The complexity within well-partial-orderings

Antonio Montalbán

– University of Chicago

Madison, March 2012

Antonio Montalbán (U. of Chicago) [Well-Partial-Orderings](#page-96-0) Madison, March 2012 1/22

 QQ

2 [WQOs in Proof Theory](#page-28-0)

- [Kruskal's theorem and the graph-minor theorem](#page-28-0)
- **.** Linear orderings and Fraïssé's Conjecture

つくい

Definition: A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

 \leftarrow \Box

- **Definition:** A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.
- **Example:** The following sets are WQO under an embeddability relation:
	- **•** finite strings over a finite alphabet [Higman 52];

- **Definition:** A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.
- **Example:** The following sets are WQO under an embeddability relation:
	- finite strings over a finite alphabet [Higman 52];
	- **o** finite trees [Kruskal 60],

- **Definition:** A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.
- **Example:** The following sets are WQO under an embeddability relation:
	- **•** finite strings over a finite alphabet [Higman 52];
	- **o** finite trees [Kruskal 60],
	- labeled transfinite sequences with finite labels [Nash-Williams 65];

- **Definition:** A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.
- **Example:** The following sets are WQO under an embeddability relation:
	- **•** finite strings over a finite alphabet [Higman 52];
	- **•** finite trees [Kruskal 60],
	- labeled transfinite sequences with finite labels [Nash-Williams 65];
	- **countable linear orderings** [Laver 71];

- **Definition:** A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.
- **Example:** The following sets are WQO under an embeddability relation:
	- **•** finite strings over a finite alphabet [Higman 52];
	- **o** finite trees [Kruskal 60],
	- labeled transfinite sequences with finite labels [Nash-Williams 65];
	- **countable linear orderings** [Laver 71];
	- **finite graphs** [Robertson, Seymour].

- **Definition:** A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.
- **Example:** The following sets are WQO under an embeddability relation:
	- **•** finite strings over a finite alphabet [Higman 52];
	- **o** finite trees [Kruskal 60],
	- labeled transfinite sequences with finite labels [Nash-Williams 65];
	- **countable linear orderings** [Laver 71];
	- **finite graphs** [Robertson, Seymour].

- **Definition:** A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.
- **Example:** The following sets are WQO under an embeddability relation:
	- **•** finite strings over a finite alphabet [Higman 52];
	- **o** finite trees [Kruskal 60],
	- labeled transfinite sequences with finite labels [Nash-Williams 65];
	- **countable linear orderings [Laver 71];**
	- **finite graphs** [Robertson, Seymour].

Definition:

A well-partial-ordering (WPO), is a WQO which is a partial ordering.

 200

A BAY A BA

4 0 8

∍

 \bullet $\mathcal P$ is well-founded and has no infinite antichains;

4日)

 QQ

- \bullet $\mathcal P$ is well-founded and has no infinite antichains;
- for every $f : \mathbb{N} \to P$ there exists $i < j$ such that $f(i) \leqslant_P f(j)$;

- \bullet $\mathcal P$ is well-founded and has no infinite antichains;
- for every $f : \mathbb{N} \to P$ there exists $i < j$ such that $f(i) \leqslant_P f(j)$;
- \bullet every subset of P has a finite set of minimal elements;

- \bullet $\mathcal P$ is well-founded and has no infinite antichains:
- for every $f : \mathbb{N} \to P$ there exists $i < j$ such that $f(i) \leqslant_P f(j)$;
- \bullet every subset of P has a finite set of minimal elements;
- all linear extensions of $\mathcal P$ are well-orders.

- \bullet $\mathcal P$ is well-founded and has no infinite antichains:
- for every $f : \mathbb{N} \to P$ there exists $i < j$ such that $f(i) \leqslant_P f(j)$;
- \bullet every subset of P has a finite set of minimal elements;
- all linear extensions of $\mathcal P$ are well-orders.

The reverse mathematics and computability theory of these equivalences was been studied in [Cholak-Marcone-Solomon 04].

4 0 8

 \sim

Þ

The sum and disjoint sum of two WPOs are WPO.

 \leftarrow \Box

- The sum and disjoint sum of two WPOs are WPO.
- The product of two WPOs is WPO.

 QQ

- The sum and disjoint sum of two WPOs are WPO.
- The product of two WPOs is WPO.
- Finite strings over a WPO are a WPO (Higman, 1952).

つくへ

- The sum and disjoint sum of two WPOs are WPO.
- The product of two WPOs is WPO.
- Finite strings over a WPO are a WPO (Higman, 1952).
- Finite trees with labels from a WPO are a WPO (Kruskal, 1960).

つくへ

- The sum and disjoint sum of two WPOs are WPO.
- The product of two WPOs is WPO.
- Finite strings over a WPO are a WPO (Higman, 1952).
- Finite trees with labels from a WPO are a WPO (Kruskal, 1960).
- Transfinite sequences with labels from a WPO which use only finitely many labels are a WPO (Nash-Williams, 1965).

Recall: Every linearization of a WPO is well-ordered.

∢ ロ ▶ 《 何

Þ

Length

Recall: Every linearization of a WPO is well-ordered. $(\leqslant_{\iota}$ is a *linearization* of (P,\leqslant_{ρ}) if it's linear $\textsf{ and } x\leqslant_{\rho} y \Rightarrow x\leqslant_{\iota} y$.

э

∢ ロ ▶ 《 何

 QQ

Length

Recall: Every linearization of a WPO is well-ordered. $(\leqslant_{\iota}$ is a *linearization* of (P,\leqslant_{ρ}) if it's linear $\textsf{ and } x\leqslant_{\rho} y \Rightarrow x\leqslant_{\iota} y$. So, for any $\{x_n\}_{n\in\omega}$, there are $i < j$ with $(x_i \leqslant_{\rho} x_j)$, hence $x_i \not>_{L} x_j$.)

4 m k

Length

Recall: Every linearization of a WPO is well-ordered. $(\leqslant_{\iota}$ is a *linearization* of (P,\leqslant_{ρ}) if it's linear $\textsf{ and } x\leqslant_{\rho} y \Rightarrow x\leqslant_{\iota} y$. So, for any $\{x_n\}_{n\in\omega}$, there are $i < j$ with $(x_i \leqslant_{\rho} x_j)$, hence $x_i \not>_{L} x_j$.)

Definition: The length of $\mathcal{P} = (P, \leqslant_P)$ is $o(\mathcal{P}) = \sup\{\mathrm{ordType}(\mathcal{W}, \leqslant_L): \text{ where } \leqslant_L \text{ is a linearization of } \mathcal{P}\}.$

Recall: Every linearization of a WPO is well-ordered. $(\leqslant_{\iota}$ is a *linearization* of (P,\leqslant_{ρ}) if it's linear $\textsf{ and } x\leqslant_{\rho} y \Rightarrow x\leqslant_{\iota} y$. So, for any $\{x_n\}_{n\in\omega}$, there are $i < j$ with $(x_i \leqslant_{\rho} x_j)$, hence $x_i \not>_{L} x_j$.)

Definition: The length of $\mathcal{P} = (P, \leqslant_P)$ is $o(\mathcal{P}) = \sup\{\mathrm{ordType}(\mathcal{W}, \leqslant_L): \text{ where } \leqslant_L \text{ is a linearization of } \mathcal{P}\}.$

Def: $\text{Bad}(\mathcal{P}) = \{ \langle x_0, ..., x_{n-1} \rangle \in \mathcal{P}^{<\omega} : \forall i < j \ (x_i \nleq_P x_j) \},\$ **Note:** P is a WPO \Leftrightarrow $\mathbb{B}ad(\mathcal{P})$ is well-founded.

∢∄ ⊳ ∢∄ ⊳ ∄ ∽QQ∩≻

Recall: Every linearization of a WPO is well-ordered. $(\leqslant_{\iota}$ is a *linearization* of (P,\leqslant_{ρ}) if it's linear $\textsf{ and } x\leqslant_{\rho} y \Rightarrow x\leqslant_{\iota} y$. So, for any $\{x_n\}_{n\in\omega}$, there are $i < j$ with $(x_i \leqslant_{\rho} x_j)$, hence $x_i \not>_{L} x_j$.)

Definition: The length of $\mathcal{P} = (P, \leqslant_P)$ is $o(\mathcal{P}) = \sup\{\mathrm{ordType}(\mathcal{W}, \leqslant_L): \text{ where } \leqslant_L \text{ is a linearization of } \mathcal{P}\}.$

Def: $\text{Bad}(\mathcal{P}) = \{ \langle x_0, ..., x_{n-1} \rangle \in \mathcal{P}^{<\omega} : \forall i < j \ (x_i \nleq_P x_j) \},\$ **Note:** P is a WPO \Leftrightarrow $\mathbb{B}ad(\mathcal{P})$ is well-founded.

Theorem: [De Jongh, Parikh 77] $o(\mathcal{P}) + 1 = \text{rk}(\text{Bad}(\mathcal{P})).$

KED KAP KED KED E LOQO

- [Kruskal's theorem and the graph-minor theorem](#page-28-0)
- Linear orderings and Fraïssé's Conjecture

Antonio Montalbán (U. of Chicago) [Well-Partial-Orderings](#page-0-0) Madison, March 2012 7 / 22

つくへ

 \leftarrow \Box

Theorem: [Friedman] The length of T is $\geqslant \Gamma_0$, the Feferman–Schütte ordinal.

Theorem: [Friedman] The length of T is $\geqslant \Gamma_0$, the Feferman–Schütte ordinal. (Γ_0 is the the proof-theoretic ordinal of ATR₀. It's the "least ordinal" that $ATR₀$ can't prove it's an ordinal.

Theorem: [Friedman] The length of T is $\geqslant \Gamma_0$, the Feferman–Schütte ordinal. (Γ_0 is the the proof-theoretic ordinal of ATR₀. It's the "least ordinal" that $ATR₀$ can't prove it's an ordinal.

 ATR_0 –Arithmetic Transfinite Recursion– is the subsystem of 2nd-order arithmetic that allows the iteration of the Turing jump along any ordinal.)

Theorem: [Friedman] The length of T is $\geqslant \Gamma_0$, the Feferman–Schütte ordinal. (Γ_0 is the the proof-theoretic ordinal of ATR₀. It's the "least ordinal" that $ATR₀$ can't prove it's an ordinal.

 $ATR₀$ –Arithmetic Transfinite Recursion– is the subsystem of 2nd-order arithmetic that allows the iteration of the Turing jump along any ordinal.)

Corollary: [Friedman] (RCA₀) Kruskal's theorem $\Rightarrow \Gamma_0$ well-ordered.

Theorem: [Friedman] The length of T is $\geqslant \Gamma_0$, the Feferman–Schütte ordinal. (Γ_0 is the the proof-theoretic ordinal of ATR₀. It's the "least ordinal" that $ATR₀$ can't prove it's an ordinal.

 $ATR₀$ –Arithmetic Transfinite Recursion– is the subsystem of 2nd-order arithmetic that allows the iteration of the Turing jump along any ordinal.)

Corollary: [Friedman] (RCA₀) Kruskal's theorem $\Rightarrow \Gamma_0$ well-ordered. Therefore,

 $ATR_0 \not\vdash$ Kruskal's theorem.

The "big five" subsystems of 2nd-order arithmetic

Axiom systems: $RCA₀$

 $WKL₀$

 $ACA₀$

 $ATR₀$:

 Π_1^1 -CA₀:

4 0 8

重

 QQ
The "big five" subsystems of 2nd-order arithmetic

Axiom systems:

 RCA_0 : Recursive Comprehension $+ \Sigma_1^0$ -induction $+$ Semiring ax.

 $WKL₀$

$ACA₀$

 $ATR₀$

 Π_1^1 -CA₀:

 RCA_0 : Recursive Comprehension $+ \Sigma_1^0$ -induction $+$ Semiring ax.

 WKL_0 : Weak König's lemma + RCA₀

 $ACA₀$

 $ATR₀$

 Π_1^1 -CA₀:

- RCA_0 : Recursive Comprehension $+ \Sigma_1^0$ -induction $+$ Semiring ax.
- WKL_0 : Weak König's lemma + RCA₀
- $ACA₀$: Arithmetic Comprehension + RCA₀ ⇔ "for every set X , X' exists".

 $ATR₀$:

 Π_1^1 -CA₀:

 RCA_0 : Recursive Comprehension $+ \Sigma_1^0$ -induction $+$ Semiring ax.

 WKL_0 : Weak König's lemma + RCA₀

 $ACA₀$: Arithmetic Comprehension + RCA₀ ⇔ "for every set X , X' exists".

 $ATR₀$: Arithmetic Transfinite recursion + ACA₀. \Leftrightarrow " $\forall X$, \forall ordinal α , $X^{(\alpha)}$ exists".

 Π_1^1 -CA₀:

 RCA_0 : Recursive Comprehension $+ \Sigma_1^0$ -induction $+$ Semiring ax.

 WKL_0 : Weak König's lemma + RCA₀

 $ACA₀$: Arithmetic Comprehension + RCA₀ ⇔ "for every set X , X' exists".

 $ATR₀$: Arithmetic Transfinite recursion + ACA₀. \Leftrightarrow " $\forall X$, \forall ordinal α , $X^{(\alpha)}$ exists".

 Π_1^1 -CA₀: Π_1^1 -Comprehension + ACA₀. \Leftrightarrow " $\forall X$, the hyper-jump of X exists".

[Friedman] Neither of $ATR₀$, or Kruskal's theorem implies the other.

4 0 8

[Friedman] Neither of $ATR₀$, or Kruskal's theorem implies the other.

Thm: [Rathjen–Weiermann 93] The length of $\mathcal T$ is $\theta \Omega^\omega$, the Ackerman ordinal. The following are equivalent over RCA_0

- **A** Kruskal's theorem.
- The Π^1_1 -reflection principle for Π^1_2 -transfinite induction.

[Friedman] Neither of $ATR₀$, or Kruskal's theorem implies the other.

Thm: [Rathjen–Weiermann 93] The length of $\mathcal T$ is $\theta \Omega^\omega$, the Ackerman ordinal. The following are equivalent over RCA_0

- **A** Kruskal's theorem.
- The Π^1_1 -reflection principle for Π^1_2 -transfinite induction.

Thm: [M.–Weiermann 2006] The following are equivalent over RCA_0

- \bullet ATR \circ
- For every P, if P is a WQO, then so is $T(P)$, where $T(P)$ is the set of finite trees with labels in P, ordered by $T \prec S$ if $\exists f: T \rightarrow S$ which preserves \lt and increasing on labels.

Theorem: [Robertson–Seymour] Let G be the set of finite graphs ordered by the minor relation. Then G is a WQO.

 \leftarrow \Box

 QQ

Theorem: [Robertson–Seymour] Let $\mathcal G$ be the set of finite graphs ordered by the minor relation. Then G is a WQO.

Theorem: [Friedman–Robertson–Seymour] The length of \mathcal{G} is $\geq \phi_0(\epsilon_{\Omega_{\dots}+1})$.

Theorem: [Robertson–Seymour] Let $\mathcal G$ be the set of finite graphs ordered by the minor relation. Then G is a WQO.

Theorem: [Friedman–Robertson–Seymour] The length of \mathcal{G} is $\geq \phi_0(\epsilon_{\Omega}+1)$. (where $\phi_0(\epsilon_{\Omega_{\omega}+1})$, the Takeuti-Feferman-Buchholz ordinal, is the the proof-theoretic ordinal of Π^1_1 -CA₀.

Theorem: [Robertson–Seymour] Let G be the set of finite graphs ordered by the minor relation. Then G is a WQO.

Theorem: [Friedman–Robertson–Seymour] The length of \mathcal{G} is $\geq \phi_0(\epsilon_{\Omega}+1)$. (where $\phi_0(\epsilon_{\Omega_{\omega}+1})$, the Takeuti-Feferman-Buchholz ordinal, is the the proof-theoretic ordinal of Π^1_1 -CA₀.

 Π_1^1 -*CA*₀ – is the system that allows Π_1^1 -comprehension.)

Theorem: [Robertson–Seymour] Let G be the set of finite graphs ordered by the minor relation. Then G is a WQO.

Theorem: [Friedman–Robertson–Seymour] The length of \mathcal{G} is $\geq \phi_0(\epsilon_{\Omega}+1)$. (where $\phi_0(\epsilon_{\Omega_{\omega}+1})$, the Takeuti-Feferman-Buchholz ordinal, is the the proof-theoretic ordinal of Π^1_1 -CA₀.

 Π_1^1 -*CA*₀ – is the system that allows Π_1^1 -comprehension.)

Corollary: [Friedman, Robertson, Seymour] $(RCA₀)$ The minor-grarph theorem $\Rightarrow \phi_0(\epsilon_{\Omega,+1})$ well-ordered. Therefore,

 Π^1_1 -CA₀ \nvdash minor-graph theorem.

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA:The countable linear orderings are WQO under embeddablity.

 \leftarrow

 QQ

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA:The countable linear orderings are WQO under embeddablity.

Theorem[Shore '93] FRA implies ATR_0 over RCA₀.

Conjecture:[Clote '90][Simpson '99][Marcone] FRA is equivalent to ATR_0 over RCA₀.

4 m k

つくへ

 RCA_0 : Recursive Comprehension $+ \Sigma_1^0$ -induction $+$ Semiring ax.

 WKL_0 : Weak König's lemma + RCA₀

 $ACA₀$: Arithmetic Comprehension + RCA₀ ⇔ "for every set X , X' exists".

 $ATR₀$: Arithmetic Transfinite recursion + ACA₀. \Leftrightarrow " $\forall X$, \forall ordinal α , $X^{(\alpha)}$ exists".

 Π_1^1 -CA₀: Π_1^1 -Comprehension + ACA₀. \Leftrightarrow " $\forall X$, the hyper-jump of X exists".

つくい

Claim

 $RCA₀+FRA$ is the least system where it is possible to develop a reasonable theory of embeddability of linear orderings.

4 D F

 QQ

Claim

 $RCA₀+FRA$ is the least system where it is possible to develop a reasonable theory of embeddability of linear orderings.

Theorem ([M. 05])

The following are equivalent over RCA_0

- FRA;
- Every scattered lin. ord. is a finite sum of indecomposables;
- Every indecomposable lin. ord. is either an ω -sum or an ω^* -sum of indecomposable l.o. of smaller rank.
- Jullien's characterization of extendible linear orderings

(□) (f)

つくい

Theorem:[Folklore] If we color Q with finitely many colors, there exists an embedding $\mathbb{Q} \to \mathbb{Q}$ whose image has only one color.

4 m k

 QQ

Theorem: [Folklore] If we color \mathbb{O} with finitely many colors, there exists an embedding $\mathbb{O} \rightarrow \mathbb{O}$ whose image has only one color.

Theorem (*):[Laver '72] For every countable L, there exists $n_L \in \mathbb{N}$, such that: If $\mathcal L$ is colored with finitely many colors, there is an embedding $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ colors.

Theorem: [Folklore] If we color \mathbb{O} with finitely many colors, there exists an embedding $\mathbb{O} \rightarrow \mathbb{O}$ whose image has only one color.

Theorem (*):[Laver '72] For every countable L, there exists $n \in \mathbb{N}$, such that: If $\mathcal L$ is colored with finitely many colors, there is an embedding $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ colors.

Theorem ([M. 2005])

FRA is implied by Theorem $(*)$ over RCA₀.

Theorem: [Folklore] If we color \mathbb{O} with finitely many colors, there exists an embedding $\mathbb{O} \rightarrow \mathbb{O}$ whose image has only one color.

Theorem (*):[Laver '72] For every countable L, there exists $n_L \in \mathbb{N}$, such that: If $\mathcal L$ is colored with finitely many colors, there is an embedding $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ colors.

Theorem ([M. 2005])

FRA is implied by Theorem $(*)$ over RCA₀.

Theorem ([Kach–Marcone–M.–Weiermann 2011])

FRA is equivalent to Theorem $(*)$ over RCA₀.

つくへ

 $-1 - 1$

 QQ

1 [Laver 71] For countable α , \mathbb{L}_{α} is countable.

- **1** [Laver 71] For countable α , \mathbb{L}_{α} is countable.
- **2** [M. 05] For computable α , $(\mathbb{L}_{\alpha}, \preccurlyeq)$ is computably presentable.

- **1** [Laver 71] For countable α , \mathbb{L}_{α} is countable.
- **2** [M. 05] For computable α , $(\mathbb{L}_{\alpha}, \preccurlyeq)$ is computably presentable.
- **3** (This was used to prove that every hypearithmetic linear ordering is bi-embeddable with a computable one in [M. 05])

- **1** [Laver 71] For countable α , \mathbb{L}_{α} is countable.
- **2** [M. 05] For computable α , $(\mathbb{L}_{\alpha}, \preccurlyeq)$ is computably presentable.
- **3** (This was used to prove that every hypearithmetic linear ordering is bi-embeddable with a computable one in [M. 05])
- **4** FRA is equivalent to " \forall ordinal $\alpha < \omega_1$ (\mathbb{L}_{α} is WQO)."

- **1** [Laver 71] For countable α , \mathbb{L}_{α} is countable.
- **2** [M. 05] For computable α , $(\mathbb{L}_{\alpha}, \preccurlyeq)$ is computably presentable.
- **3** (This was used to prove that every hypearithmetic linear ordering is bi-embeddable with a computable one in [M. 05])
- **4** FRA is equivalent to " \forall ordinal $\alpha < \omega_1$ (\mathbb{L}_{α} is WQO)."

Question: Given α , what is the length of \mathbb{L}_{α} ?

- **1** [Laver 71] For countable α , \mathbb{L}_{α} is countable.
- **2** [M. 05] For computable α , $(\mathbb{L}_{\alpha}, \preccurlyeq)$ is computably presentable.
- **3** (This was used to prove that every hypearithmetic linear ordering is bi-embeddable with a computable one in [M. 05])
- **●** FRA is equivalent to "∀ ordinal $\alpha < \omega_1$ (\mathbb{L}_{α} is WQO)."

Question: Given α , what is the length of \mathbb{L}_{α} ? Given α , what is the rank of \mathbb{L}_{α} as a well-founded poset?

Finite Hausdorff rank

Theorem ([Marcone, M 08])

The length of \mathbb{L}_{ω} is $\epsilon_{\epsilon_{\dots}}$,

4日)

э

 QQ

Theorem ([Marcone, M 08])

The length of \mathbb{L}_{ω} is $\epsilon_{\epsilon_{\dots}}$,

where $\epsilon_{\epsilon_{\epsilon \dots}}$ is the first fixed point of the function $\alpha \mapsto \epsilon_\alpha$, where ϵ_α is the $(\alpha+1)$ st fixed point for the function $\beta\mapsto \omega^\beta.$

つくい

Theorem ([Marcone, M 08])

The length of \mathbb{L}_{ω} is $\epsilon_{\epsilon_{\dots}}$,

where $\epsilon_{\epsilon_{\epsilon \dots}}$ is the first fixed point of the function $\alpha \mapsto \epsilon_\alpha$, where ϵ_α is the $(\alpha+1)$ st fixed point for the function $\beta\mapsto \omega^\beta.$

Note: $\epsilon_{\epsilon_{\text{e...}}}$ is the proof-theoretic ordinal of ACA⁺, where ACA $^+$ is the system RCA $_0+$ ∀ $X(X^{(\omega)}$ *exists*). (So $\epsilon_{\epsilon_{\epsilon\dots}}$ is the least ordinal that ACA $^+$ ca**n't** prove is well-ordered.)

つくい

Theorem ([Marcone, M 08])

The length of \mathbb{L}_{ω} is $\epsilon_{\epsilon_{\dots}}$,

where $\epsilon_{\epsilon_{\epsilon \dots}}$ is the first fixed point of the function $\alpha \mapsto \epsilon_\alpha$, where ϵ_α is the $(\alpha+1)$ st fixed point for the function $\beta\mapsto \omega^\beta.$

Note: $\epsilon_{\epsilon_{\text{e...}}}$ is the proof-theoretic ordinal of ACA⁺, where ACA $^+$ is the system RCA $_0+$ ∀ $X(X^{(\omega)}$ *exists*). (So $\epsilon_{\epsilon_{\epsilon\dots}}$ is the least ordinal that ACA $^+$ ca**n't** prove is well-ordered.)

Theorem ([Marcone, M 08])

That \mathbb{L} is a WQO.

- follows from ACA^+ $+$ " $\epsilon_{\epsilon...}$ is well-ordered",
- \bullet but not from ACA⁺.

 Ω

(□) (何)

[WQOs in Proof Theory](#page-28-0)

- [Kruskal's theorem and the graph-minor theorem](#page-28-0)
- **Linear orderings and Fraïssé's Conjecture**

 \leftarrow m.

 QQ

complexity of maximal order types

Recall: $o(P) = \sup\{ \text{ordType}(P, \leqslant_L) : \text{ where } \leqslant_L \text{ is a linearization of } P \}.$

4 0 8

 $2Q$

complexity of maximal order types

Recall: $o(P) = \sup\{ \text{ordType}(P, \leqslant_L) : \text{ where } \leqslant_L \text{ is a linearization of } P \}.$

Theorem: [De Jongh, Parikh 77] Every WPO P has a linearization of order type $o(P)$.
Recall: $o(P) = \sup\{ \text{ordType}(P, \leqslant_L) : \text{ where } \leqslant_L \text{ is a linearization of } P \}.$

Theorem: [De Jongh, Parikh 77] Every WPO P has a linearization of order type $o(P)$.

We call such a linearization, a *maximal linearization* of P .

 Ω

Recall: $o(P) = \sup\{ \text{ordType}(P, \leqslant_L) : \text{ where } \leqslant_L \text{ is a linearization of } P \}.$

Theorem: [De Jongh, Parikh 77] Every WPO P has a linearization of order type $o(P)$.

We call such a linearization, a *maximal linearization* of P .

Such linearizations have been found by different methods in different examples.

Recall: $o(P) = \sup\{ \text{ordType}(P, \leqslant_L) : \text{ where } \leqslant_L \text{ is a linearization of } P \}.$

Theorem: [De Jongh, Parikh 77] Every WPO P has a linearization of order type $o(P)$.

We call such a linearization, a *maximal linearization* of P .

Such linearizations have been found by different methods in different examples.

Question [Schmidt 1979]: Is the length of a computable WPO computable?

Q: Is the length of a computable WPO, computable?

4 0 8

 QQ

Q: Is the length of a computable WPO, computable?

We mentioned that $o(\mathcal{P}) + 1 = \text{rk}(\text{Bad}(\mathcal{P}))$, where

$$
\mathbb{B}\mathrm{ad}(\mathcal{P})=\{\langle x_0,...,x_{n-1}\rangle\in W^{<\omega}: \forall i
$$

Since $\mathbb{B}\mathrm{ad}(\mathcal{P})$ is computable and well-founded, it has rank $<\omega_{1}^{C\mathcal{K}}.$ So, $o(\mathcal{P})$ is a computable ordinal.

Q: Is the length of a computable WPO, computable?

We mentioned that $o(\mathcal{P}) + 1 = \text{rk}(\text{Bad}(\mathcal{P}))$, where

$$
\mathbb{B}\mathrm{ad}(\mathcal{P})=\{\langle x_0,...,x_{n-1}\rangle\in W^{<\omega}: \forall i
$$

Since $\mathbb{B}\mathrm{ad}(\mathcal{P})$ is computable and well-founded, it has rank $<\omega_{1}^{C\mathcal{K}}.$ So, $o(P)$ is a computable ordinal.

Q:

Does every computable WPO have a computable maximal linearization?

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

4 O F

 QQ

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

Q: Can we find them uniformly?

 \leftarrow

つへへ

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

Q: Can we find them uniformly?

Theorem ([M 2007])

There is computable procedure that

given P produces a linearization L such that for some δ

 $\omega^\delta \leqslant \mathcal{L} \leqslant o(\mathcal{P}) < \omega^{\delta+1}.$

 Ω

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

Q: Can we find them uniformly?

Theorem ([M 2007])

There is computable procedure that

given P produces a linearization L such that for some δ

 $\omega^\delta \leqslant \mathcal{L} \leqslant o(\mathcal{P}) < \omega^{\delta+1}.$

Theorem ([M 2007])

Let a be a Turing degree. TFAE:

- **1** a uniformly computes maximal linearizations of computable WPOs.
- $\mathbf 2$ a uniformly computes $0^{(\beta)}$ for every $\beta<\omega_1^{\textsf{CK}}.$

The height of a WPO

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

4日)

The height of a WPO

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 $\mathcal P$ is a WPO \Rightarrow all its chains are well-orders.

 \leftarrow

 QQ

The height of a WPO

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 $\mathcal P$ is a WPO \Rightarrow all its chains are well-orders.

Definition

If P is well founded, its *height* is

$$
\mathsf{ht}(\mathcal{P}) = \mathsf{sup}\{\alpha : \exists \mathcal{C} \in \mathsf{Ch}(\mathcal{P})\alpha = \mathrm{ordType}(\mathbb{L})\}.
$$

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 $\mathcal P$ is a WPO \Rightarrow all its chains are well-orders.

Definition

If P is well founded, its *height* is

 $\mathsf{ht}(\mathcal{P}) = \mathsf{sup}\{\alpha : \exists \mathcal{C} \in \mathsf{Ch}(\mathcal{P})\alpha = \text{ordType}(\mathbb{L})\}.$

Theorem: [Wolk 1967] If P is a WPO, there exists $C \in \mathsf{Ch}(\mathcal{P})$ with order type ht (\mathcal{P}) .

 Ω

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 $\mathcal P$ is a WPO \Rightarrow all its chains are well-orders.

Definition

If P is well founded, its *height* is

 $\mathsf{ht}(\mathcal{P}) = \mathsf{sup}\{\alpha : \exists \mathcal{C} \in \mathsf{Ch}(\mathcal{P})\alpha = \text{ordType}(\mathbb{L})\}.$

Theorem: [Wolk 1967] If P is a WPO, there exists $C \in \mathsf{Ch}(\mathcal{P})$ with order type ht (\mathcal{P}) . Such a chain is called a *maximal chain* of P .

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 $\mathcal P$ is a WPO \Rightarrow all its chains are well-orders.

Definition

If P is well founded, its *height* is

 $\operatorname{ht}(\mathcal{P}) = \sup \{ \alpha : \exists \mathcal{C} \in \operatorname{Ch}(\mathcal{P}) \alpha = \operatorname{ordType}(\mathbb{L}) \}.$

Theorem: [Wolk 1967] If P is a WPO, there exists $C \in \mathsf{Ch}(\mathcal{P})$ with order type ht (\mathcal{P}) . Such a chain is called a *maximal chain* of P .

Q: How difficult is it to compute maximal chains?

Theorem ([Marcone-Shore 2010])

Every computable WPO P has a hyperarithmetic maximal chain.

(Recall: $X \subseteq \omega$ is hyperarithmetic iff it's Δ_1^1 .)

つくへ

Theorem ([Marcone-Shore 2010])

Every computable WPO P has a hyperarithmetic maximal chain.

(Recall: $X \subseteq \omega$ is hyperarithmetic iff it's Δ_1^1 .)

Maximal chains aren't easy to compute:

Theorem ([Marcone-Shore 2010])

Every computable WPO P has a hyperarithmetic maximal chain.

(Recall: $X \subseteq \omega$ is hyperarithmetic iff it's Δ_1^1 .)

Maximal chains aren't easy to compute:

Theorem ([Marcone–M.–Shore 2012])

Let $\alpha < \omega_{1}^{\text{CK}}$. There exists a computable WPO $\mathcal P$ such that $0^{(\alpha)}$ does not compute any maximal chain of ${\cal P}.$

4 0 8

 $2Q$

but almost everybody can compute them.

 -10.16

 QQ

but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let $G \in 2^{\omega}$ be hyperarithmetically generic.

Then G can compute a maximal chain in every computable WPO.

but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let $G \in 2^{\omega}$ be hyperarithmetically generic.

Then G can compute a maximal chain in every computable WPO.

Pf:

The key observation is that all downward closed subsets of P are computable.

but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let $G \in 2^{\omega}$ be hyperarithmetically generic.

Then G can compute a maximal chain in every computable WPO.

Pf:

- The key observation is that all downward closed subsets of P are computable.
- Suppose that P has cofinality $\omega^{\alpha+1}$.
- Then, build an operator $\Phi_\alpha^{\mathcal{P},G}$, that returns a sequence of computable sub-partial orderings $P_0 \leq P_1 \leq \dots$, such that, if G is generic, then infinitely many of the P_i will have cofinality ω^{α} .

but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let $G \in 2^{\omega}$ be hyperarithmetically generic.

Then G can compute a maximal chain in every computable WPO.

Pf:

- The key observation is that all downward closed subsets of P are computable.
- Suppose that P has cofinality $\omega^{\alpha+1}$.
- Then, build an operator $\Phi_\alpha^{\mathcal{P},G}$, that returns a sequence of computable sub-partial orderings $P_0 \leq P_1 \leq \dots$, such that, if G is generic, then infinitely many of the P_i will have cofinality ω^{α} .
- Then use effective transfinite recursion.