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Continuous Logic

Metric Structures

A (bounded) metric structure is a (bounded) complete metric
space (M, d), together with distinguished

1 elements,
2 functions (mapping Mn into M for various n), and
3 predicates (mapping Mn into a bounded interval in R for various n).

Each function and predicate is required to be uniformly
continuous.
Often times, for the sake of simplicity, we suppose that the metric
is bounded by 1 and the predicates all take values in [0, 1].
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Continuous Logic

Examples of Metric Structures

1 If M is a structure from classical model theory, then we can
consider M as a metric structure by equipping it with the discrete
metric. If P ✓ Mn is a distinguished predicate, then we consider it
as a mapping P : Mn ! {0, 1} ✓ [0, 1] by

P(a) = 0 if and only if M |= P(a).

2 Suppose X is a Banach space with unit ball B. Then
(B, 0X , k · k, (f↵,�)↵,�) is a metric structure, where f↵,� : B2 ! B is
given by f (x , y) = ↵ · x + � · y for all scalars ↵ and � with
|↵|+ |�|  1.

3 If H is a Hilbert space with unit ball B, then
(B, 0H , k · k, h·, ·i, (f↵,�)↵,�) is a metric structure.
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Continuous Logic

Bounded Continuous Signatures

As in classical logic, a signature L for continuous logic consists of
constant symbols, function symbols, and predicate symbols, the
latter two coming also with arities.
New to continuous logic: For every function symbol F , the
signature must specify a modulus of uniform continuity �F , which
is just a function �F : (0, 1] ! (0, 1]. Likewise, a modulus of
uniform continuity is specified for each predicate symbol.
The metric d is included as a (logical) predicate in analogy with =
in classical logic.
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Continuous Logic

L-structures

An L-structure is a metric structure M whose distinguished constants,
functions, and predicates are interpretations of the corresponding
symbols in L. Moreover, the uniform continuity of the functions and
predicates is witnessed by the moduli of uniform continuity specified by
L.

e.g. If P is a unary predicate symbol, then for all ✏ > 0 and all x , y 2 M,
we have:

d(x , y) < �P(✏) ) |PM(x)� PM(y)|  ✏.
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Continuous Logic

Formulae

Atomic formulae are now of the form d(t1, t2) and P(t1, . . . , tn),
where t1, . . . , tn are terms and P is a predicate symbol.
We allow all continuous functions [0, 1]n ! [0, 1] as n-ary
connectives.
If ' is a formula, then so is supx ' and infx '.
(sup = 8 and inf = 9)
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Continuous Logic

Definable predicates

If M is a metric structure and '(x) is a formula, where |x | = n,
then the interpretation of ' in M is a uniformly continuous function
'M : Mn ! [0, 1].
For the purposes of definability, formulae are not expressive
enough. Instead, we broaden our perspective to include definable
predicates.
If A ✓ M, then a uniformly continuous function P : Mn ! [0, 1] is
definable in M over A if there is a sequence ('n(x)) of formulae
with parameters from A such that the sequence ('M

n ) converges
uniformly to P.
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Continuous Logic

Definable functions

f : Mn ! M is A-definable if and only if the map
(x , y) 7! d(f (x), y) : Mn+1 ! [0, 1] is an A-definable predicate.
A new complication: Definable sets and functions may now use
countably many parameters in their definitions. If the metric
structure is separable and the parameterset used in the definition
is dense, then this can prove to be troublesome.
Given any elementary extension N ⌫ M, there is a natural
extension of f to an A-definable function f̃ : Nn ! N.
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Continuous Logic

Definability takes a backseat

There are notions of stability, simplicity, rosiness, NIP,... in the
metric context. These notions have been heavily developed with
an eye towards applications.
However, old-school model theory in the form of definability has
not really been pursued. In particular, the question: “Given a
metric structure M, what are the sets and functions definable in
M?” has not received much attention. This is the question that we
will focus on in this talk.
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Continuous Logic

Definable closure

Definition
Given an L-structure M, a parameterset A ✓ M, and b 2 M, we say
that b is in the definable closure of A, written b 2 dcl(A), if the
predicate x 7! d(x , b) : M ! [0, 1] is an A-definable predicate.

Facts
Let M be a structure, A ✓ M, and b 2 M.

If b 2 dcl(A), then there is a countable A0 ✓ A such that
b 2 dcl(A0).
If M is !1-saturated and A is countable, then b 2 dcl(A) if and only
if �(b) = b for each � 2 Aut(M/A).
Ā ✓ dcl(A) (Ā=metric closure of A)
If f : Mn ! M is an A-definable function, then for each x 2 Mn, we
have f (x) 2 dcl(A [ {x1, . . . , xn}).
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The Urysohn sphere

The Urysohn sphere

Definition
The Urysohn sphere U is the unique, up to isometry, Polish metric
space of diameter  1 satisfying the following two properties:

universality: any Polish metric space of diameter  1 admits an
isometric embedding in U;
ultrahomogeneity: any isometry between finite subspaces of U
can be extended to a self-isometry of U.

Model-theoretically, U is the Fraisse limit of the Fraisse class of finite
metric spaces of diameter  1; it is the model-completion of the
(empty) theory of metric spaces in the signature consisting solely of
the metric symbol d .

Key fact (Henson)

For any A ✓ U, dcl(A) = Ā.
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The Urysohn sphere

Definable functions in U

Set-up:
f : Un ! U an A-definable function, where A ✓ U

U an !1-saturated elementary extension of U

f̃ : Un ! U the natural extension of f

Theorem (G.-2010)

If f : Un ! U is A-definable, then either f̃ is a projection function
(x1, . . . , xn) 7! xi or else f̃ has compact image contained in Ā ✓ U.
Consequently, either f is a projection function or else has relatively
compact image.
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The Urysohn sphere

Corollaries

Corollary

1 If f : U ! U is a definable surjective/open/proper map, then
f = idU.

2 If f : U ! U is a definable isometric embedding, then f = idU.
3 (Ealy, G.) If n � 2, then there are no definable isometric

embeddings Un ! U.

Reason: Compact sets in U have no interior.

There are many natural isometric embeddings U ! U (as U has many
subspaces isometric to itself), none of which (other than idU) are
definable in U.
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The Urysohn sphere

Definable Groups

Corollary

There are no definable group operations on U.

Cameron and Vershik introduced a group operation on U for which
there is a dense cyclic subgroup. This group operation allows one to
introduce a notion of translation in U. By the above corollary, this group
operation is not definable.
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The Urysohn sphere

Key Ideas to the Proof for n = 1

Suppose that f : U ! U is an A-definable function, where A ✓ U is
countable. Let f̃ : U ! U denote its canonical extension.

1 By triviality of dcl, for any x 2 U, we have
f̃ (x) 2 dcl(Ax) = Ā [ {x}.

2 Let X = {x 2 U | f (x) = x}. Show that f̃�1(Ā) \ X ✓ int(f̃�1(Ā)).
3 Prove a general lemma showing that if F ✓ U is a closed subset

and G ✓ F is a closed, separable subset of F for which
F \ G ✓ int(F ), then either F = G or F = U. This involves some
“Urysohn-esque” arguing.

4 Finally, a saturation argument shows that if f̃ (U) ✓ U, then f̃ (U) is
compact.

Isaac Goldbring ( UCLA ) Definability in metric structures ASL12 17 / 50



The Urysohn sphere

Question

Question

Can we improve the theorem on definable functions to read: If
f : Un ! U is definable, then either f is a projection or a constant
function?

I can show that a positive solution to the above question follows from a
positive solution to the n = 1 case.
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The Urysohn sphere

Another Question

Question

Are there any definable injections f : U ! U other than the identity?

There can exist injective functions U ! U which have relatively
compact image, so our theorem doesn’t immediately help us: Consider

(xn) 7! (
xn

2n ) : (0, 1)1 ! `2.

and use the fact that U ⇠= `2 ⇠= (0, 1)1.

Observe that a positive answer to Question 3 yields a negative answer
to this question.
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The Urysohn sphere

Injective Definable Functions

Lemma
If f : U ! U is injective and definable, then f = idU.

Proof.
One can show that the complement of an open ball in U is definable.
Since f maps definable sets to definable sets (which is a fact we are
unsure of in U), it follows that f is a closed map, whence a topological
embedding. By our main theorem, we see that f is the identity.

Remark
This doesn’t immediately help us, for an injective definable map U ! U
need not induce an injective definable map U ! U. (Continuous logic
is a positive logic!)
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The Urysohn sphere

Upwards Transfer

Lemma (BBHU, Ealy-G.)

Suppose that M is !-satuated and P, Q : Mn ! [0, 1] are definable
predicates such that P is defined over a finite parameterset. Then the
statement “ for all a 2 Mn (P(a) = 0 ) Q(a) = 0)” is expressible in
continuous logic.

It follows that the natural extension of an isometric embedding is
also an isometric embedding.
It also follows that if f : Mn ! M is an A-definable injection, where
A is finite, then f̃ is also an injection.
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Linear Operators on Hilbert Spaces

Hilbert spaces

Throughout, K 2 {R, C}.
Recall that an inner product space over K which is complete with
respect to the metric induced by its inner product is called a
K-Hilbert space. In this talk, H and H 0 denote infinite-dimensional
K-Hilbert spaces.
A continuous linear transformation T : H ! H 0 is also called a
bounded linear transformation. Reason: if one defines

kTk := sup{kT (x)k : kxk  1},

then T is continuous if and only if kTk < 1.
We let B(H) denote the (C⇤-) algebra of bounded operators on H.
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Linear Operators on Hilbert Spaces

Signature for Real Hilbert Spaces

We work with the following many-sorted metric signature:
for each n � 1, we have a sort for Bn(H) := {x 2 H | kxk  n}.
for each 1  m  n, we have a function symbol
Im,n : Bm(H) ! Bn(H) for the inclusion mapping.
function symbols +,� : Bn(H)⇥ Bn(H) ! B2n(H);
function symbols r · : Bn(H) ! Bkn(H) for all r 2 R, where k is the
unique natural number satisfying k � 1  |r | < k ;
a predicate symbol h·, ·i : Bn(H)⇥ Bn(H) ! [�n2, n2];
a predicate symbol k · k : Bn(H) ! [0, n].

The moduli of uniform continuity are the natural ones.
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Linear Operators on Hilbert Spaces

Signature for Complex Hilbert Spaces

When working with complex Hilbert spaces, we make the following
changes:

We add function symbols i · : Bn(H) ! Bn(H) for each n � 1,
meant to be interpreted as multiplication by i .
Instead of the function symbol h·, ·i : Bn(H)⇥ Bn(H) ! [�n2, n2],
we have two function symbols
Re, Im : Bn(H)⇥ Bn(H) ! [�n2, n2], meant to be interpreted as
the real and imaginary parts of h·, ·i.
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Linear Operators on Hilbert Spaces

Definable functions

Definition
Let A ✓ H. We say that a function f : H ! H is A-definable if:

(i) for each n � 1, f (Bn(H)) is bounded; in this case, we let
m(n, f ) 2 N be the minimal m such that f (Bn(H)) is contained in
Bm(H);

(ii) for each n � 1 and each m � m(n, f ), the function

fn,m : Bn(H) ! Bm(H), fn,m(x) = f (x)

is A-definable, that is, the predicate Pn,m : Bn(H)⇥Bm(H) ! [0, m]
defined by Pn,m(x , y) = d(f (x), y) is A-definable.

Lemma
The definable bounded operators on H form a subalgebra of B(H).
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Linear Operators on Hilbert Spaces

Statement of the Main Theorem

From now on, I : H ! H denotes the identity operator.

Definition
An operator K : H ! H is compact if K (B1(H)) has compact closure.
(In terms of nonstandard analysis: K is compact if and only if for all
finite vectors x 2 H⇤, we have K (x) is nearstandard.)

Theorem (G.-2010)

The bounded operator T : H ! H is definable if and only if there is
� 2 K and a compact operator K : H ! H such that T = �I + K .
(Definable=scalar + compact)
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Linear Operators on Hilbert Spaces

Finite-Rank Operators

Suppose first that T is a finite-rank operator, that is, T (H) is
finite-dimensional.
Let a1, . . . , an be an orthonormal basis for T (H). Then
T (x) = T1(x)a1 + · · ·+ Tn(x)an for some bounded linear
functionals T1, . . . , Tn : H ! R.
By the Riesz Representation Theorem, there are b1, . . . , bn 2 H
such that Ti(x) = hx , bii for all x 2 H, i = 1, . . . , n.
Then, for all x , y 2 H, we have

d(T (x), y) =

vuut
nX

i=1

(hx , bii2)� 2
nX

i=1

(hx , biihai , yi) + kyk2

which is a formula in our language. Hence, finite-rank operators
are formula-definable.
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Linear Operators on Hilbert Spaces

Compact Operators

Fact
If T : H ! H is compact, then there is a sequence (Tn) of finite-rank
operators such that kT � Tnk ! 0 as n !1.

Now suppose that T : H ! H is a compact operator. Fix a
sequence (Tn) of finite-rank operators such that kT � Tnk ! 0.
Fix n � 1 and ✏ > 0 and choose k such that kT � Tkk < ✏

n . Then
for x 2 Bn(H) and y 2 Bm(H), where m � m(n, T ), we have

|d(T (x), y)� d(Tk (x), y)|  kT (x)� Tk (x)k < ✏.

Since d(Tk (x), y) is given by a formula, this shows that T is
definable.
Thus, any operator of the form �I + T is definable.
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Linear Operators on Hilbert Spaces

Working towards the converse

From now on, we fix an A-definable operator T : H ! H, where
A ✓ H is countable.
We also let H⇤ denote an !1-saturated elementary extension of H.
Observe that, since H is closed in H⇤, we have the orthogonal
decomposition H⇤ = H � H?.
T has a natural extension to a definable function T : H⇤ ! H⇤.

Lemma
T : H⇤ ! H⇤ is also linear.

Proof.
Not as straightforward as you might guess given that continuous logic
is a positive logic!
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Linear Operators on Hilbert Spaces

Definable closure

Fact

In a Hilbert space H, dcl(B) = sp(B), the closed linear span of B,
for any B ✓ H.

We let P : H⇤ ! H⇤ denote the orthogonal projection onto the
subspace sp(A).

Lemma
For any x 2 H⇤, dcl(Ax) = sp(Ax) = sp(A)�K · (x � Px).
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Linear Operators on Hilbert Spaces

Main Lemma

Lemma
There is a unique � 2 K such that, for all x 2 H⇤, we have
T (x) = PT (x) + �(x � Px).

Proof.

If x 2 H?, then there is �x 2 K such that T (x) = PT (x) + �x · x .
It is easy to check that �x = �y for all x , y 2 H?; call this common
value �.
For x 2 H⇤ arbitrary, we have

T (x) = TP(x) + T (x � Px) = TP(x) + PT (x � Px) + �(x � Px).

Since TP(x) + PT (x � Px) 2 sp(A), we are done.
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Linear Operators on Hilbert Spaces

Finishing the converse

Proposition

For � as above, we have T � �I is a compact operator.

Proof

Since T � �I = P � (T � �I), we have (T � �I)(H⇤) ✓ sp(A).
Let ✏ > 0 be given. Let '(x , y) be a formula such that��kT (x)� yk � '(x , y)

�� < ✏
4 , where x is a variable of sort B1.

Let (bn) be a countable dense subset of (T � �I)(B1(H⇤)).
Then the following set of statements is inconsistent:

{kT (x)� (�x + bn)k �
✏

4
| n 2 N}.
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Linear Operators on Hilbert Spaces

Proof (cont’d)

Thus, the following set of conditions is inconsistent:

{'(x , �x + bn) �
✏

2
| n 2 N}.

By !1-saturation, there are b1, . . . , bm such that

{'(x , �x + bn) �
✏

2
| 1  n  m}

is inconsistent.
It follows that {b1, . . . , bm} form an ✏-net for (T � �I)(B1(H⇤)).
Since ✏ > 0 is arbitrary, we see that (T � �I)(B1(H⇤)) is totally
bounded. It is automatically closed by !1-saturation, whence it is
compact.
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Linear Operators on Hilbert Spaces

Some Corollaries- I

Corollary

The definable operators on H form a C⇤-subalgebra of B(H).

It is not at all clear how to prove, from first principles, that
definable operators are closed under taking adjoints.
It is easy to show this if one assumes that the definable operator
is normal, for then one has

kT ⇤(x)� yk2 = kT ⇤(x)k2 � 2hT ⇤(x), yi+ kyk2

= kT (x)k2 � 2hT (y), xi+ kyk2.
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Linear Operators on Hilbert Spaces

Some Corollaries- II

Corollary

Suppose that T is definable and not compact. Then Ker(T ) and
Coker(T ) are finite-dimensional. Moreover, Ker(T ) ✓ sp(A).

Corollary

Suppose that E is a closed subspace of H and that T : H ! H is the
orthogonal projection onto E. Then T is definable if and only if E has
finite dimension or finite codimension.

Corollary

Let I = {i1, i2, . . .} be an infinite and coinfinite subset of N. Let
T : `2 ! `2 be given by T (x)n = xin . Then T is not definable.
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Linear Operators on Hilbert Spaces

Fredholm operators

From now on, we assume that K = C. Recall that a bounded operator
T is Fredholm if both Ker(T ) and Coker(T ) are finite-dimensional. The
index of a Fredholm operator is the number
index(T ) := dim(Ker(T ))� dim(Coker(T )).

Corollary

If T is definable, then either T is compact or else T is Fredholm of
index 0.

Proof.
This follows from the Fredholm alternative of functional analysis.
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Linear Operators on Hilbert Spaces

Some Corollaries- III

Recall the left- and right-shift operators L and R on `2:

L(x1, x2, . . . , ) = (x2, x3, . . .)

R(x1, x2, . . .) = (0, x1, x2, . . . , )

Corollary

The left- and right-shift operators on `2 are not definable.

Proof.
These operators are of index 1 and �1 respectively.

Using this result, one can prove that the left-and right-shift operators
on the R-Hilbert space `2 are not definable.
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Linear Operators on Hilbert Spaces

The Calkin Algebra

Let B0(H) denote the ideal of B(H) consisting of the compact
operators. The quotient algebra C(H) = B(H)/B0(H) is referred
to as the Calkin algebra of H.
Let ⇡ : B(H) ! C(H) be the canonical quotient map.
Our main theorem says that the algebra of definable operators is
equal to ⇡�1(C).
We consider the essential spectrum of T :

�e(T ) = {� 2 C : ⇡(T )� � · ⇡(I) is not invertible}.
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Linear Operators on Hilbert Spaces

Some Corollaries- IV

If T is a definable operator, let �(T ) 2 C be such that
T � �(T )I = P � (T � �(T )I).

Corollary

If T is definable, then �e(T ) = {�(T )}.

Example

Consider L� R : `2 � `2 ! `2 � `2.
It is a fact that L� R is Fredholm of index 0. Thus, our earlier
corollary doesn’t help us in showing that L� R is not definable.
However, it is a fact that �e(L� R) = S1. Thus, we see from the
above corollary that L� R is not definable.
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Linear Operators on Hilbert Spaces

The Invariant Subspace Problem

Invariant Subspace Problem

If H is a separable Hilbert space and T : H ! H is a bounded
operator, does there exist a closed subspace E of H such that
E 6= {0}, E 6= H, and T (E) ✓ E?

Silly Corollary

The invariant subspace problem has a positive answer when restricted
to the class of definable operators.

Proof.
Suppose T is definable. Write T = �I + K . If K = 0, then E := C · x is
a closed, nontrivial invariant subspace for T , where x 2 H \ {0} is
arbitrary. Otherwise, use the fact that compact operators always have
nontrivial invariant subspaces.
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Pseudofiniteness

Pseudofinite/pseudocompact structures

Definition
An L-structure M is pseudofinite (resp. pseudocompact) if for any
L-sentence �, if �A = 0 for all finite (resp. compact) L-structures A,
then �M = 0.

Lemma
The following are equivalent:

M is pseudofinite (resp. pseudocompact);
There is a set I, an ultrafilter U on I, and a family of finite (resp.
compact) L-structures (Ai)i2I such that M ⌘

Q
U Ai ;

For any L-sentence � with �M = 0 and any ✏ > 0, there is a finite
(resp. compact) L-structure A such that �A < ✏.
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Pseudofiniteness

Examples of pseudofinite structures

Examples of pseudofinite metric structures

Pseudofinite structures from classical logic
Atomless probability algebras (and their expansioin by generic
automorphisms)
Keisler randomizations of classical pseudofinite structures
Asymptotic cones

Example of a pseudocompact structure

Infinite-dimensional Hilbert spaces (and their expansions by
random subspaces or generic automorphisms)
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Pseudofiniteness

Question

Question

Is the Urysohn sphere pseudofinite?

Lemma (Cifú-Lopes, G.)

For relational structures, “pseudofiniteness” and “pseudocompactness”
are the same notion. (And they are almost the same notion in general.)

So we may equivalently ask: Is the Urysohn sphere pseudocompact?
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Pseudofiniteness

An idea

Lemma (Cifú-Lopes, G.)

Suppose that there is a collection � of L-sentences such that
{� = 0 : � 2 �} |= Th(M). Suppose that for every �1, . . . , �n 2 � and
every ✏ > 0, there is a finite (resp. compact) L-structure A such that
A |= max(�1, . . . , �n)  ✏. Then M is pseudofinite (resp.
pseudocompact).

This suggests trying to show that any finite number of the “extension
axioms” are approximately true in some finite or compact metric space.
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Pseudofiniteness

Strongly pseudofinite structures

In classical logic, M is pseudofinite if and only if: whenever
M |= �, then A |= � for some finite structure A.
But this equivalence uses negations!
We say that a metric structure M is strongly pseudofinite (resp.
strongly pseudocompact) if: whenever �M = 0, then �A = 0 for
some finite (resp. compact) structure A.
We can show that, for a classical structure, the five notions
“classically pseudofinite,” “pseudofinite,” “pseudocompact,”
“strongly pseudofinite,” and “strongly pseudocompact” all agree.

Question

Are there any essentially continuous strongly pseudofinite or strongly
pseudocompact structures?
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Pseudofiniteness

Injective-Surjective Principle

Fact (Ax?)

If M is a classical pseudofinite structure and f : M ! M is a definable
function, then f is injective if and only if f is surjective.

This result fails for pseudofinite structures in continuous logic:
Consider (S1, P), where P(u, v , w) := d(uv , w). Then (S1, P) is
pseudofinite and z 7! z2 is (formula-)definable, surjective, but not
injective!

Proposition (Cifú-Lopes, G.)

If M is a strongly pseudofinite structure and f : M ! M is a
formula-definable function, then f is injective if and only if f is
surjective.
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Pseudofiniteness

Injective-Surjective Principle (cont’d)

Proposition (Cifú-Lopes, G.)

If M is a strongly pseudofinite structure and f : M ! M is a
formula-definable function, then f is injective if and only if f is
surjective.

Thus our pseudofinite structure (S1, P) is not strongly pseudofinite. We
can use this technique to show that other pseudofinite structures are
not strongly pseudofinite.

Question

Is there a suitable replacement for the injective-surjective principle for
functions definable in metric structures which holds in pseudofinite
structures?
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Pseudofiniteness
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