On VC-Minimality in Algebraic Structures

Vincent Guingona

University of Notre Dame

3 April 2012

For the 2012 ASL Annual North American Meeting, Madison, Wisconsin

Outline

Introduction

- VC-Minimality
- Convex Orderability

Ordered Structures

- Ordered Groups
- Ordered Fields

Other Structures

- Abelian Groups
- Valued Fields

VC-Minimality Convex Orderability

Directed Sets

Let X be a set and $C \subseteq \mathcal{P}(X)$.

Definition.

We say that C is *directed* if, for all $B_0, B_1 \in C$, we have that

- $B_0 \cap B_1 = \emptyset.$

э

VC-Minimality Convex Orderability

Directed Sets

Let X be a set and $C \subseteq \mathcal{P}(X)$.

Definition.

We say that \mathcal{C} is *directed* if, for all $B_0, B_1 \in \mathcal{C}$, we have that

- $B_1 \subseteq B_0, \text{ or }$

$$B_0 \cap B_1 = \emptyset.$$

Definition.

Let $\Psi = \{\psi_i(x; \overline{y}_i) : i \in I\}$ be a set of partitioned formulas in a theory T. We say that Ψ is *directed* if the instances of Ψ are directed.

3 K K 3 K

VC-Minimality Convex Orderability

VC-Minimal theories

Definition (Adler).

A theory T is *VC-minimal* if there exists a family of formulas

$$\Psi(\mathbf{x}) = \{\psi_i(\mathbf{x}; \overline{\mathbf{y}}_i) : i \in I\}$$

that is directed and every one-variable formula is T-equivalent to a boolean combination of instances of Ψ . We call Ψ the *generating family*.

VC-Minimality Convex Orderability

VC-Minimal theories

Definition (Adler).

A theory T is *VC-minimal* if there exists a family of formulas

$$\Psi(\mathbf{x}) = \{\psi_i(\mathbf{x}; \overline{\mathbf{y}}_i) : i \in I\}$$

that is directed and every one-variable formula is T-equivalent to a boolean combination of instances of Ψ . We call Ψ the *generating family*.

Strongly minimal, o-minimal, and weakly o-minimal theories are VC-minimal. Additionally, the theory of algebraically closed valued fields in the language $L = \{+, \cdot, 0, 1, |\}$ is VC-minimal. Every VC-minimal theory is dp-minimal.

VC-Minimality Convex Orderability

Problems with VC-Minimality

It is hard to show directly that a theory is not VC-minimal.

Open Question.

Is VC-minimality closed under reducts (allowing parameters in the generating family)?

VC-Minimality Convex Orderability

Problems with VC-Minimality

It is hard to show directly that a theory is not VC-minimal.

Open Question.

Is VC-minimality closed under reducts (allowing parameters in the generating family)?

Are there natural examples of theories that are dp-minimal but not VC-minimal?

VC-Minimality Convex Orderability

Convexly Orderable

Definition.

We say that a structure M is *convexly orderable* if there exists \trianglelefteq a linear ordering on M such that, for all L-formulas $\varphi(x; \overline{y})$, there exists K_{φ} such that, for all $\overline{b} \in M^{\lg(\overline{y})}$, the set $\varphi(M; \overline{b})$ is a union of at most $K_{\varphi} \trianglelefteq$ -convex subsets of M.

VC-Minimality Convex Orderability

Convexly Orderable

Definition.

We say that a structure M is *convexly orderable* if there exists \trianglelefteq a linear ordering on M such that, for all L-formulas $\varphi(x; \overline{y})$, there exists K_{φ} such that, for all $\overline{b} \in M^{\lg(\overline{y})}$, the set $\varphi(M; \overline{b})$ is a union of at most $K_{\varphi} \trianglelefteq$ -convex subsets of M.

Examples.

The following structures are convexly orderable:

- Any o-minimal structure (e.g., $(\mathbb{Q}; <))$,
- Any structure with a weakly o-minimal theory,
- Any strongly minimal structure (e.g., $(\mathbb{C}, +, \cdot)$).

VC-Minimality Convex Orderability

Lemmas on Convex Orderability

Lemma.

- **(**) If *M* is convexly orderable and $N \equiv M$, then *N* is convexly orderable.
- ② If *M* is a convexly orderable *L*-structure and $L_0 \subseteq L$, then *M*|_{*L*₀} is convexly orderable.
- If M is convexly orderable, X ⊆ M is definable, and E ⊆ M² is a definable equivalence relation on X, then X/E with the induced structure is convexly orderable.

VC-Minimality Convex Orderability

Connections

Lemma.

If X is a set and $C \subseteq \mathcal{P}(X)$ is directed, then there exists a linear ordering \trianglelefteq on X such that every $B \in C$ is a \trianglelefteq -convex subset of X.

VC-Minimality Convex Orderability

Connections

Lemma.

If X is a set and $C \subseteq \mathcal{P}(X)$ is directed, then there exists a linear ordering \trianglelefteq on X such that every $B \in C$ is a \trianglelefteq -convex subset of X.

Theorem (G., Laskowski).

If T is VC-minimal and $M \models T$, then M is convexly orderable.

VC-Minimality Convex Orderability

Connections

Lemma.

If X is a set and $C \subseteq \mathcal{P}(X)$ is directed, then there exists a linear ordering \trianglelefteq on X such that every $B \in C$ is a \trianglelefteq -convex subset of X.

Theorem (G., Laskowski).

If T is VC-minimal and $M \models T$, then M is convexly orderable.

VC-minimal \Rightarrow convexly orderable \Rightarrow dp-minimal

VC-Minimality Convex Orderability

Connections

Lemma.

If X is a set and $C \subseteq \mathcal{P}(X)$ is directed, then there exists a linear ordering \trianglelefteq on X such that every $B \in C$ is a \trianglelefteq -convex subset of X.

Theorem (G., Laskowski).

If T is VC-minimal and $M \models T$, then M is convexly orderable.

VC-minimal \Rightarrow convexly orderable \Rightarrow dp-minimal

Open Question.

Is convexly orderable equivalent to VC-minimal?

Ordered Groups Ordered Fields

Ordered Structures

Lemma.

If M = (M; <, ...) is a linearly ordered structure that is convexly orderable, then there do not exist $X_0, X_1, ... \subseteq M$ pairwise disjoint definable that are each <-coterminal.

Ordered Structures

Lemma.

If M = (M; <, ...) is a linearly ordered structure that is convexly orderable, then there do not exist $X_0, X_1, ... \subseteq M$ pairwise disjoint definable that are each <-coterminal.

Theorem (Flenner, G.).

Let $(G; \cdot, <)$ be an ordered group and let $T = Th(G; \cdot, <)$. The following are equivalent:

- T is o-minimal,
- 2 T is VC-minimal,
- 3 G is convexly orderable,
- G is abelian divisible.

.

Image: Image:

Ordered Groups Ordered Fields

Presburger Arithmetic

Corollary.

The structure $(\mathbb{Z}; +, <)$ is not convexly orderable. Hence, the theory of Presburger arithmetic is dp-minimal but not VC-minimal.

This was first discovered by Andrews, Cotter, and Freitag.

Ordered Groups Ordered Fields

Presburger Arithmetic

Corollary.

The structure $(\mathbb{Z}; +, <)$ is not convexly orderable. Hence, the theory of Presburger arithmetic is dp-minimal but not VC-minimal.

This was first discovered by Andrews, Cotter, and Freitag.

Corollary.

The *p*-adic valued field $(\mathbb{Q}_p; +, \cdot, |)$ is not convexly-orderable. Hence, the theory of the *p*-adics is dp-minimal but not VC-minimal.

Ordered Groups Ordered Fields

Ordered Fields

Corollary.

If $(F; +, \cdot, <)$ is an ordered field that is convexly orderable, then every positive element has an *n*th root for all *n*.

Proof.

Look at (F_+; $\cdot, <$) and apply the previous corollary to show it is divisible. \Box

Open Question.

Are all convexly orderable ordered fields real closed?

Ordered Groups Ordered Fields

An Example

Example.

Not all convexly orderable ordered structures are weakly o-minimal. For example, take \mathbb{Q} and consider $D \subseteq \mathbb{Q}$ some dense, co-dense subset. Look at the structure (\mathbb{Q} ; <, D). Clearly this is not weakly o-minimal. However, it is convexly orderable and even VC-minimal. For Ψ , take

$$\Psi = \{D(x), D(x) \land x < y, \neg D(x) \land x < y, x = y\}.$$

For this section, let (A; +) be an abelian group and let T = Th(A; +). Look at PP(A) the lattice of p.p.-definable subgroups of A. Consider the quasi-order on PP(A) given by

$$B_0 \preceq B_1$$
 iff. $[B_0 : B_0 \cap B_1] < \aleph_0$.

Let $\widetilde{\operatorname{PP}}(A) = \operatorname{PP}(A) / \sim$, where \sim is the equivalence class generated by \preceq .

Theorem (Aschenbrenner, Dolich, Haskell, MacPherson, Starchenko).

T is dp-minimal if and only if $(\widetilde{PP}(A); \preceq)$ is a linear order.

Abelian Groups Valued Fields

VC-minimality for Abelian Groups

Definition.

For $X \in \widetilde{\operatorname{PP}}(A)$, we say that X has *upward coherence* if there exists $B \in X$ such that, for all $C \in \operatorname{PP}(A)$ with $B \preceq C$, $B \subseteq C$.

Theorem (Flenner, G.)

The following are equivalent:

- T is VC-minimal,
- A is convexly orderable,
- **③** T is dp-minimal and, for all $X \in \widetilde{PP}(A)$, X has upward coherence.

Abelian Groups Valued Fields

Examples of Abelian Groups

Examples.

The theory of the following groups in the pure group language are VC-minimal:

- **①** ℤ.
- **2** $\mathbb{Z}(p^{\infty})$ for prime *p*.
- **3** $\mathbb{Z}_{(p)}$ for prime *p*.
- $(\mathbb{Z}/p^k\mathbb{Z})^{(\aleph_0)}$ for k > 0 and prime p.

Abelian Groups Valued Fields

Examples of Abelian Groups

Examples.

The theory of the following groups in the pure group language are VC-minimal:

2
$$\mathbb{Z}(p^{\infty})$$
 for prime *p*.

•
$$\left(\mathbb{Z}/p^k\mathbb{Z}\right)^{(\aleph_0)}$$
 for $k > 0$ and prime p .

Examples.

The theory of the following group is dp-minimal but not VC-minimal:

$$A=\bigoplus_{n>0}\left(\mathbb{Z}/p^n\mathbb{Z}\right).$$

Abelian Groups Valued Fields

Quasi VC-minimality

Definition.

We say a theory T is *quasi-VC-minimal* if there exists Ψ a directed family such that all one-variable formulas are T-equivalent to a boolean combination of instances of Ψ and 0-definable formulas.

Example.

The theory of Presburger arithmetic, $T = Th(\mathbb{Z}; +, <)$, is quasi VC-minimal.

Abelian Groups Valued Fields

Valued Fields

Lemma

If T is quasi-VC-minimal, $M \models T$, and $\varphi(x; \overline{y})$ is any formula, then there exists $\trianglelefteq_{\varphi}$ a linear ordering on M and $K_{\varphi} < \omega$ such that all instances of φ are a union of at most $K_{\varphi} \trianglelefteq_{\varphi}$ -convex subsets of M.

So quasi-VC-minimal theories have "local convex orderability."

Valued Fields

Lemma

If T is quasi-VC-minimal, $M \models T$, and $\varphi(x; \overline{y})$ is any formula, then there exists $\trianglelefteq_{\varphi}$ a linear ordering on M and $K_{\varphi} < \omega$ such that all instances of φ are a union of at most $K_{\varphi} \trianglelefteq_{\varphi}$ -convex subsets of M.

So quasi-VC-minimal theories have "local convex orderability."

Theorem (Flenner, G.).

Suppose that K is a field with valuation $v : K^{\times} \to \Gamma$. Suppose further that the theory $T = \text{Th}(K; +, \cdot, |)$ is quasi-VC-minimal. Then, Γ is divisible.

Here we interpret $x|y = v(x) \le v(y)$.

・ロト ・同ト ・ヨト ・ヨト

Abelian Groups Valued Fields

The p-adics

Example.

The theory of the *p*-adics, $T = Th(\mathbb{Q}_p; +, \cdot, |)$, is dp-minimal but not quasi-VC-minimal.

э

Abelian Groups Valued Fields

The p-adics

Example.

The theory of the *p*-adics, $T = Th(\mathbb{Q}_p; +, \cdot, |)$, is dp-minimal but not quasi-VC-minimal.

So the following are all strict implications

VC-Minimal \Rightarrow Quasi-VC-Minimal \Rightarrow dp-Minimal

Abelian Groups Valued Fields

The End

Thank you for your time!

3 April 2012

э

э