The topology of ultrafilters as subspaces of 2^{ω}

Andrea Medini¹ David Milovich²

¹Department of Mathematics University of Wisconsin - Madison

²Department of Engineering, Mathematics, and Physics Texas A&M International University

April 2, 2012

All ultrafilters are non-principal and on ω .

By identifying a subset of ω with an element of 2^{ω} in the obvious way, we can view any ultrafilter \mathcal{U} as a subspace of 2^{ω} .

Proposition (folklore)

There are 2° non-homeomorphic ultrafilters.

Proof.

Using Lavrentiev's lemma, one sees that the homeomorphism classes have size c. So there must be 2^c of them.

The above proof is a cardinality argument: it is not 'honest' in the sense of Van Douwen. ©

It would be desirable to get 'quotable' topological properties that distinguish ultrafilters up to homeomorphism.

Similar investigations have been carried out for filters: a delicate interplay emerged between Baire property and Lebesgue measurability. However, these matters are trivial for ultrafilters. Notice that that $2^\omega = \mathcal{U} \sqcup c[\mathcal{U}]$, where $c: 2^\omega \longrightarrow 2^\omega$ is the complement homeomorphism. (So $\mathcal{J} = c[\mathcal{U}]$ is the dual ideal.)

Proposition (folklore)

Every ultrafilter $\mathcal{U} \subseteq \mathbf{2}^{\omega}$ has the following properties.

- U is non-meager and non-comeager.
- U does not have the Baire property.
- U is not Lebesgue measurable.
- *U* is not analytic and not co-analytic.
- U is a Baire space.
- *U* is a topological group (hence a homogeneous space).

The distinguishing properties

From now on, all spaces are separable and metrizable. Recall the following definitions.

Definition

- A space X is completely Baire if every closed subspace of X is a Baire space.
- A space X is countable dense homogeneous if for every pair (D, E) of countable dense subsets of X there exists a homeomorphism h: X → X such that h[D] = E.
- Given a space X, a subset A of X has the perfect set property if A is countable or A contains a homeomorphic copy of 2^ω.

Main results

Theorem

Assume MA(countable). Let P be one of the following topological properties.

- P = being completely Baire.
- P = countable dense homogeneity.
- P = every closed subset has the perfect set property.

Then there exist ultrafilters $\mathcal{U}, \mathcal{V} \subseteq 2^{\omega}$ such that \mathcal{U} has property P and \mathcal{V} does not have property P. 3

Question

Can the assumption of MA(countable) be dropped?

Kunen's closed embedding trick

Theorem (Kunen, private communication)

Let C be a zero-dimensional space. Then there exists an ultrafilter $\mathcal{U}\subseteq 2^{\omega}$ with a closed subspace homeomorphic to C.

By choosing $C = \mathbb{Q}$ or C = a Bernstein set one obtains the following corollaries.

Corollary

There exists an ultrafilter $\mathcal{V} \subseteq 2^{\omega}$ that is not completely Baire.

Corollary

There exists an ultrafilter $\mathcal{V} \subseteq 2^{\omega}$ with a closed subset that does not have the perfect set property.

Proof of Kunen's trick

Lemma (folklore)

There exists a perfect set $P \subseteq 2^{\omega}$ such that P is an independent family: that is, every word

$$x_1 \cap \cdots \cap x_m \cap \omega \setminus y_1 \cap \cdots \cap \omega \setminus y_n$$
 is infinite,

where $x_1, \ldots, x_m, y_1, \ldots, y_n \in P$ are distinct.

Let C be the space you want to embed in $\mathcal V$ as a closed subset. Since $P\cong 2^\omega$, assume $C\subseteq P$. Now simply define

$$\mathcal{G} = \mathbf{C} \cup \{\omega \setminus \mathbf{X} : \mathbf{X} \in \mathbf{P} \setminus \mathbf{C}\}.$$

Notice that \mathcal{G} has the finite intersection property because P is independent. Any ultrafilter $\mathcal{V} \supseteq \mathcal{G}$ will intersect P exactly on C.

An ultrafilter that is not countable dense homogeneous

We will use Sierpiński's technique for killing homeomorphisms.

Lemma

Assume MA(countable). Fix D_1 and D_2 disjoint countable dense subsets of 2^{ω} such that $\mathcal{D} = D_1 \cup D_2$ is an independent family. Then there exists $\mathcal{A} \supseteq \mathcal{D}$ satisfying the following conditions.

- A is an independent family.
- If $G \supseteq \mathcal{D}$ is a G_{δ} subset of 2^{ω} and $f : G \longrightarrow G$ is a homeomorphism such that $f[D_1] = D_2$, then there exists $x \in G$ such that $\{x, \omega \setminus f(x)\} \subseteq A$.

In the end, let \mathcal{V} be any ultrafilter extending \mathcal{A} .

Enumerate as $\{f_{\eta}: \eta \in \mathfrak{c}\}$ all such homeomorphisms. We will construct an increasing sequence of independent families \mathcal{A}_{ξ} for $\xi \in \mathfrak{c}$. Set $\mathcal{A}_{0} = \mathcal{D}$ and take unions at limit

We will take care of f_{η} at stage $\xi = \eta + 1$, using $cov(\mathcal{M}) = \mathfrak{c}$. List as $\{w_{\alpha} : \alpha \in \kappa\}$ all the words in \mathcal{A}_{η} . It is easy to check that, for any fixed $n \in \omega$, $\alpha \in \kappa$ and $\varepsilon_1, \varepsilon_2 \in 2$,

 $W_{\alpha,n,\varepsilon_1,\varepsilon_2} = \{x \in G_n : |w_{\alpha} \cap x^{\varepsilon_1} \cap f_n(x)^{\varepsilon_2}| \geq n\}$

is open dense in G_{η} , so comeager in 2^{ω} . So pick x in the intersection of every $W_{\alpha,\eta,\varepsilon_1,\varepsilon_2}$.

stages.

An aside: the separation property

The following property, among Baire spaces, is a weakening of countable dense homogeneity.

Definition (Van Mill, 2009)

A space X has the *separation property* if, given any $A, B \subseteq X$ such that A is meager and B is countable, there exists an homeomorphism $h: X \longrightarrow X$ such that $h[A] \cap B = \emptyset$.

Theorem (Van Mill, 2009)

Every Baire topological group has the separation property.

Corollary

Every ultrafilter $\mathcal{U} \subseteq 2^{\omega}$ has the separation property.

A countable dense homogeneous ultrafilter

Any ultrafilter $\mathcal U$ is homeomorphic to its dual maximal ideal $\mathcal J$. So, for notational convenience, we will construct an increasing sequence of ideals $\mathcal I_\xi$, for $\xi \in \mathfrak c$. In the end, let $\mathcal J$ be any maximal ideal extending $\bigcup_{\xi \in \mathfrak c} \mathcal I_\xi$.

The idea is to use the following lemma.

Lemma

Let $f: 2^{\omega} \longrightarrow 2^{\omega}$ be a homeomorphism. Fix a maximal ideal $\mathcal{J} \subseteq 2^{\omega}$ and a countable dense subset D of \mathcal{J} . Then f restricts to a homeomorphism of \mathcal{J} iff $cl(\{d+f(d):d\in D\})\subseteq \mathcal{J}$.

Enumerate as $\{(D_{\eta}, E_{\eta}) : \eta \in \mathfrak{c}\}$ all pairs of countable dense subsets of 2^{ω} . At stage $\xi = \eta + 1$, make sure that either

- $\omega \setminus x \in \mathcal{I}_{\mathcal{E}}$ for some $x \in D_{\eta} \cup E_{\eta}$, or
- there exists an homeomorphism $f: 2^{\omega} \longrightarrow 2^{\omega}$ and $x \in \mathcal{I}_{\xi}$ such that $f[D_{\eta}] = E_{\eta}$ and $\{d + f(d) : d \in D_{\eta}\} \subseteq x \downarrow$.

To construct $f: 2^{\omega} \longrightarrow 2^{\omega}$ and x, use MA(countable) on the poset \mathbb{P} consisting of all triples $p = (s, g, \pi) = (s_p, g_p, \pi_p)$ such that, for some $n = n_p \in \omega$, the following conditions hold.

- $s: n \longrightarrow 2$.
- g is a bijection between a finite subset of D and a finite subset of E.
- π is a permutation of n 2.
- $(t + \pi(t))(i) = 1$ implies s(i) = 1 for every $t \in {}^{n}2$ and $i \in n$.
- $\pi(d \upharpoonright n) = g(d) \upharpoonright n$ for every $d \in \text{dom}(g)$.

Order \mathbb{P} by declaring $q \leq p$ if the following conditions hold.

- $s_q \supseteq s_p$.
- $g_q \supseteq g_p$.
- $\pi_q(t) \upharpoonright n_p = \pi_p(t \upharpoonright n_p)$ for all $t \in {}^{n_q}2$.

An ultrafilter $\mathcal U$ such that $A\cap \mathcal U$ has the perfect set property whenever A is analytic

Recall that a play of the strong Choquet game on a topological space (X,\mathcal{T}) is of the form

$$\begin{array}{c|cccc} I & (q_0, U_0) & (q_1, U_1) & \cdots \\ \hline II & V_0 & V_1 & \cdots, \end{array}$$

where $U_n, V_n \in \mathcal{T}$ are such that $q_n \in V_n \subseteq U_n$ and $U_{n+1} \subseteq V_n$ for every $n \in \omega$.

Player II wins if $\bigcap_{n \in \omega} U_n \neq \emptyset$.

The topological space (X, \mathcal{T}) is *strong Choquet* if II has a winning strategy in the above game.

Define an A-triple to be a triple of the form (\mathcal{T}, A, Q) such that the following conditions are satisfied.

- T is a strong Choquet, second-countable topology on 2^{ω} that is finer than the standard topology.
- \bullet $A \in \mathcal{T}$.
- Q is a non-empty countable subset of A with no isolated points in the subspace topology it inherits from \mathcal{T} .

For every analytic A there exists a topology $\mathcal T$ as above. Also, such a topology $\mathcal T$ necessarily consists only of analytic sets. In particular, we can enumerate all A-triples as $\{(\mathcal T_\eta,A_\eta,Q_\eta):\eta\in\mathfrak c\}$, making sure that each A-triple appears cofinally often.

We will construct an increasing sequence of filters \mathcal{F}_{ξ} , for $\xi \in \mathfrak{c}$. Enumerate as $\{z_{\eta} : \eta \in \mathfrak{c}\}$ all subsets of ω .

At stage $\xi = \eta + 1$, make sure that the following conditions hold.

- Either $z_{\eta} \in \mathcal{F}_{\xi}$ or $\omega \setminus z_{\eta} \in \mathcal{F}_{\xi}$.
- If $Q_{\eta} \subseteq \mathcal{F}_{\eta}$ then there exists $x \in \mathcal{F}_{\xi}$ such that $x \uparrow \cap A_{\eta}$ contains a perfect subset.

Let $\mathcal{U}=\bigcup_{\xi\in\mathfrak{c}}\mathcal{F}_{\xi}.$ If $A\cap\mathcal{U}$ is uncountable for some analytic A then it must have an uncountable subset S with no isolated points. Hence there exists some $Q\subseteq S$ and \mathcal{T} such that (\mathcal{T},A,Q) is an A-triple. So we took care of it.

Given an A-triple $(\mathcal{T},A,Q)=(\mathcal{T}_\eta,A_\eta,Q_\eta)$, construct x by applying MA(countable) to the following poset. Fix a winning strategy Σ for player II in the strong Choquet game in $(2^\omega,\mathcal{T})$. Also, fix a countable base \mathcal{B} for $(2^\omega,\mathcal{T})$. Let $\mathbb P$ be the countable poset consisting of all functions p such that for some $n=n_p\in\omega$ the following conditions hold.

- $p: {}^{\leq n}2 \longrightarrow Q \times \mathcal{B}$. We will use the notation $p(s) = (q_s^p, U_s^p)$.
- $U^p_\varnothing = A$.
- For every $s, t \in {}^{\leq n}2$, if s and t are incompatible (that is, $s \not\subseteq t$ and $t \not\subseteq s$) then $U_s^p \cap U_t^p = \varnothing$.

• For every $s \in {}^{n}2$,

is a partial play of the strong Choquet game in $(2^{\omega}, \mathcal{T})$, where the open sets $V_{s|i}^{p}$ played by II are the ones dictated by the strategy Σ .

Order \mathbb{P} by setting $p \leq p'$ whenever $p \supseteq p'$.

The generic tree will naturally yield a perfect set P such that $\mathcal{F}_{\eta} \cup \{ \bigcap P \}$ has the finite intersection property. So set $x = \bigcap P$.

A question of Hrušák and Zamora Avilés

Hrušák and Zamora Avilés showed that, for a Borel $X \subseteq 2^{\omega}$, the following conditions are equivalent.

- X^{ω} is countable dense homogeneous.
- X is a G_{δ} .

Then they asked whether there exists a non- G_{δ} subset X of 2^{ω} such that X^{ω} is countable dense homogeneous.

The following theorem consistently answers their question.

Theorem

Assume MA(countable). Then there exists an ultrafilter $\mathcal{U} \subseteq 2^{\omega}$ such that \mathcal{U}^{ω} is countable dense homogeneous.

Extending the perfect set property

Under V=L, there exists a co-analytic subset of 2^{ω} without the perfect set property. So MA(countable) is not enough to extend the perfect set property to $\mathcal{U} \cap A$ for all co-analytic A.

Theorem

Assume the consistency of a Mahlo cardinal. Then it is consistent that there exists an ultrafilter $\mathcal{U}\subseteq 2^\omega$ such $A\cap \mathcal{U}$ has the perfect set property for all $A\in \mathcal{P}(2^\omega)\cap L(\mathbb{R})$.

At least an inaccessible is needed for the above theorem.

Question

Does the Levy collapse of an inaccessible κ to ω_1 force such an ultrafilter?

P-point = completely Baire

Theorem (Marciszewski, 1998)

Let $\mathcal{F} \subseteq 2^{\omega}$ be a filter. Then \mathcal{F} is completely Baire if and only if it is a non-meager P-filter.

So the problem of completely Baire ultrafilters has been completely solved already, by the following well-known results.

Proposition (folklore)

There exist non-P-points.

Theorem (W. Rudin, 1956, plus folklore)

Assume MA(countable). Then there exist P-points.

Theorem (Shelah, 1982)

It is consistent that there are no P-points.

P-points and the perfect set property

We constructed the following examples.

	P-point	non-P-point
psp	√	?
non-psp	?	✓

Question

For an ultrafilter $\mathcal{U} \subseteq 2^{\omega}$, is being a P-point equivalent to $\mathcal{U} \cap A$ having the perfect set property whenever $A \subseteq 2^{\omega}$ is analytic?

Theorem

Let \mathcal{U} be a P_{ω_2} -point. Then $A \cap \mathcal{U}$ has the perfect set property whenever $A \subseteq 2^{\omega}$ is such that every closed subset of A has the perfect set property. (For example, whenever A is analytic).

Non-meager P-filters are countable dense homogeneous

Theorem (Hernández-Gutiérrez and Hrušák, preprint)

If $\mathcal{F} \subseteq 2^{\omega}$ is a non-meager P-filter then both \mathcal{F} and \mathcal{F}^{ω} are countable dense homogeneous.

However, their result does not make our proofs useless, © because they can easily be modified to obtain the following.

Theorem

Assume MA(countable). Then there exists a non-P-point $\mathcal{U} \subseteq 2^{\omega}$ that is countable dense homogeneous.

Theorem

Assume MA(countable). Then there exists a non-P-point $\mathcal{U} \subseteq 2^{\omega}$ such that \mathcal{U}^{ω} is countable dense homogeneous.

Directions for future research

The result of Hernández-Gutiérrez and Hrušák suggests the two following problems.

Problem

Find a combinatorial characterization of countable dense homogeneous ultrafilters.

For example, is weak P-point the same as countable dense homogeneous? What about ω_1 -OK ultrafilters?

Question

Can Shelah's proof of the consistency of no P-points be modified to yield a model with no countable dense homogeneous ultrafilters?