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Outline

We define the notion of a homology group in a model-theoretic
context.

The groups measure the failure of generalized amalgamation of an
appropriate dimension.

The group H2 is shown to be a certain automorphism group.

Plan:

Example of a structure with a non-trivial group H2

Generalized amalgamation

Simplices

Homology group calculations



Example

It is possible that ab := acl(ab) contains elements that are definable
from ac ∪ bc , but not definable from ab.

Fix a finite group G . Take a structure with two sorts:

I an infinite set,

P := I 2 × |G |, where |G | is a set.

Add a projection π : P → I 2.



Example

Let a, b ∈ I . Then

[a] := π−1(a, a),

[a, b] := π−1(a, b),

the symbol δab implies δab ∈ [a, b].

Relation θ on P3 holds if and only if the elements have the form
(δbc , δac , δab) and (abusing notation) δab · δbc = δac .



Example

Note that θ defines:

a group operation on [a],

the action of [a] on [a, b], and

a way to compose δab and δbc .

Facts (Goodrick, Kim, K.)

1 The theory of the above structure is totally categorical.

2 The group G is abelian if and only if for any a 6= b ∈ I and for
all γ, δ ∈ [a, b] we have tp(γ/[a][b]) = tp(δ/[a][b]).



Example

From this point, G = (G ,+) is an abelian group. The automorphism
group Aut([a, b]/[a][b]) is isomorphic to G .

The structure described above is a definable connected finitary
abelian groupoid with the vertex group G . The set I is the set of
objects, P is the set of morphisms, θ gives the composition.

Groupoid axioms are routine to check; associativity is interesting.

Associativity is equivalent to the following:

If δcd ◦ δbc = δbd , δcd ◦ δac = δad , and δbd ◦ δab = δad ,

then δbc ◦ δab = δac .

“θ on three sides implies θ on the fourth.”



Generalized uniqueness and existence

2-uniqueness is stationarity: for independent a, b, the type of acl(ab)
is determined by the types of acl(a), acl(b).

3-uniqueness is more subtle:

Choose distinct a, b, c ∈ I and fix δab, δbc and δac such that
δbc ◦ δab = δac .

Take a non-identity automorphism σ of [a, c]. Then necessarily
δbc ◦ δab = σ(δac) fails.

We get non-isomorphic ways of embedding the “sides” [a, b], [b, c]
and [a, c] into a “triangle”:

1 use the identity embeddings (I will denote this object [a, b, c]);

2 twist one of the sides by an automorphism (I will denote this by
[a, b, c]).



Generalized uniqueness and existence

3-existence is the Independence Theorem.

4-existence:

In the example, we are not able to find a joint realization (are not
able to amalgamate) four types that express the following:

1 δcd ◦ δbc = δbd ,

2 δcd ◦ δac = δad ,

3 δbd ◦ δab = δad ,

4 δbc ◦ δab 6= δac .

As usual, δxy is an element in the fiber [x , y ].

Generalized uniqueness and existence require tracking the embeddings
of lower-dimensional parts into the higher-dimensional ones.



Simplices

This is formalized by the notion of an n-simplex. Fix a type p.

Definition

Let C be the category of algebraically closed subsets of the form
acl(a0, . . . , an) for some n ≥ 0 and ai , i ≤ n, are independent
realizations of p. Morphisms are elementary embeddings.
An n-simplex is a functor f : P(s)→ C, for s ⊂ ω, |s| = n + 1, such
that

1 for all non-empty u ∈ P(s), we have f (u) = acl(
⋃

i∈u f
{i}
u ({i}))

and

2 if w ∈ P(s) and u, v ⊆ w , then

f u
w (u) |̂

f u∩v
w (u∩v)

f v
w (v).

Caution: bases!



Simplices

In the example:

0-simplices: [a], a ∈ I ;

1-simplices: [a, b], a 6= b ∈ I ;

2-simplices: [a, b, c], [a, b, c], . . .

Sn is the collection of all n-simplices.

Cn is the free abelian group generated by Sn.



Homology groups

If n ≥ 1, f = [a0, . . . , an] is an n-simplex, and 0 ≤ i ≤ n, then

∂ in(f ) = [a0, . . . , âi , . . . , an];

∂n(f ) =
∑

0≤i≤n(−1)i∂ in(f ).

In particular,

∂[a, b, c , d ] = [b, c , d ]− [a, c , d ] + [a, b, d ]− [a, b, c].

Zn is the set of all chains in Cn whose boundary is 0.

Bn is the set of all chains in Cn of the form ∂(c) for some c ∈ Cn+1.

Hn = Zn/Bn.



Examples of chains

In the example, the 1-chain of the form

[a, b] + [b, c] + [c , d ]− [a, d ]

is a 1-cycle. It is also a 1-boundary because it is the boundary of the
chain

[a, b, e] + [b, c , e] + [c , d , e]− [a, d , e].

Note that each of the 2-simplices above can be constructed using
3-existence.

The 2-chain [b, c , d ]− [a, c , d ] + [a, b, d ]− [a, b, c] is a 2-boundary,
but

[b, c , d ]− [a, c , d ] + [a, b, d ]− [a, b, c]

is a 2-cycle, but not a 2-boundary. We call such cycles 2-shells.



Computing H2

Theorem (Goodrick, Kim, K.)

If T has ≤ (n + 1)-existence for some n ≥ 1, then

Hn = {[c] | c is an n-shell with support {0, . . . , n + 1}}.

Steps:

1 Show that an n-cycle is a linear combination of n-shells, up to ∂;

2 Show how to move n-shells into a single one, up to a boundary.

So if T has also (n + 2)-existence, then Hn is trivial. In particular, a
stable T with 4-existence has trivial H2.



Computing H2

What about the converse? What types of groups can we have as H2?

Theorem (Goodrick, Kim, K.)

(T stable.) We have H2(p) = Aut(ã0a1/a0, a1) where {a0, a1, a2} are
independent realizations of p and

ã0a1 := a0a1 ∩ dcl(a0a2, a1a2).

Moreover H2(p) is always an abelian profinite group. Conversely any
abelian profinite group can occur as H2(p).

Fact (Goodrick, K.)

If stable T fails 4-existence, then there is a type p and independent
realizations ai of p such that Aut(ã0a1/a0, a1) is non-trivial.



Computing H2

How do we know that [b, c , d ]− [a, c , d ] + [a, b, d ]− [a, b, c] is not a
boundary?

Fix elements δxy ∈ [x , y ] for x , y ∈ {a, b, c , d}. These elements are
embedded into the 2-simplices; denote the images by δxyzxy .

A 2-shell is a boundary if and only if for some (any) choice of δ’s we
have

(δbcdcd − δbcdbd + δbcdbc )− (δacdcd − δacdad + δacdac )

+ (δabdbd − δabdad + δabdab )− (δabcbc − δabcac + δabcab ) = 0.



Next steps

First-order:

Conjecture

If T is stable with ≤ (n + 1)-existence, then

Hn(p) = Aut( ˜a0...an−1/
n−1⋃
i=0

{a0 . . . âi . . . an−1}).

Non-elementary:

In [Goodrick,Kim,K.], the definitions are stated for a general context:
functors into a category satisfying certain properties. What happens
if the category is the class of atomic models?


