A)$, i.e., $B = C \mod \mathscr{D}(A)$ if

 $(\exists D_1, D_2 \text{ s.t. } D_1 \cap A =^* D_2 \cap A =^* \emptyset)[B \cup A \cup D_1 =^* C \cup A \cup D_2]$

Definition

- A is hh-simple iff $\mathscr{L}^*(A) = \{B \mid B \supset^* A\}$ is a (Σ_3^0) Boolean algebra.
- **2** A is \mathscr{D} -hhsimple iff $\mathscr{E}_{\mathcal{D}(A)}$ is a (Σ_3^0) Boolean algebra.
- **3** A is \mathscr{D} -maximal iff $\mathscr{E}_{\mathscr{D}(A)}$ is the trivial Boolean algebra iff

 $(\forall B)(\exists D \text{ s.t. } D \cap A =^* \emptyset)[B \subset^* A \cup D \text{ or } B \cup A \cup D =^* \omega].$

Definition

A is \mathscr{D} -maximal if

```
(\forall B)(\exists D \text{ s.t. } D \cap A =^* \emptyset)[B \subset^* A \cup D \text{ or } B \cup A \cup D =^* \omega].
```

Example

Maximal and hemi-maximal sets are \mathcal{D} -maximal.

A set that is maximal on a computable set is \mathscr{D} -maximal.

Question

- What are the orbits of \mathscr{D} -maximal sets?
- Do they form finitely many orbits?

・ロト ・ 同ト ・ ヨト ・ ヨト

\mathscr{D} -maximal sets and r-maximal sets

- Many ways to get \mathscr{D} -maximal sets already covered.
- (Proper) splits of maximal sets are in a single orbit.
- Maximal subsets of computable sets in a single orbit.
- (Cholak-Harrington) *D*-maximal sets in *A*-special lists fall in a single orbit.
- Full consideration leaves only the case of \mathscr{D} -maximal sets contained in atomless *r*-maximal sets as potential source for infinitely many orbits.

Infinitely many orbits for \mathscr{D} -maximal sets

٠

- Borrow technique from Nies and Cholak for showing atomless *r*-maximal sets aren't automorphic.
- Technique reveals structure of $\mathscr{L}^*(A)$ by giving it tree structure.
- In particular $\mathscr{L}^*(A)$ has structure T if there is a homomorphism ϕ from $\langle \mathscr{L}^*(A) \omega, \subset_{\infty} \rangle$ to $\langle T, \subset \rangle$ s.t.

$$|W_e \bigcap \phi^{-1}(\sigma) - \phi^{-1}(\sigma^{-})| = \infty \implies$$
$$|W_e \bigcap \phi^{-1}(\sigma^{-}) - \phi^{-1}(\sigma^{--})| = \infty$$

• Define infinite sequence of trees T^n which guarantee that incompatible structure of supersets.

- 4 同 ト - 4 回 ト - 4 回 ト -

Non-automorphic \mathscr{D} -maximal sets

- Build $A \mathscr{D}$ -maximal subset of r-maximal set A_r with structure T^n .
- Build $B \mathscr{D}$ -maximal subset of r-maximal set B_r with structure T^{n+1} .
- If $\Upsilon(A) = B$ then there is superset of B_r with structure given by subtree of T^n .
- Incompatibility result ensures this is impossible.
- Gives us infinite number of orbits for \mathscr{D} -maximal sets.