Definability in metric structures

Isaac Goldbring

UCLA

ASL North American Annual Meeting University of Wisconsin April 2, 2012

4 0 8

 290

1 [Continuous Logic](#page-1-0)

2 [The Urysohn sphere](#page-12-0)

3 [Linear Operators on Hilbert Spaces](#page-24-0)

[Pseudofiniteness](#page-51-0)

4 0 8

×. A F

 \mathcal{A} . If \mathcal{B} and \mathcal{A} is

∍

 299

Metric Structures

- A (bounded) *metric structure* is a (bounded) complete metric space (*M, d*), together with distinguished
	- 1 elements.
	- 2 functions (mapping *Mⁿ* into *M* for various *n*), and
	- ³ predicates (mapping *Mⁿ* into a bounded interval in R for various *n*).
- Each function and predicate is required to be uniformly continuous.
- **Often times, for the sake of simplicity, we suppose that the metric** is bounded by 1 and the predicates all take values in [0*,* 1].

Examples of Metric Structures

1 If M is a structure from classical model theory, then we can consider *M* as a metric structure by equipping it with the discrete metric. If $P \subseteq M^n$ is a distinguished predicate, then we consider it as a mapping $P: M^n \to \{0, 1\} \subseteq [0, 1]$ by

 $P(a) = 0$ if and only if $M \models P(a)$.

- 2 Suppose *X* is a Banach space with unit ball *B*. Then $(B, 0_X, \|\cdot\|, (f_{\alpha,\beta})_{\alpha,\beta})$ is a metric structure, where $f_{\alpha,\beta}: B^2 \to B$ is given by $f(x, y) = \alpha \cdot x + \beta \cdot y$ for all scalars α and β with $|\alpha| + |\beta|$ < 1.
- 3 If *H* is a Hilbert space with unit ball *B*, then $(B, 0_H, \|\cdot\|, \langle \cdot, \cdot \rangle, (f_{\alpha,\beta})_{\alpha,\beta})$ is a metric structure.

Bounded Continuous Signatures

- As in classical logic, a signature *L* for continuous logic consists of constant symbols, function symbols, and predicate symbols, the latter two coming also with arities.
- New to continuous logic: For every function symbol *F*, the signature must specify a *modulus of uniform continuity* Δ_F , which is just a function Δ_F : (0, 1] \rightarrow (0, 1]. Likewise, a modulus of uniform continuity is specified for each predicate symbol.
- **The metric** *d* is included as a (logical) predicate in analogy with $=$ in classical logic.

An *L-structure* is a metric structure *M* whose distinguished constants, functions, and predicates are interpretations of the corresponding symbols in *L*. Moreover, the uniform continuity of the functions and predicates is witnessed by the moduli of uniform continuity specified by *L*.

e.g. If P is a unary predicate symbol, then for all $\epsilon > 0$ and all $x, y \in M$, we have:

$$
d(x,y)<\Delta_P(\epsilon)\Rightarrow |P^{\mathcal{M}}(x)-P^{\mathcal{M}}(y)|\leq \epsilon.
$$

- Atomic formulae are now of the form $d(t_1, t_2)$ and $P(t_1, \ldots, t_n)$, where t_1, \ldots, t_n are terms and P is a predicate symbol.
- We allow all continuous functions $[0,1]^n \rightarrow [0,1]$ as *n*-ary connectives.
- If φ is a formula, then so is sup_x φ and inf_{*x*} φ . (sup $= \forall$ and inf $= \exists$)

Definable predicates

- If *M* is a metric structure and $\varphi(x)$ is a formula, where $|x| = n$, then the interpretation of φ in *M* is a uniformly continuous function $\varphi^M : M^n \to [0, 1].$
- For the purposes of definability, formulae are not expressive enough. Instead, we broaden our perspective to include *definable predicates*.
- If $A \subseteq M$, then a uniformly continuous function $P : M^n \rightarrow [0, 1]$ is *definable in M over A* if there is a sequence $(\varphi_n(x))$ of formulae with parameters from *A* such that the sequence (φ_n^M) converges uniformly to *P*.

Definable functions

- $f : M^n \to M$ is A-definable if and only if the map $(x, y) \mapsto d(f(x), y) : M^{n+1} \to [0, 1]$ is an *A*-definable predicate.
- A new complication: Definable sets and functions may now use *countably* many parameters in their definitions. If the metric structure is separable and the parameterset used in the definition is dense, then this can prove to be troublesome.
- Given any elementary extension $N \succeq M$, there is a natural extension of *f* to an *A*-definable function $\tilde{f} : N^n \to N$.

Definability takes a backseat

- \blacksquare There are notions of stability, simplicity, rosiness, NIP,... in the metric context. These notions have been heavily developed with an eye towards applications.
- \blacksquare However, old-school model theory in the form of definability has not really been pursued. In particular, the question: "Given a metric structure *M*, what are the sets and functions definable in *M*?" has not received much attention. This is the question that we will focus on in this talk.

Definable closure

Definition

Given an *L*-structure *M*, a parameterset $A \subseteq M$, and $b \in M$, we say that *b* is *in the definable closure of A*, written $b \in \text{dcl}(A)$, if the predicate $x \mapsto d(x, b) : M \rightarrow [0, 1]$ is an *A*-definable predicate.

Let *M* be a structure, $A \subseteq M$, and $b \in M$.

- **If** $b \in \text{dcl}(A)$, then there is a *countable* $A_0 \subseteq A$ such that $b \in \text{dcl}(A_0)$.
- If *M* is ω_1 -saturated and *A* is countable, then $b \in \text{dcl}(A)$ if and only if $\sigma(b) = b$ for each $\sigma \in$ Aut(*M*/*A*).
- \blacksquare $\bar{A} \subset$ dcl(A) (\bar{A} =metric closure of A)
- If $f : M^n \to M$ is an A-definable function, then for each $x \in M^n$, we $\text{have } f(x) \in \text{dcl}(A \cup \{x_1, \ldots, x_n\}).$

Definable closure

Definition

Given an *L*-structure *M*, a parameterset $A \subseteq M$, and $b \in M$, we say that *b* is *in the definable closure of A*, written $b \in \text{dcl}(A)$, if the predicate $x \mapsto d(x, b) : M \rightarrow [0, 1]$ is an *A*-definable predicate.

Facts

Let *M* be a structure, $A \subseteq M$, and $b \in M$.

- **If** $b \in \text{dcl}(A)$, then there is a *countable* $A_0 \subseteq A$ such that $b \in$ dcl(A_0).
- If *M* is ω_1 -saturated and *A* is countable, then $b \in \text{dcl}(A)$ if and only if $\sigma(b) = b$ for each $\sigma \in$ Aut(*M*/*A*).
- $\overline{A} \subseteq \text{dcl}(A)$ (\overline{A} =metric closure of *A*)
- If $f : M^n \to M$ is an A-definable function, then for each $x \in M^n$, we $\text{have } f(x) \in \text{dcl}(A \cup \{x_1, \ldots, x_n\}).$

1 [Continuous Logic](#page-1-0)

2 [The Urysohn sphere](#page-12-0)

3 [Linear Operators on Hilbert Spaces](#page-24-0)

[Pseudofiniteness](#page-51-0)

4 0 8

×. A F

A Brand э 299

The Urysohn sphere

Definition

The *Urysohn sphere* $\mathfrak U$ is the unique, up to isometry, Polish metric space of diameter ≤ 1 satisfying the following two properties:

- universality: any Polish metric space of diameter ≤ 1 admits an isometric embedding in \mathfrak{U} ;
- **ultrahomogeneity:** any isometry between finite subspaces of $\mathfrak U$ can be extended to a self-isometry of U.

Model-theoretically, $\mathfrak U$ is the Fraisse limit of the Fraisse class of finite metric spaces of diameter ≤ 1 ; it is the model-completion of the (empty) theory of metric spaces in the signature consisting solely of the metric symbol *d*.

For any $A \subseteq \mathfrak{U}$, dcl(A) = \overline{A} .

The Urysohn sphere

Definition

The *Urysohn sphere* $\mathfrak U$ is the unique, up to isometry, Polish metric space of diameter ≤ 1 satisfying the following two properties:

- universality: any Polish metric space of diameter ≤ 1 admits an isometric embedding in \mathfrak{U} ;
- ultrahomogeneity: any isometry between finite subspaces of $\mathfrak U$ can be extended to a self-isometry of U.

Model-theoretically, $\mathfrak U$ is the Fraisse limit of the Fraisse class of finite metric spaces of diameter ≤ 1 ; it is the model-completion of the (empty) theory of metric spaces in the signature consisting solely of the metric symbol *d*.

Key fact (Henson)

For any $A \subseteq \mathfrak{U}$, dcl(A) = \overline{A} .

Definable functions in $\mathfrak U$

Set-up:

- *f* : $\mathfrak{U}^n \to \mathfrak{U}$ an *A*-definable function, where $A \subset \mathfrak{U}$
- \blacksquare U an ω_1 -saturated elementary extension of $\mathfrak U$
- $\mathbf{F} \cdot \mathbb{U}^n \rightarrow \mathbb{U}$ the natural extension of f

If f : $\mathfrak{U}^n \to \mathfrak{U}$ *is A-definable, then either* \tilde{f} *is a projection function* $(x_1, \ldots, x_n) \mapsto x_i$ or else f has compact image contained in $A \subseteq \mathfrak{U}$. *Consequently, either f is a projection function or else has relatively compact image.*

Definable functions in $\mathfrak U$

Set-up:

- *f* : $\mathfrak{U}^n \to \mathfrak{U}$ an *A*-definable function, where $A \subset \mathfrak{U}$
- \blacksquare U an ω_1 -saturated elementary extension of $\mathfrak U$
- $\mathbf{F} \cdot \mathbb{U}^n \rightarrow \mathbb{U}$ the natural extension of f

Theorem (G.-2010)

If f : $\mathfrak{U}^n \to \mathfrak{U}$ *is A-definable, then either* \tilde{f} *is a projection function* $(x_1, \ldots, x_n) \mapsto x_i$ or else \tilde{f} has compact image contained in $\bar{A} \subseteq \mathfrak{U}$. *Consequently, either f is a projection function or else has relatively compact image.*

Corollaries

Corollary

- **1** If $f: \mathfrak{U} \to \mathfrak{U}$ is a definable surjective/open/proper map, then $f = id_{\text{UL}}$
- **2** If $f: \mathfrak{U} \to \mathfrak{U}$ is a definable isometric embedding, then $f = id_{\mathfrak{U}}$.
- **3** *(Ealy, G.) If n* \geq 2*, then there are no definable isometric embeddings* $\mathfrak{U}^n \to \mathfrak{U}$.

Reason: Compact sets in $\mathfrak U$ have no interior.

There are many natural isometric embeddings $\mathfrak{U} \to \mathfrak{U}$ (as \mathfrak{U} has many subspaces isometric to itself), none of which (other than $id_{(1)}$ are definable in U.

 Ω

イロト イ押ト イヨト イヨト

Definable Groups

Corollary

There are no definable group operations on U*.*

Cameron and Vershik introduced a group operation on $\mathfrak U$ for which there is a dense cyclic subgroup. This group operation allows one to introduce a notion of translation in $\mathfrak U$. By the above corollary, this group operation is not definable.

Key Ideas to the Proof for $n = 1$

Suppose that $f : \mathfrak{U} \to \mathfrak{U}$ is an A-definable function, where $A \subseteq \mathfrak{U}$ is countable. Let $f: \mathbb{U} \to \mathbb{U}$ denote its canonical extension.

1 By triviality of dcl, for any $x \in \mathbb{U}$, we have $\tilde{f}(x) \in \text{dcl}(Ax) = \bar{A} \cup \{x\}.$

2 Let $X = \{x \in \mathfrak{U} \mid f(x) = x\}$. Show that $\tilde{f}^{-1}(\bar{A}) \setminus X \subseteq \text{int}(\tilde{f}^{-1}(\bar{A}))$.

- **3** Prove a general lemma showing that if $F \subset U$ is a closed subset and $G \subseteq F$ is a closed, separable subset of F for which $F \setminus G \subseteq \text{int}(F)$, then either $F = G$ or $F = \mathbb{U}$. This involves some "Urysohn-esque" arguing.
- 4 Finally, a saturation argument shows that if $\tilde{f}(\mathbb{U}) \subset \mathfrak{U}$, then $\tilde{f}(\mathbb{U})$ is compact.

in the second property of the second

Question

Question

Can we improve the theorem on definable functions to read: If $f: \mathfrak{U}^n \to \mathfrak{U}$ is definable, then either *f* is a projection or a constant function?

I can show that a positive solution to the above question follows from a positive solution to the $n = 1$ case.

Another Question

Question

Are there any definable injections $f: \mathfrak{U} \to \mathfrak{U}$ other than the identity?

There can exist injective functions $\mathfrak{U} \to \mathfrak{U}$ which have relatively compact image, so our theorem doesn't immediately help us: Consider

$$
(x_n)\mapsto (\frac{x_n}{2^n}): (0,1)^\infty\to \ell^2.
$$

and use the fact that $\mathfrak{U} \cong \ell^2 \cong (0, 1)^\infty$.

Observe that a positive answer to Question 3 yields a negative answer to this question.

 QQQ

Injective Definable Functions

Lemma

If f : $\mathbb{U} \to \mathbb{U}$ *is injective and definable, then f* = $\mathsf{id}_{\mathbb{U}}$.

Proof.

One can show that the complement of an open ball in U is definable. Since *f* maps definable sets to definable sets (which is a fact we are unsure of in \mathfrak{U}), it follows that f is a closed map, whence a topological embedding. By our main theorem, we see that *f* is the identity.

Remark

This doesn't immediately help us, for an injective definable map $\mathfrak{U} \rightarrow \mathfrak{U}$ need not induce an injective definable map $\mathbb{U} \to \mathbb{U}$. (Continuous logic is a positive logic!)

 QQ

イロト イ押ト イヨト イヨ

Upwards Transfer

Lemma (BBHU, Ealy-G.)

Suppose that M is ω -satuated and P, Q : $M^n \rightarrow [0, 1]$ are definable *predicates such that P is defined over a finite parameterset. Then the statement " for all* $a \in M^n$ *(P(a) = 0* $\Rightarrow Q(a) = 0$ *)" is expressible in continuous logic.*

- If follows that the natural extension of an isometric embedding is also an isometric embedding.
- It also follows that if $f : M^n \to M$ is an A-definable injection, where *A* is *finite*, then \hat{f} is also an injection.

 Ω

≮ロトメ部 トメミトメミト 一毛

1 [Continuous Logic](#page-1-0)

2 [The Urysohn sphere](#page-12-0)

3 [Linear Operators on Hilbert Spaces](#page-24-0)

[Pseudofiniteness](#page-51-0)

4 0 8

A F \rightarrow \rightarrow \rightarrow $\left(1\right)$ 299

Hilbert spaces

- **Throughout,** $\mathbb{K} \in \{ \mathbb{R}, \mathbb{C} \}$.
- Recall that an inner product space over $\mathbb K$ which is complete with respect to the metric induced by its inner product is called a K-Hilbert space. In this talk, *H* and *H*⁰ denote *infinite-dimensional* K-Hilbert spaces.
- A continuous linear transformation $T : H \rightarrow H'$ is also called a *bounded* linear transformation. Reason: if one defines

 $||T|| := \sup{||T(x)||}$: $||x|| < 1$,

then *T* is continuous if and only if $||T|| < \infty$.

We let $\mathfrak{B}(H)$ denote the (C^*) algebra of bounded operators on H.

Signature for Real Hilbert Spaces

We work with the following many-sorted metric signature:

- **f** for each $n \geq 1$, we have a sort for $B_n(H) := \{x \in H \mid ||x|| \leq n\}$.
- **F** for each $1 \le m \le n$, we have a function symbol $I_{m,n}: B_m(H) \to B_n(H)$ for the inclusion mapping.
- **function symbols** +, : $B_n(H) \times B_n(H) \rightarrow B_{2n}(H)$;
- **function symbols** $r : B_n(H) \to B_{kn}(H)$ for all $r \in \mathbb{R}$, where k is the unique natural number satisfying $k - 1 < |r| < k$;
- **a** predicate symbol $\langle \cdot, \cdot \rangle : B_n(H) \times B_n(H) \rightarrow [-n^2, n^2];$
- **a** predicate symbol $\Vert \cdot \Vert : B_n(H) \to [0, n]$.

The moduli of uniform continuity are the natural ones.

イタト イラト イラトー

Signature for Complex Hilbert Spaces

When working with complex Hilbert spaces, we make the following changes:

- \blacksquare We add function symbols $i\cdot$: $B_n(H) \to B_n(H)$ for each $n \geq 1$, meant to be interpreted as multiplication by *i*.
- \blacksquare Instead of the function symbol $\langle \cdot, \cdot \rangle : B_n(H) \times B_n(H) \to [-n^2, n^2]$. we have two function symbols $\mathfrak{Re}, \mathfrak{Im}: B_n(H) \times B_n(H) \to [-n^2, n^2]$, meant to be interpreted as the real and imaginary parts of $\langle \cdot, \cdot \rangle$.

Definable functions

Definition

Let $A \subseteq H$. We say that a function $f : H \rightarrow H$ is A-definable if:

- (i) for each $n \geq 1$, $f(B_n(H))$ is bounded; in this case, we let $m(n, f) \in \mathbb{N}$ be the minimal *m* such that $f(B_n(H))$ is contained in *Bm*(*H*);
- (ii) for each $n \ge 1$ and each $m \ge m(n, f)$, the function

$$
f_{n,m}:B_n(H)\to B_m(H),\quad f_{n,m}(x)=f(x)
$$

is *A*-definable, that is, the predicate $P_{n,m}: B_n(H) \times B_m(H) \rightarrow [0, m]$ defined by $P_{n,m}(x, y) = d(f(x), y)$ is *A*-definable.

Lemma

The definable bounded operators on H form a subalgebra of $\mathfrak{B}(H)$ *.*

U.S. K. H. H. H. H. H.

 419.0

Statement of the Main Theorem

From now on, $I: H \rightarrow H$ denotes the identity operator.

Definition

An operator $K : H \to H$ is *compact* if $K(B_1(H))$ has compact closure. (In terms of nonstandard analysis: *K* is compact if and only if for all finite vectors $x \in H^*$, we have $K(x)$ is nearstandard.)

The bounded operator $T : H \rightarrow H$ *is definable if and only if there is* $\lambda \in \mathbb{K}$ and a compact operator $K : H \to H$ such that $T = \lambda I + K$. *(Definable=scalar + compact)*

 Ω

メロメメ 御きメモ メモ きっころ

Statement of the Main Theorem

From now on, $I: H \rightarrow H$ denotes the identity operator.

Definition

An operator $K : H \to H$ is *compact* if $K(B_1(H))$ has compact closure. (In terms of nonstandard analysis: *K* is compact if and only if for all finite vectors $x \in H^*$, we have $K(x)$ is nearstandard.)

Theorem (G.-2010)

The bounded operator $T : H \to H$ is definable if and only if there is $\lambda \in \mathbb{K}$ and a compact operator $K : H \to H$ such that $T = \lambda I + K$. *(Definable=scalar + compact)*

 Ω

メロメメ 御きメモ メモ きっころ

Finite-Rank Operators

- Suppose first that *T* is a *finite-rank* operator, that is, *T*(*H*) is finite-dimensional.
- **E** Let a_1, \ldots, a_n be an orthonormal basis for $T(H)$. Then $T(x) = T_1(x)a_1 + \cdots + T_n(x)a_n$ for some bounded linear functionals $T_1, \ldots, T_n : H \to \mathbb{R}$.
- **E** By the Riesz Representation Theorem, there are $b_1, \ldots, b_n \in H$ such that $T_i(x) = \langle x, b_i \rangle$ for all $x \in H, i = 1, \ldots, n$.

Then, for all $x, y \in H$ **, we have**

$$
d(\mathcal{T}(x), y) = \sqrt{\sum_{i=1}^{n} (\langle x, b_i \rangle^2) - 2 \sum_{i=1}^{n} (\langle x, b_i \rangle \langle a_i, y \rangle) + ||y||^2}
$$

which is a formula in our language. Hence, finite-rank operators are formula-definable.

Compact Operators

Fact

If $T : H \to H$ is compact, then there is a sequence (T_n) of finite-rank operators such that $\|T - T_n\| \to 0$ as $n \to \infty$.

- Now suppose that $T : H \rightarrow H$ is a compact operator. Fix a sequence (T_n) of finite-rank operators such that $||T - T_n|| \to 0$.
- Fix $n \ge 1$ and $\epsilon > 0$ and choose *k* such that $\|T T_k\| < \frac{\epsilon}{n}$. Then for $x \in B_n(H)$ and $y \in B_m(H)$, where $m > m(n, T)$, we have

$$
|d(T(x),y)-d(T_k(x),y)|\leq \|T(x)-T_k(x)\|<\epsilon.
$$

- Since $d(T_k(x), y)$ is given by a formula, this shows that T is definable.
- **Thus, any operator of the form** $\lambda I + T$ is definable.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Working towards the converse

- **Figure 5** From now on, we fix an A-definable operator $T : H \rightarrow H$, where $A \subset H$ is countable.
- **No** also let H^* denote an ω_1 -saturated elementary extension of H.
- Observe that, since *H* is closed in *H*[∗], we have the orthogonal decomposition $H^* = H \oplus H^{\perp}$.
- **T** has a natural extension to a definable function $T : H^* \to H^*$.

$T \cdot H^* \rightarrow H^*$ *is also linear*

Not as straightforward as you might guess given that continuous logic is a positive logic!

 Ω

K ロ ト K 伺 ト K ヨ ト

Working towards the converse

- **Figure 5** From now on, we fix an A-definable operator $T : H \rightarrow H$, where $A \subset H$ is countable.
- **No** also let H^* denote an ω_1 -saturated elementary extension of H.
- Observe that, since *H* is closed in *H*[∗], we have the orthogonal decomposition $H^* = H \oplus H^{\perp}$.
- **T** has a natural extension to a definable function $T : H^* \to H^*$.

Lemma

 $T \cdot H^* \rightarrow H^*$ *is also linear*

Proof.

Not as straightforward as you might guess given that continuous logic is a positive logic!

Definable closure

Fact

In a Hilbert space H, dcl(B) = $\overline{sp}(B)$, the closed linear span of B, for any $B \subset H$.

We let $P: H^* \to H^*$ denote the orthogonal projection onto the subspace sp(*A*).

For any $x \in H^*$ *, dcl*(Ax) = $\overline{sp}(Ax)$ = $\overline{sp}(A) \oplus \mathbb{K} \cdot (x - Px)$.

4 D.K.

イタト イミト イミト

 QQQ

Definable closure

Fact

In a Hilbert space H, dcl(B) = $\overline{sp}(B)$, the closed linear span of B, for any $B \subset H$.

We let $P: H^* \to H^*$ denote the orthogonal projection onto the subspace $\overline{sp}(A)$.

Lemma

For any
$$
x \in H^*
$$
, $dcl(Ax) = \overline{sp}(Ax) = \overline{sp}(A) \oplus \mathbb{K} \cdot (x - Px)$.

 QQQ

イロト イ押 トイラト イラト

Lemma

There is a unique $\lambda \in \mathbb{K}$ *such that, for all* $x \in H^*$ *, we have* $T(x) = PT(x) + \lambda(x - Px)$.

-
- If is easy to check that $\lambda_x = \lambda_y$ for all $x, y \in H^{\perp}$; call this common value λ .
- **For** $x \in H^*$ arbitrary, we have

 $T(x) = TP(x) + T(x - Px) = TP(x) + PT(x - Px) + \lambda(x - Px).$

Lemma

There is a unique $\lambda \in \mathbb{K}$ *such that, for all* $x \in H^*$ *, we have* $T(x) = PT(x) + \lambda(x - Px)$.

Proof.

- If $x \in H^{\perp}$, then there is $\lambda_x \in \mathbb{K}$ such that $T(x) = PT(x) + \lambda_x \cdot x$.
- If is easy to check that $\lambda_x = \lambda_y$ for all $x, y \in H^{\perp}$; call this common value λ .
- **For** $x \in H^*$ arbitrary, we have

 $T(x) = TP(x) + T(x - Px) = TP(x) + PT(x - Px) + \lambda(x - Px).$

Lemma

There is a unique $\lambda \in \mathbb{K}$ *such that, for all* $x \in H^*$ *, we have* $T(x) = PT(x) + \lambda(x - Px)$.

Proof.

- If $x \in H^{\perp}$, then there is $\lambda_x \in \mathbb{K}$ such that $T(x) = PT(x) + \lambda_x \cdot x$.
- If it is easy to check that $\lambda_x = \lambda_y$ for all $x, y \in H^{\perp}$; call this common value λ
- **For** $x \in H^*$ arbitrary, we have

 $T(x) = TP(x) + T(x - Px) = TP(x) + PT(x - Px) + \lambda(x - Px).$

Lemma

There is a unique $\lambda \in \mathbb{K}$ *such that, for all* $x \in H^*$ *, we have* $T(x) = PT(x) + \lambda(x - Px)$.

Proof.

- If $x \in H^{\perp}$, then there is $\lambda_x \in \mathbb{K}$ such that $T(x) = PT(x) + \lambda_x \cdot x$.
- If it is easy to check that $\lambda_x = \lambda_y$ for all $x, y \in H^{\perp}$; call this common value λ
- **For** $x \in H^*$ arbitrary, we have

$$
T(x) = TP(x) + T(x - Px) = TP(x) + PT(x - Px) + \lambda(x - Px).
$$

Lemma

There is a unique $\lambda \in \mathbb{K}$ *such that, for all* $x \in H^*$ *, we have* $T(x) = PT(x) + \lambda(x - Px)$.

Proof.

- If $x \in H^{\perp}$, then there is $\lambda_x \in \mathbb{K}$ such that $T(x) = PT(x) + \lambda_x \cdot x$.
- If it is easy to check that $\lambda_x = \lambda_y$ for all $x, y \in H^{\perp}$; call this common value λ
- **For** $x \in H^*$ arbitrary, we have

$$
T(x) = TP(x) + T(x - Px) = TP(x) + PT(x - Px) + \lambda(x - Px).
$$

Finishing the converse

Proposition

For λ as above, we have $T - \lambda I$ is a compact operator.

Proof

Since
$$
T - \lambda I = P \circ (T - \lambda I)
$$
, we have $(T - \lambda I)(H^*) \subseteq \overline{\text{sp}}(A)$.

- Let $\epsilon > 0$ be given. Let $\varphi(x, y)$ be a formula such that $\big| \|T(x) - y\| - \varphi(x, y) \big| < \frac{\epsilon}{4}$, where *x* is a variable of sort B_1 .
- Let (b_n) be a countable dense subset of $(T \lambda I)(B_1(H^*))$.
- \blacksquare Then the following set of statements is inconsistent:

$$
\{\|T(x)-(\lambda x+b_n)\|\geq \frac{\epsilon}{4}\mid n\in\mathbb{N}\}.
$$

Proof (cont'd)

 \blacksquare Thus, the following set of conditions is inconsistent:

$$
\{\varphi(x,\lambda x+b_n)\geq \frac{\epsilon}{2}\mid n\in\mathbb{N}\}.
$$

By ω_1 -saturation, there are b_1, \ldots, b_m such that

$$
\{\varphi(x,\lambda x+b_n)\geq \frac{\epsilon}{2}\mid 1\leq n\leq m\}
$$

is inconsistent.

- It follows that $\{b_1, \ldots, b_m\}$ form an ϵ -net for $(T \lambda I)(B_1(H^*))$.
- Since $\epsilon > 0$ is arbitrary, we see that $(T \lambda I)(B_1(H^*))$ is totally bounded. It is automatically closed by ω_1 -saturation, whence it is compact.

Some Corollaries- I

Corollary

The definable operators on H form a C⇤*-subalgebra of* B(*H*)*.*

- If it is not at all clear how to prove, from first principles, that definable operators are closed under taking adjoints.
- \blacksquare It is easy to show this if one assumes that the definable operator is *normal*, for then one has

$$
||T^*(x) - y||^2 = ||T^*(x)||^2 - 2\langle T^*(x), y \rangle + ||y||^2
$$

=
$$
||T(x)||^2 - 2\langle T(y), x \rangle + ||y||^2.
$$

Some Corollaries- II

Corollary

Suppose that T is definable and not compact. Then Ker(*T*) *and* Coker(*T*) are finite-dimensional. Moreover, Ker(*T*) \subseteq $\overline{sp}(A)$.

Corollarv

Suppose that E is a closed subspace of H and that T : $H \rightarrow H$ *is the orthogonal projection onto E. Then T is definable if and only if E has finite dimension or finite codimension.*

Corollary

Let $I = \{i_1, i_2, \ldots\}$ *be an infinite and coinfinite subset of* N. Let $T : \ell^2 \to \ell^2$ be given by $T(x)_n = x$ _{in}. Then T is not definable.

 QQQ

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 《 경

Fredholm operators

From now on, we assume that $\mathbb{K} = \mathbb{C}$. Recall that a bounded operator *T* is *Fredholm* if both Ker(*T*) and Coker(*T*) are finite-dimensional. The *index* of a Fredholm operator is the number $index(T) := dim(Ker(T)) - dim(Coker(T)).$

Corollary

If T is definable, then either T is compact or else T is Fredholm of index 0*.*

Proof.

This follows from the Fredholm alternative of functional analysis.

イロト イ押ト イヨト イヨト

Some Corollaries- III

Recall the left- and right-shift operators *L* and *R* on ℓ^2 :

$$
L(x_1,x_2,\ldots,)=(x_2,x_3,\ldots)
$$

$$
R(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots,)
$$

Corollary

The left- and right-shift operators on ℓ^2 *are not definable.*

Proof.

These operators are of index 1 and -1 respectively.

Using this result, one can prove that the left-and right-shift operators on the \mathbb{R} -Hilbert space ℓ^2 are not definable.

The Calkin Algebra

- Let $\mathfrak{B}_0(H)$ denote the ideal of $\mathfrak{B}(H)$ consisting of the compact operators. The quotient algebra $\mathfrak{C}(H) = \mathfrak{B}(H)/\mathfrak{B}_0(H)$ is referred to as the *Calkin algebra* of *H*.
- Let $\pi : \mathfrak{B}(H) \to \mathfrak{C}(H)$ be the canonical quotient map.
- **Our main theorem says that the algebra of definable operators is** equal to $\pi^{-1}(\mathbb{C})$.
- We consider the *essential spectrum* of *T*:

$$
\sigma_{e}(T) = \{\lambda \in \mathbb{C} \ : \ \pi(T) - \lambda \cdot \pi(I) \text{ is not invertible}\}.
$$

Some Corollaries- IV

If *T* is a definable operator, let $\lambda(T) \in \mathbb{C}$ be such that $T - \lambda(T)I = P \circ (T - \lambda(T)I).$

Corollary

If T is definable, then $\sigma_e(T) = \{\lambda(T)\}\$.

Example

Consider $L \oplus R : \ell^2 \oplus \ell^2 \to \ell^2 \oplus \ell^2$.

- If it is a fact that $L \oplus R$ is Fredholm of index 0. Thus, our earlier corollary doesn't help us in showing that $L \oplus R$ is not definable.
- However, it is a fact that $\sigma_e(L \oplus R) = \mathbb{S}^1$. Thus, we see from the above corollary that $L \oplus R$ is not definable.

 Ω

イロメ イ何 メイヨメ イヨメーヨー

The Invariant Subspace Problem

Invariant Subspace Problem

If *H* is a separable Hilbert space and $T : H \rightarrow H$ is a bounded operator, does there exist a closed subspace *E* of *H* such that $E \neq \{0\}, E \neq H$, and $T(E) \subset E$?

Silly Corollary

The invariant subspace problem has a positive answer when restricted to the class of *definable* operators.

Proof.

Suppose *T* is definable. Write $T = \lambda I + K$. If $K = 0$, then $E := \mathbb{C} \cdot x$ is a closed, nontrivial invariant subspace for *T*, where $x \in H \setminus \{0\}$ is arbitrary. Otherwise, use the fact that compact operators always have nontrivial invariant subspaces.

1 [Continuous Logic](#page-1-0)

2 [The Urysohn sphere](#page-12-0)

3 [Linear Operators on Hilbert Spaces](#page-24-0)

4 [Pseudofiniteness](#page-51-0)

4 0 8

×. A F \rightarrow \rightarrow \rightarrow э 299

Pseudofinite/pseudocompact structures

Definition

An *L*-structure *M* is *pseudofinite* (resp. *pseudocompact*) if for any *L*-sentence σ , if $\sigma^A = 0$ for all finite (resp. compact) *L*-structures A, then $\sigma^{\mathcal{M}} = 0$.

Lemma

The following are equivalent:

- *M is pseudofinite (resp. pseudocompact);*
- *There is a set I, an ultrafilter U on I, and a family of finite (resp.* α *compact) L-structures* $(\mathcal{A}_i)_{i\in I}$ such that $\mathcal{M}\equiv\prod_{\mathcal{U}}\mathcal{A}_i$
- **F** For any L-sentence σ with $\sigma^{\mathcal{M}} = 0$ and any $\epsilon > 0$, there is a finite *(resp. compact)* L-structure A such that $\sigma^A < \epsilon$.

 Ω

メロメメ 御きメモ メモ きっころ

Examples of pseudofinite structures

Examples of pseudofinite metric structures

- **Pseudofinite structures from classical logic**
- Atomless probability algebras (and their expansioin by generic automorphisms)
- Keisler randomizations of classical pseudofinite structures
- Asymptotic cones

Example of a pseudocompact structure

Infinite-dimensional Hilbert spaces (and their expansions by random subspaces or generic automorphisms)

4 O D 4 O D 3 4

Question

Question

Is the Urysohn sphere pseudofinite?

Lemma (Cifú-Lopes, G.)

For relational structures, "pseudofiniteness" and "pseudocompactness" are the same notion. (And they are almost the same notion in general.)

So we may equivalently ask: Is the Urysohn sphere pseudocompact?

4 0 8

 290

An idea

Lemma (Cifú-Lopes, G.)

Suppose that there is a collection of L-sentences such that $\{\gamma = 0 : \gamma \in \Gamma\}$ \models Th(*M*)*. Suppose that for every* $\gamma_1, \ldots, \gamma_n \in \Gamma$ and e^{γ} ϵ $>$ 0, there is a finite (resp. compact) L-structure A such that $A \models max(\gamma_1, \ldots, \gamma_n) \leq \epsilon$. Then *M* is pseudofinite (resp. *pseudocompact).*

This suggests trying to show that any finite number of the "extension axioms" are approximately true in some finite or compact metric space.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Strongly pseudofinite structures

- In classical logic, M is pseudofinite if and only if: whenever $M \models \sigma$, then $A \models \sigma$ for some finite structure A.
- But this equivalence uses negations!
- We say that a metric structure *M* is *strongly pseudofinite* (resp. *strongly pseudocompact*) if: whenever $\sigma^{\mathcal{M}} = 0$, then $\sigma^{\mathcal{A}} = 0$ for some finite (resp. compact) structure *A*.
- \blacksquare We can show that, for a classical structure, the five notions "classically pseudofinite," "pseudofinite," "pseudocompact," "strongly pseudofinite," and "strongly pseudocompact" all agree.

Question

Are there any *essentially continuous* strongly pseudofinite or strongly pseudocompact structures?

 Ω

イロト イ押ト イヨト イヨ

Injective-Surjective Principle

Fact (Ax?)

If M is a classical pseudofinite structure and $f : M \to M$ is a definable function, then *f* is injective if and only if *f* is surjective.

This result fails for pseudofinite structures in continuous logic: Consider (\mathbb{S}^1 , *P*), where $P(u, v, w) := d(uv, w)$. Then (\mathbb{S}^1 , *P*) is pseudofinite and $z \mapsto z^2$ is (formula-)definable, surjective, but not injective!

If M is a strongly pseudofinite structure and $f : M \to M$ is a formula-definable function, then *f* is injective if and only if *f* is surjective.

 Ω

イロト イ押ト イヨト イヨ

Injective-Surjective Principle

Fact (Ax?)

If M is a classical pseudofinite structure and $f : M \to M$ is a definable function, then *f* is injective if and only if *f* is surjective.

This result fails for pseudofinite structures in continuous logic: Consider (\mathbb{S}^1 , *P*), where $P(u, v, w) := d(uv, w)$. Then (\mathbb{S}^1 , *P*) is pseudofinite and $z \mapsto z^2$ is (formula-)definable, surjective, but not injective!

Proposition (Cifú-Lopes, G.)

If M is a strongly pseudofinite structure and $f : M \to M$ is a formula-definable function, then *f* is injective if and only if *f* is surjective.

 Ω

K ロ ▶ K 御 ▶ K 君 ▶ K 君

Injective-Surjective Principle (cont'd)

Proposition (Cifú-Lopes, G.)

If M is a strongly pseudofinite structure and $f : M \to M$ is a formula-definable function, then *f* is injective if and only if *f* is surjective.

Thus our pseudofinite structure (\mathbb{S}^1, P) is not strongly pseudofinite. We can use this technique to show that other pseudofinite structures are not strongly pseudofinite.

Question

Is there a suitable replacement for the injective-surjective principle for functions definable in metric structures which holds in pseudofinite structures?

 Ω

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ⊁

References

-
- I. Goldbring *Definable operators on Hilbert spaces* To appear in the Notre Dame Journal of Formal Logic.
- I. Goldbring *Definable functions in Urysohn's metric space* To appear in the Illinois Journal of Mathematics.
- V. Cifú-Lopes and I. Goldbring *Pseudofinite and pseudocompact metric structures* Submitted.

Preprints for these papers are available at

www.math.ucla.edu/ \sim isaac