On VC-Minimality in Algebraic Structures

Vincent Guingona

University of Notre Dame

3 April 2012

For the 2012 ASL Annual North American Meeting, Madison, Wisconsin

4 D F

Outline

1 [Introduction](#page-2-0)

- [VC-Minimality](#page-2-0)
- **[Convex Orderability](#page-8-0)**

2 [Ordered Structures](#page-15-0)

- **[Ordered Groups](#page-15-0)**
- **[Ordered Fields](#page-19-0)**

3 [Other Structures](#page-21-0)

- [Abelian Groups](#page-21-0)
- **[Valued Fields](#page-25-0)**

€ □

 $2Q$

[VC-Minimality](#page-3-0) [Convex Orderability](#page-8-0)

Directed Sets

Let X be a set and $C \subseteq \mathcal{P}(X)$.

Definition.

We say that C is directed if, for all $B_0, B_1 \in \mathcal{C}$, we have that

- \bullet $B_0 \subseteq B_1$,
- $2 \cdot B_1 \subseteq B_0$, or
- \bullet $B_0 \cap B_1 = \emptyset$.

4 0 8

э

 \mathbf{p}_i ∍

[VC-Minimality](#page-2-0) [Convex Orderability](#page-8-0)

Directed Sets

Let X be a set and $C \subseteq \mathcal{P}(X)$.

Definition.

We say that C is directed if, for all $B_0, B_1 \in \mathcal{C}$, we have that

- \bullet $B_0 \subset B_1$,
- **2** $B_1 \subseteq B_0$, or
- \bullet $B_0 \cap B_1 = \emptyset$.

Definition.

Let $\Psi = \{\psi_i({\mathsf{x}}; {\overline{\mathsf{y}}}_i): i \in I\}$ be a set of partitioned formulas in a theory $\mathcal{T}.$ We say that Ψ is directed if the instances of Ψ are directed.

4 D F

[VC-Minimality](#page-2-0) [Convex Orderability](#page-8-0)

VC-Minimal theories

Definition (Adler).

A theory T is VC-minimal if there exists a family of formulas

$$
\Psi(x) = \{\psi_i(x; \overline{y}_i) : i \in I\}
$$

that is directed and every one-variable formula is T -equivalent to a boolean combination of instances of Ψ . We call Ψ the *generating family*.

4 0 8

[VC-Minimality](#page-2-0) [Convex Orderability](#page-8-0)

VC-Minimal theories

Definition (Adler).

A theory T is VC-minimal if there exists a family of formulas

 $\Psi(x) = \{\psi_i(x; \overline{y}_i) : i \in I\}$

that is directed and every one-variable formula is T -equivalent to a boolean combination of instances of Ψ . We call Ψ the *generating family*.

Strongly minimal, o-minimal, and weakly o-minimal theories are VC-minimal. Additionally, the theory of algebraically closed valued fields in the language $L = \{+, \cdot, 0, 1, \cdot\}$ is VC-minimal. Every VC-minimal theory is dp-minimal.

∢ □ ▶ ⊣ n □ ▶

[VC-Minimality](#page-2-0) [Convex Orderability](#page-8-0)

Problems with VC-Minimality

It is hard to show directly that a theory is not VC-minimal.

Open Question.

Is VC-minimality closed under reducts (allowing parameters in the generating family)?

4 0 8

[VC-Minimality](#page-2-0) [Convex Orderability](#page-8-0)

Problems with VC-Minimality

It is hard to show directly that a theory is not VC-minimal.

Open Question.

Is VC-minimality closed under reducts (allowing parameters in the generating family)?

Are there natural examples of theories that are dp-minimal but not VC-minimal?

[VC-Minimality](#page-2-0) [Convex Orderability](#page-9-0)

Convexly Orderable

Definition.

We say that a structure M is convexly orderable if there exists \lhd a linear ordering on M such that, for all L-formulas $\varphi(x; \overline{y})$, there exists K_{φ} such that, for all $\overline{b}\in M^{\lg(\overline{\mathbf y})}$, the set $\varphi(M;\overline{b})$ is a union of at most $\mathcal K_{\varphi}\trianglelefteq$ -convex subsets of M.

4 D F

[VC-Minimality](#page-2-0) [Convex Orderability](#page-8-0)

Convexly Orderable

Definition.

We say that a structure M is convexly orderable if there exists \lhd a linear ordering on M such that, for all L-formulas $\varphi(x;\overline{y})$, there exists K_{φ} such that, for all $\overline{b}\in M^{\lg(\overline{\mathbf y})}$, the set $\varphi(M;\overline{b})$ is a union of at most $\mathcal K_{\varphi}\trianglelefteq$ -convex subsets of M.

Examples.

The following structures are convexly orderable:

- **•** Any o-minimal structure (e.g., $(\mathbb{Q}; <)$),
- **2** Any structure with a weakly o-minimal theory,
- \bullet Any strongly minimal structure (e.g., $(\mathbb{C}, +, \cdot)$).

∢ □ ▶ ⊣ n □ ▶

[VC-Minimality](#page-2-0) [Convex Orderability](#page-8-0)

Lemmas on Convex Orderability

Lemma.

- **1** If M is convexly orderable and $N \equiv M$, then N is convexly orderable.
- \bullet If M is a convexly orderable L-structure and $L_0\subseteq L$, then $M|_{L_0}$ is convexly orderable.
- \bullet If M is convexly orderable, $X\subseteq M$ is definable, and $E\subseteq M^2$ is a definable equivalence relation on X, then X/E with the induced structure is convexly orderable.

4 D F

[VC-Minimality](#page-2-0) [Convex Orderability](#page-8-0)

Connections

Lemma.

If X is a set and $C \subseteq \mathcal{P}(X)$ is directed, then there exists a linear ordering \leq on X such that every $B \in \mathcal{C}$ is a \leq -convex subset of X.

4 0 8

[VC-Minimality](#page-2-0) [Convex Orderability](#page-8-0)

Connections

Lemma.

If X is a set and $C \subseteq \mathcal{P}(X)$ is directed, then there exists a linear ordering \le on X such that every $B \in \mathcal{C}$ is a \le -convex subset of X.

Theorem (G., Laskowski).

If T is VC-minimal and $M \models T$, then M is convexly orderable.

4 0 8

[VC-Minimality](#page-2-0) [Convex Orderability](#page-8-0)

Connections

Lemma.

If X is a set and $C \subseteq \mathcal{P}(X)$ is directed, then there exists a linear ordering \leq on X such that every $B \in \mathcal{C}$ is a \leq -convex subset of X.

Theorem (G., Laskowski).

If T is VC-minimal and $M \models T$, then M is convexly orderable.

VC-minimal \Rightarrow convexly orderable \Rightarrow dp-minimal

4 0 8

[VC-Minimality](#page-2-0) [Convex Orderability](#page-8-0)

Connections

Lemma.

If X is a set and $\mathcal{C} \subseteq \mathcal{P}(X)$ is directed, then there exists a linear ordering \le on X such that every $B \in \mathcal{C}$ is a \le -convex subset of X.

Theorem (G., Laskowski).

If T is VC-minimal and $M \models T$, then M is convexly orderable.

VC-minimal \Rightarrow convexly orderable \Rightarrow dp-minimal

Open Question.

Is convexly orderable equivalent to VC-minimal?

4 D F

Ordered Structures

Lemma.

If $M = (M; <, \dots)$ is a linearly ordered structure that is convexly orderable, then there do not exist $X_0, X_1, ... \subseteq M$ pairwise disjoint definable that are each <-coterminal.

4 D F

э

Ordered Structures

Lemma.

If $M = (M; <, \dots)$ is a linearly ordered structure that is convexly orderable, then there do not exist $X_0, X_1, ... \subseteq M$ pairwise disjoint definable that are each <-coterminal.

Theorem (Flenner, G.).

Let $(G; \cdot, <)$ be an ordered group and let $T = Th(G; \cdot, <)$. The following are equivalent:

- \bullet T is o-minimal.
- **2** T is VC-minimal.
- **3** G is convexly orderable,
- **4** G is abelian divisible.

K ロ ▶ K 母 ▶

[Ordered Groups](#page-15-0) [Ordered Fields](#page-19-0)

Presburger Arithmetic

Corollary.

The structure $(\mathbb{Z}; +, <)$ is not convexly orderable. Hence, the theory of Presburger arithmetic is dp-minimal but not VC-minimal.

This was first discovered by Andrews, Cotter, and Freitag.

4 D F

Presburger Arithmetic

Corollary.

The structure $(\mathbb{Z}; +, <)$ is not convexly orderable. Hence, the theory of Presburger arithmetic is dp-minimal but not VC-minimal.

This was first discovered by Andrews, Cotter, and Freitag.

Corollary.

The p-adic valued field $(\mathbb{Q}_p; +, \cdot, |)$ is not convexly-orderable. Hence, the theory of the p-adics is dp-minimal but not VC-minimal.

4 D F

Ordered Fields

Corollary.

If $(F; +, \cdot, <)$ is an ordered field that is convexly orderable, then every positive element has an nth root for all n.

Proof.

Look at $(F_+; \cdot, \leq)$ and apply the previous corollary to show it is divisible. \Box

Open Question.

Are all convexly orderable ordered fields real closed?

4 0 8

An Example

Example.

Not all convexly orderable ordered structures are weakly o-minimal. For example, take $\mathbb Q$ and consider $D \subset \mathbb Q$ some dense, co-dense subset. Look at the structure $(\mathbb{Q}; <, D)$. Clearly this is not weakly o-minimal. However, it is convexly orderable and even VC-minimal. For Ψ, take

$$
\Psi = \{D(x), D(x) \wedge x < y, \neg D(x) \wedge x < y, x = y\}.
$$

For this section, let $(A; +)$ be an abelian group and let $T = Th(A; +)$. Look at $PP(A)$ the lattice of p.p.-definable subgroups of A. Consider the quasi-order on $PP(A)$ given by

 $B_0 \preceq B_1$ iff. $[B_0 : B_0 \cap B_1] < \aleph_0$.

Let $PP(A) = PP(A)/\sim$, where \sim is the equivalence class generated by \preceq .

Theorem (Aschenbrenner, Dolich, Haskell, MacPherson, Starchenko).

T is dp-minimal if and only if $(PP(A); \preceq)$ is a linear order.

メロメ メ母メ メミメ メミメ

[Abelian Groups](#page-21-0) [Valued Fields](#page-25-0)

VC-minimality for Abelian Groups

Definition.

For $X \in \overline{PP}(A)$, we say that X has upward coherence if there exists $B \in X$ such that, for all $C \in \text{PP}(A)$ with $B \precsim C$, $B \subseteq C$.

Theorem (Flenner, G.)

The following are equivalent:

- \bullet T is VC-minimal.
- **2** A is convexly orderable,
- **3** T is dp-minimal and, for all $X \in \text{PP}(A)$, X has upward coherence.

4 D F

[Abelian Groups](#page-21-0) [Valued Fields](#page-25-0)

Examples of Abelian Groups

Examples.

The theory of the following groups in the pure group language are VC-minimal:

- \bullet $Z.$
- 2 $\mathbb{Z}(p^{\infty})$ for prime p.
- **3** $\mathbb{Z}_{(p)}$ for prime p .
- $\big(\mathbb{Z}/p^k\mathbb{Z}\big)^{(\aleph_0)}$ for $k>0$ and prime $p.$

4 0 8

э

[Abelian Groups](#page-21-0) [Valued Fields](#page-25-0)

Examples of Abelian Groups

Examples.

The theory of the following groups in the pure group language are VC-minimal:

$$
\bullet \ \mathbb{Z}.
$$

2
$$
\mathbb{Z}(p^{\infty})
$$
 for prime p.

$$
\bullet \mathbb{Z}_{(p)} \text{ for prime } p.
$$

$$
\bullet \ \left(\mathbb{Z}/p^k\mathbb{Z}\right)^{(\aleph_0)} \text{ for } k > 0 \text{ and prime } p.
$$

Examples.

The theory of the following group is dp-minimal but not VC-minimal:

$$
A=\bigoplus_{n>0}\left(\mathbb{Z}/p^n\mathbb{Z}\right).
$$

[Abelian Groups](#page-21-0) [Valued Fields](#page-25-0)

Quasi VC-minimality

Definition.

We say a theory T is quasi-VC-minimal if there exists Ψ a directed family such that all one-variable formulas are T -equivalent to a boolean combination of instances of Ψ and 0-definable formulas.

Example.

The theory of Presburger arithmetic, $T = Th(\mathbb{Z}; +, <)$, is quasi VC-minimal.

4 D F

[Abelian Groups](#page-21-0) [Valued Fields](#page-25-0)

Valued Fields

Lemma

If T is quasi-VC-minimal, $M \models T$, and $\varphi(x; \overline{y})$ is any formula, then there exists \preceq_{φ} a linear ordering on M and $K_{\varphi} < \omega$ such that all instances of φ are a union of at most $K_{\varphi} \trianglelefteq_{\varphi}$ -convex subsets of M.

So quasi-VC-minimal theories have "local convex orderability."

Valued Fields

Lemma

If T is quasi-VC-minimal, $M \models T$, and $\varphi(x; \overline{y})$ is any formula, then there exists \preceq_{φ} a linear ordering on M and $K_{\varphi} < \omega$ such that all instances of φ are a union of at most $K_{\varphi} \trianglelefteq_{\varphi}$ -convex subsets of M.

So quasi-VC-minimal theories have "local convex orderability."

Theorem (Flenner, G.).

Suppose that K is a field with valuation $v: K^\times \to \Gamma$. Suppose further that the theory $T = Th(K; +, \cdot, \cdot)$ is quasi-VC-minimal. Then, Γ is divisible.

Here we interpret $x|y = v(x) \le v(y)$.

 298

←ロ ▶ → 伊 ▶

[Abelian Groups](#page-21-0) [Valued Fields](#page-25-0)

The p-adics

Example.

The theory of the p-adics, $T = Th(\mathbb{Q}_p; +, \cdot, |)$, is dp-minimal but not quasi-VC-minimal.

4日)

× ∍ Þ

 $2Q$

[Abelian Groups](#page-21-0) [Valued Fields](#page-25-0)

The p-adics

Example.

The theory of the p-adics, $T = Th(\mathbb{Q}_p; +, \cdot, |)$, is dp-minimal but not quasi-VC-minimal.

So the following are all strict implications

VC-Minimal ⇒ Quasi-VC-Minimal ⇒ dp-Minimal

4 0 8

[Abelian Groups](#page-21-0) [Valued Fields](#page-25-0)

The End

Thank you for your time!

Þ

◆ロ ▶ → 伊

 \mathbf{p}

× × ∍