Homology groups in model theory

Alexei Kolesnikov with John Goodrick and Byunghan Kim

Towson University

2012 ASL North American Annual Meeting University of Wisconsin, Madison

We define the notion of a homology group in a model-theoretic context.

The groups measure the failure of generalized amalgamation of an appropriate dimension.

The group H_2 is shown to be a certain automorphism group. Plan:

- Example of a structure with a non-trivial group H_2
- Generalized amalgamation
- Simplices
- Homology group calculations

It is possible that $\overline{ab} := \operatorname{acl}(ab)$ contains elements that are definable from $\overline{ac} \cup \overline{bc}$, but not definable from \overline{ab} .

Fix a finite group G. Take a structure with two sorts:

- \bullet / an infinite set.
- $P := I^2 \times |G|$, where $|G|$ is a set.

Add a projection $\pi:P\to I^2.$

Example

Let $a, b \in I$. Then

- $[a] := \pi^{-1}(a, a),$
- $[a, b] := \pi^{-1}(a, b),$
- the symbol δ_{ab} implies $\delta_{ab} \in [a, b]$.

Relation θ on P^3 holds if and only if the elements have the form $(\delta_{bc}, \delta_{ac}, \delta_{ab})$ and (abusing notation) $\delta_{ab} \cdot \delta_{bc} = \delta_{ac}$.

Note that θ defines:

- \bullet a group operation on [a],
- the action of [a] on $[a, b]$, and
- a way to compose δ_{ab} and δ_{bc} .

Facts (Goodrick, Kim, K.)

- **1** The theory of the above structure is totally categorical.
- **2** The group G is abelian if and only if for any $a \neq b \in I$ and for all $\gamma, \delta \in [a, b]$ we have tp $(\gamma/|a|[b]) = \text{tp}(\delta/|a|[b]).$

Example

From this point, $G = (G, +)$ is an abelian group. The automorphism group Aut([a, b]/[a][b]) is isomorphic to G.

The structure described above is a definable connected finitary abelian groupoid with the vertex group G . The set I is the set of objects, P is the set of morphisms, θ gives the composition.

Groupoid axioms are routine to check; associativity is interesting. Associativity is equivalent to the following:

If $\delta_{cd} \circ \delta_{bc} = \delta_{bd}$, $\delta_{cd} \circ \delta_{ac} = \delta_{ad}$, and $\delta_{bd} \circ \delta_{ab} = \delta_{ad}$. then $\delta_{bc} \circ \delta_{ab} = \delta_{ac}$.

" θ on three sides implies θ on the fourth."

Generalized uniqueness and existence

2-uniqueness is stationarity: for independent a, b, the type of acl(ab) is determined by the types of $acl(a)$, $acl(b)$.

3-uniqueness is more subtle:

Choose distinct a, b, $c \in I$ and fix δ_{ab} , δ_{bc} and δ_{ac} such that $\delta_{bc} \circ \delta_{ab} = \delta_{ac}$.

Take a non-identity automorphism σ of [a, c]. Then necessarily $\delta_{bc} \circ \delta_{ab} = \sigma(\delta_{ac})$ fails.

We get non-isomorphic ways of embedding the "sides" $[a, b]$, $[b, c]$ and $[a, c]$ into a "triangle":

- **Q** use the identity embeddings (I will denote this object $[a, b, c]$);
- ² twist one of the sides by an automorphism (I will denote this by $[a, b, c]$.

Generalized uniqueness and existence

3-existence is the Independence Theorem.

4-existence:

In the example, we are not able to find a joint realization (are not able to amalgamate) four types that express the following:

\n- $$
\delta_{cd} \circ \delta_{bc} = \delta_{bd}
$$
\n- $\delta_{cd} \circ \delta_{ac} = \delta_{ad}$
\n- $\delta_{bd} \circ \delta_{ab} = \delta_{ad}$
\n- $\delta_{bc} \circ \delta_{ab} \neq \delta_{ac}$
\n

As usual, δ_{xy} is an element in the fiber [x, y].

Generalized uniqueness and existence require tracking the embeddings of lower-dimensional parts into the higher-dimensional ones.

Simplices

This is formalized by the notion of an *n-simplex*. Fix a type p.

Definition

Let $\mathcal C$ be the category of algebraically closed subsets of the form acl (a_0,\ldots,a_n) for some $n\geq 0$ and $a_i,$ $i\leq n,$ are independent realizations of p. Morphisms are elementary embeddings. An *n*-simplex is a functor $f : \mathcal{P}(s) \to \mathcal{C}$, for $s \subset \omega$, $|s| = n + 1$, such that

 \textbf{I} for all non-empty $u \in \mathcal{P}(s)$, we have $f(u) = \operatorname{acl}(\bigcup_{i \in u} f_u^{\{i\}}(\{i\}))$ and

• if
$$
w \in \mathcal{P}(s)
$$
 and $u, v \subseteq w$, then

$$
f_w^u(u) \bigcup_{f_w^{u \cap v}(u \cap v)} f_w^v(v).
$$

Caution: bases!

In the example:

- \bullet 0-simplices: [a], $a \in I$;
- 1-simplices: [a, b], $a \neq b \in I$;
- 2-simplices: $[a, b, c]$, $[a, b, c]$, ...

 S_n is the collection of all *n*-simplices.

 C_n is the free abelian group generated by S_n .

Homology groups

If $n > 1$, $f = [a_0, \ldots, a_n]$ is an *n*-simplex, and $0 \le i \le n$, then

\n- $$
\partial_n^i(f) = [a_0, \ldots, \widehat{a}_i, \ldots, a_n];
$$
\n- $\partial_n(f) = \sum_{0 \leq i \leq n} (-1)^i \partial_n^i(f).$
\n

In particular,

$$
\partial[a, b, c, d] = [b, c, d] - [a, c, d] + [a, b, d] - [a, b, c].
$$

 Z_n is the set of all chains in C_n whose boundary is 0. B_n is the set of all chains in C_n of the form $\partial(c)$ for some $c \in C_{n+1}$. $H_n = Z_n/B_n$.

In the example, the 1-chain of the form

$$
[a,b]+[b,c]+[c,d]-[a,d]
$$

is a 1-cycle. It is also a 1-boundary because it is the boundary of the chain

$$
[a, b, e] + [b, c, e] + [c, d, e] - [a, d, e].
$$

Note that each of the 2-simplices above can be constructed using 3-existence.

The 2-chain $[b, c, d] - [a, c, d] + [a, b, d] - [a, b, c]$ is a 2-boundary, but

$$
[b, c, d] - [a, c, d] + [a, b, d] - [a, b, c]
$$

is a 2-cycle, but not a 2-boundary. We call such cycles 2-shells.

Theorem (Goodrick, Kim, K.) If T has $\leq (n+1)$ -existence for some $n \geq 1$, then $H_n = \{ [c] \mid c \text{ is an } n\text{-shell with support } \{0, \ldots, n+1\} \}.$

Steps:

■ Show that an *n*-cycle is a linear combination of *n*-shells, up to ∂ ; **2** Show how to move *n*-shells into a single one, up to a boundary.

So if T has also $(n+2)$ -existence, then H_n is trivial. In particular, a stable T with 4-existence has trivial H_2 .

Computing H_2

What about the converse? What types of groups can we have as H_2 ?

Theorem (Goodrick, Kim, K.)

(T stable.) We have $H_2(p) = \text{Aut}(\widetilde{a_0a_1}/\overline{a_0}, \overline{a_1})$ where $\{a_0, a_1, a_2\}$ are independent realizations of p and

 $\widetilde{a_0a_1} := \overline{a_0a_1} \cap \text{dcl}(\overline{a_0a_2}, \overline{a_1a_2}).$

Moreover $H_2(p)$ is always an abelian profinite group. Conversely any abelian profinite group can occur as $H_2(p)$.

Fact (Goodrick, K.)

If stable \overline{T} fails 4-existence, then there is a type p and independent realizations a_i of p such that Aut($\widetilde{a_0a_1}/\overline{a_0}, \overline{a_1}$) is non-trivial.

Computing H_2

How do we know that $[b, c, d] - [a, c, d] + [a, b, d] - [a, b, c]$ is not a boundary?

Fix elements $\delta_{xy} \in [x, y]$ for $x, y \in \{a, b, c, d\}$. These elements are embedded into the 2-simplices; denote the images by δ_{xy}^{xyz} .

A 2-shell is a boundary if and only if for some (any) choice of δ 's we have

$$
\begin{aligned} \left(\delta_{cd}^{bcd} - \delta_{bd}^{bcd} + \delta_{bc}^{bcd}\right) - \left(\delta_{cd}^{acd} - \delta_{ad}^{acd} + \delta_{ac}^{acd}\right) \\ + \left(\delta_{bd}^{abd} - \delta_{ad}^{abd} + \delta_{ab}^{abd}\right) - \left(\delta_{bc}^{abc} - \delta_{ac}^{abc} + \delta_{ab}^{abc}\right) = 0. \end{aligned}
$$

First-order:

Conjecture

If T is stable with $\leq (n+1)$ -existence, then

$$
H_n(p) = \mathrm{Aut}(\widetilde{a_0...a_{n-1}}/\bigcup_{i=0}^{n-1} \overline{\{a_0...\hat{a}_i...a_{n-1}\}}).
$$

Non-elementary:

In [Goodrick,Kim,K.], the definitions are stated for a general context: functors into a category satisfying certain properties. What happens if the category is the class of atomic models?