The complexity within well-partial-orderings

Antonio Montalbán

University of Chicago

Madison, March 2012

Antonio Montalbán (U. of Chicago)

Well-Partial-Orderings

Madison, March 2012 1 / 22

2 WQOs in Proof Theory

- Kruskal's theorem and the graph-minor theorem
- Linear orderings and Fraïssé's Conjecture

Definition: A *well-quasi-ordering (WQO)*, is quasi-ordering which has no infinite descending sequences and no infinite antichains.

- **Definition:** A *well-quasi-ordering (WQO)*, is quasi-ordering which has no infinite descending sequences and no infinite antichains.
- **Example:** The following sets are WQO under an embeddability relation:
 - finite strings over a finite alphabet [Higman 52];

- **Definition:** A *well-quasi-ordering (WQO)*, is quasi-ordering which has no infinite descending sequences and no infinite antichains.
- Example: The following sets are WQO under an embeddability relation:
 - finite strings over a finite alphabet [Higman 52];
 - finite trees [Kruskal 60],

- **Definition:** A *well-quasi-ordering (WQO)*, is quasi-ordering which has no infinite descending sequences and no infinite antichains.
- Example: The following sets are WQO under an embeddability relation:
 - finite strings over a finite alphabet [Higman 52];
 - finite trees [Kruskal 60],
 - labeled transfinite sequences with finite labels [Nash-Williams 65];

- **Definition:** A *well-quasi-ordering (WQO)*, is quasi-ordering which has no infinite descending sequences and no infinite antichains.
- Example: The following sets are WQO under an embeddability relation:
 - finite strings over a finite alphabet [Higman 52];
 - finite trees [Kruskal 60],
 - labeled transfinite sequences with finite labels [Nash-Williams 65];
 - countable linear orderings [Laver 71];

- **Definition:** A *well-quasi-ordering (WQO)*, is quasi-ordering which has no infinite descending sequences and no infinite antichains.
- Example: The following sets are WQO under an embeddability relation:
 - finite strings over a finite alphabet [Higman 52];
 - finite trees [Kruskal 60],
 - labeled transfinite sequences with finite labels [Nash-Williams 65];
 - countable linear orderings [Laver 71];
 - finite graphs [Robertson, Seymour].

- **Definition:** A *well-quasi-ordering (WQO)*, is quasi-ordering which has no infinite descending sequences and no infinite antichains.
- Example: The following sets are WQO under an embeddability relation:
 - finite strings over a finite alphabet [Higman 52];
 - finite trees [Kruskal 60],
 - labeled transfinite sequences with finite labels [Nash-Williams 65];
 - countable linear orderings [Laver 71];
 - finite graphs [Robertson, Seymour].

- **Definition:** A *well-quasi-ordering (WQO)*, is quasi-ordering which has no infinite descending sequences and no infinite antichains.
- Example: The following sets are WQO under an embeddability relation:
 - finite strings over a finite alphabet [Higman 52];
 - finite trees [Kruskal 60],
 - labeled transfinite sequences with finite labels [Nash-Williams 65];
 - countable linear orderings [Laver 71];
 - finite graphs [Robertson, Seymour].

Definition:

A well-partial-ordering (WPO), is a WQO which is a partial ordering.

э

• \mathcal{P} is well-founded and has no infinite antichains;

- \mathcal{P} is well-founded and has no infinite antichains;
- for every $f : \mathbb{N} \to P$ there exists i < j such that $f(i) \leq_P f(j)$;

- \mathcal{P} is well-founded and has no infinite antichains;
- for every $f : \mathbb{N} \to P$ there exists i < j such that $f(i) \leq_P f(j)$;
- every subset of P has a finite set of minimal elements;

- \mathcal{P} is well-founded and has no infinite antichains;
- for every $f : \mathbb{N} \to P$ there exists i < j such that $f(i) \leq_P f(j)$;
- every subset of P has a finite set of minimal elements;
- \bullet all linear extensions of ${\cal P}$ are well-orders.

- \mathcal{P} is well-founded and has no infinite antichains;
- for every $f : \mathbb{N} \to P$ there exists i < j such that $f(i) \leq_P f(j)$;
- every subset of P has a finite set of minimal elements;
- \bullet all linear extensions of ${\cal P}$ are well-orders.

The reverse mathematics and computability theory of these equivalences was been studied in [Cholak-Marcone-Solomon 04].

Antonio Montalbán (U. of Chicago)

э

• The sum and disjoint sum of two WPOs are WPO.

- The sum and disjoint sum of two WPOs are WPO.
- The product of two WPOs is WPO.

- The sum and disjoint sum of two WPOs are WPO.
- The product of two WPOs is WPO.
- Finite strings over a WPO are a WPO (Higman, 1952).

- The sum and disjoint sum of two WPOs are WPO.
- The product of two WPOs is WPO.
- Finite strings over a WPO are a WPO (Higman, 1952).
- Finite trees with labels from a WPO are a WPO (Kruskal, 1960).

- The sum and disjoint sum of two WPOs are WPO.
- The product of two WPOs is WPO.
- Finite strings over a WPO are a WPO (Higman, 1952).
- Finite trees with labels from a WPO are a WPO (Kruskal, 1960).
- Transfinite sequences with labels from a WPO which use only finitely many labels are a WPO (Nash-Williams, 1965).

Recall: Every linearization of a WPO is well-ordered.

э

Recall: Every linearization of a WPO is well-ordered. $(\leq_L \text{ is a$ *linearization* $of <math>(P, \leq_P)$ if it's linear and $x \leq_P y \Rightarrow x \leq_L y$.

Length

Recall: Every linearization of a WPO is well-ordered. $(\leq_L \text{ is a$ *linearization* $of <math>(P, \leq_P)$ if it's linear and $x \leq_P y \Rightarrow x \leq_L y$. So, for any $\{x_n\}_{n \in \omega}$, there are i < j with $(x_i \leq_P x_j)$, hence $x_i \neq_L x_j$.)

Length

Recall: Every linearization of a WPO is well-ordered. $(\leq_L \text{ is a$ *linearization* $of <math>(P, \leq_P)$ if it's linear and $x \leq_P y \Rightarrow x \leq_L y$. So, for any $\{x_n\}_{n \in \omega}$, there are i < j with $(x_i \leq_P x_j)$, hence $x_i \neq_L x_j$.)

Definition: The *length* of $\mathcal{P} = (\mathcal{P}, \leq_{\mathcal{P}})$ is $o(\mathcal{P}) = \sup\{ \operatorname{ordType}(W, \leq_{\mathcal{L}}) : \text{ where } \leq_{\mathcal{L}} \text{ is a linearization of } \mathcal{P} \}.$

Recall: Every linearization of a WPO is well-ordered. $(\leq_L \text{ is a$ *linearization* $of <math>(P, \leq_P)$ if it's linear and $x \leq_P y \Rightarrow x \leq_L y$. So, for any $\{x_n\}_{n \in \omega}$, there are i < j with $(x_i \leq_P x_j)$, hence $x_i \neq_L x_j$.)

Definition: The *length* of $\mathcal{P} = (P, \leq_P)$ is $o(\mathcal{P}) = \sup\{ \operatorname{ordType}(W, \leq_L) : \text{ where } \leq_L \text{ is a linearization of } \mathcal{P} \}.$

Def: $\mathbb{B}ad(\mathcal{P}) = \{ \langle x_0, ..., x_{n-1} \rangle \in P^{<\omega} : \forall i < j \ (x_i \not\leq_P x_j) \},$ **Note:** \mathcal{P} is a WPO $\Leftrightarrow \mathbb{B}ad(\mathcal{P})$ is well-founded. **Recall:** Every linearization of a WPO is well-ordered. $(\leq_L \text{ is a$ *linearization* $of <math>(P, \leq_P)$ if it's linear and $x \leq_P y \Rightarrow x \leq_L y$. So, for any $\{x_n\}_{n \in \omega}$, there are i < j with $(x_i \leq_P x_j)$, hence $x_i \neq_L x_j$.)

Definition: The *length* of $\mathcal{P} = (P, \leq_P)$ is $o(\mathcal{P}) = \sup\{ \operatorname{ordType}(W, \leq_L) : \text{ where } \leq_L \text{ is a linearization of } \mathcal{P} \}.$

Def: $\mathbb{B}ad(\mathcal{P}) = \{ \langle x_0, ..., x_{n-1} \rangle \in P^{<\omega} : \forall i < j \ (x_i \not\leq_P x_j) \},$ **Note:** \mathcal{P} is a WPO $\Leftrightarrow \mathbb{B}ad(\mathcal{P})$ is well-founded.

Theorem: [De Jongh, Parikh 77] $o(\mathcal{P}) + 1 = \mathsf{rk}(\mathbb{B}ad(\mathcal{P})).$

- Kruskal's theorem and the graph-minor theorem
- Linear orderings and Fraïssé's Conjecture

3 WPOs in Computability Theory

Antonio Montalbán (U. of Chicago)

Well-Partial-Orderings

7 / 22

Theorem: [Friedman] The length of \mathcal{T} is $\geq \Gamma_0$, the Feferman–Schütte ordinal.

Theorem: [Friedman] The length of \mathcal{T} is $\geq \Gamma_0$, the Feferman–Schütte ordinal. (Γ_0 is the the proof-theoretic ordinal of ATR₀. It's the "least ordinal" that ATR₀ can't prove it's an ordinal.

Theorem: [Friedman] The length of \mathcal{T} is $\geq \Gamma_0$, the Feferman–Schütte ordinal. (Γ_0 is the the proof-theoretic ordinal of ATR₀. It's the "least ordinal" that ATR₀ can't prove it's an ordinal.

 ATR_0 – *Arithmetic Transfinite Recursion*– is the subsystem of 2nd-order arithmetic that allows the iteration of the Turing jump along any ordinal.)

Theorem: [Friedman] The length of \mathcal{T} is $\geq \Gamma_0$, the Feferman–Schütte ordinal. (Γ_0 is the the proof-theoretic ordinal of ATR₀. It's the "least ordinal" that ATR₀ can't prove it's an ordinal.

 ATR_0 – *Arithmetic Transfinite Recursion*– is the subsystem of 2nd-order arithmetic that allows the iteration of the Turing jump along any ordinal.)

Corollary: [Friedman] (RCA₀) Kruskal's theorem \Rightarrow Γ_0 well-ordered.

7 / 22

Theorem: [Friedman] The length of \mathcal{T} is $\geq \Gamma_0$, the Feferman–Schütte ordinal. (Γ_0 is the the proof-theoretic ordinal of ATR₀. It's the "least ordinal" that ATR₀ can't prove it's an ordinal.

 ATR_0 – *Arithmetic Transfinite Recursion*– is the subsystem of 2nd-order arithmetic that allows the iteration of the Turing jump along any ordinal.)

Corollary: [Friedman] (RCA₀) Kruskal's theorem \Rightarrow Γ_0 well-ordered. Therefore,

 $ATR_0 \not\vdash Kruskal's$ theorem.

(日本) (1日本) (日本)

7 / 22

The "big five" subsystems of 2nd-order arithmetic

Axiom systems: RCA₀:

WKL₀:

ACA₀:

ATR₀:

 $\Pi^1_1\text{-}CA_0\text{:}$

э
The "big five" subsystems of 2nd-order arithmetic

Axiom systems:

 RCA_0 : Recursive Comprehension + Σ_1^0 -induction + Semiring ax.

WKL₀:

ACA₀:

ATR₀:

 $\Pi^1_1\text{-}CA_0\text{:}$

 RCA_0 : Recursive Comprehension + Σ_1^0 -induction + Semiring ax.

WKL₀: Weak König's lemma + RCA₀

ACA₀:

ATR₀:

 $\Pi^1_1\text{-}CA_0\text{:}$

 RCA_0 : Recursive Comprehension + Σ_1^0 -induction + Semiring ax.

WKL₀: Weak König's lemma + RCA₀

ACA₀: Arithmetic Comprehension + RCA₀ \Leftrightarrow "for every set X, X' exists".

ATR₀:

 $\Pi^1_1\text{-}CA_0\text{:}$

 RCA_0 : Recursive Comprehension + Σ_1^0 -induction + Semiring ax.

WKL₀: Weak König's lemma + RCA₀

ACA₀: Arithmetic Comprehension + RCA₀ \Leftrightarrow "for every set X, X' exists".

ATR₀: Arithmetic Transfinite recursion + ACA₀. \Leftrightarrow " $\forall X, \forall$ ordinal $\alpha, X^{(\alpha)}$ exists".

 Π_{1}^{1} -CA₀:

 RCA_0 : Recursive Comprehension + Σ_1^0 -induction + Semiring ax.

WKL₀: Weak König's lemma + RCA₀

ACA₀: Arithmetic Comprehension + RCA₀ \Leftrightarrow "for every set X, X' exists".

ATR₀: Arithmetic Transfinite recursion + ACA₀. \Leftrightarrow " $\forall X, \forall$ ordinal $\alpha, X^{(\alpha)}$ exists".

 $\begin{array}{l} \Pi_1^1\text{-}\mathsf{CA}_0: \ \Pi_1^1\text{-}\mathsf{Comprehension} \ + \ \mathsf{ACA}_0. \\ \Leftrightarrow \ ``\forall X, \ \mathsf{the hyper-jump of } X \ \mathsf{exists''}. \end{array}$

[Friedman] Neither of ATR₀, or Kruskal's theorem implies the other.

[Friedman] Neither of ATR₀, or Kruskal's theorem implies the other.

Thm: [Rathjen–Weiermann 93] The length of \mathcal{T} is $\theta \Omega^{\omega}$, the Ackerman ordinal. The following are equivalent over RCA₀

- Kruskal's theorem.
- The Π_1^1 -reflection principle for Π_2^1 -transfinite induction.

[Friedman] Neither of ATR₀, or Kruskal's theorem implies the other.

Thm: [Rathjen–Weiermann 93] The length of \mathcal{T} is $\theta \Omega^{\omega}$, the Ackerman ordinal. The following are equivalent over RCA₀

- Kruskal's theorem.
- The Π_1^1 -reflection principle for Π_2^1 -transfinite induction.

Thm: [M.-Weiermann 2006] The following are equivalent over RCA0

- ATR₀
- For every P, if P is a WQO, then so is T(P), where T(P) is the set of finite trees with labels in P, ordered by T ≤ S if ∃f: T → S which preserves < and increasing on labels.

Theorem: [Robertson–Seymour] Let \mathcal{G} be the set of finite graphs ordered by the minor relation. Then \mathcal{G} is a WQO.

Theorem: [Robertson–Seymour] Let \mathcal{G} be the set of finite graphs ordered by the minor relation. Then \mathcal{G} is a WQO.

Theorem: [Friedman–Robertson–Seymour] The length of \mathcal{G} is $\geq \phi_0(\epsilon_{\Omega_{\omega}+1})$.

Theorem: [Robertson–Seymour] Let \mathcal{G} be the set of finite graphs ordered by the minor relation. Then \mathcal{G} is a WQO.

Theorem: [Friedman-Robertson-Seymour] The length of \mathcal{G} is $\geq \phi_0(\epsilon_{\Omega_{\omega}+1})$. (where $\phi_0(\epsilon_{\Omega_{\omega}+1})$, the Takeuti-Feferman-Buchholz ordinal, is the proof-theoretic ordinal of Π_1^1 -CA₀. **Theorem:** [Robertson–Seymour] Let \mathcal{G} be the set of finite graphs ordered by the minor relation. Then \mathcal{G} is a WQO.

Theorem: [Friedman-Robertson-Seymour] The length of \mathcal{G} is $\geq \phi_0(\epsilon_{\Omega_{\omega}+1})$. (where $\phi_0(\epsilon_{\Omega_{\omega}+1})$, the Takeuti-Feferman-Buchholz ordinal, is the proof-theoretic ordinal of Π_1^1 -CA₀.

 Π_1^1 -CA₀ – is the system that allows Π_1^1 -comprehension.)

Theorem: [Robertson–Seymour] Let \mathcal{G} be the set of finite graphs ordered by the minor relation. Then \mathcal{G} is a WQO.

Theorem: [Friedman-Robertson-Seymour] The length of \mathcal{G} is $\geq \phi_0(\epsilon_{\Omega_{\omega}+1})$. (where $\phi_0(\epsilon_{\Omega_{\omega}+1})$, the Takeuti-Feferman-Buchholz ordinal, is the proof-theoretic ordinal of Π_1^1 -CA₀.

 Π_1^1 -*CA*₀ – is the system that allows Π_1^1 -comprehension.)

Corollary: [Friedman, Robertson, Seymour] (RCA₀) The minor-grarph theorem $\Rightarrow \phi_0(\epsilon_{\Omega_{\omega}+1})$ well-ordered. Therefore,

 Π_1^1 -CA₀ \nvdash minor-graph theorem.

10 / 22

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA:The countable linear orderings are WQO under embeddablity. **Theorem** [Fraïssé's Conjecture '48; Laver '71] FRA:The countable linear orderings are WQO under embeddablity.

Theorem[Shore '93] FRA implies ATR₀ over RCA₀.

Conjecture:[Clote '90][Simpson '99][Marcone] FRA is equivalent to ATR₀ over RCA₀.

 RCA_0 : Recursive Comprehension + Σ_1^0 -induction + Semiring ax.

WKL₀: Weak König's lemma + RCA₀

ACA₀: Arithmetic Comprehension + RCA₀ \Leftrightarrow "for every set X, X' exists".

ATR₀: Arithmetic Transfinite recursion + ACA₀. \Leftrightarrow " $\forall X, \forall$ ordinal $\alpha, X^{(\alpha)}$ exists".

 $\Pi_1^1\text{-}\mathsf{CA}_0: \ \Pi_1^1\text{-}\mathsf{Comprehension} + \mathsf{ACA}_0.$ $\Leftrightarrow ``\forall X, \text{ the hyper-jump of } X \text{ exists''}.$

Claim

RCA₀+FRA is the least system where it is possible to develop a reasonable theory of embeddability of linear orderings.

Claim

 RCA_0+FRA is the least system where it is possible to develop a reasonable theory of embeddability of linear orderings.

Theorem ([M. 05])

The following are equivalent over RCA₀

- FRA;
- Every scattered lin. ord. is a finite sum of indecomposables;
- Every indecomposable lin. ord. is either an ω-sum or an ω*-sum of indecomposable l.o. of smaller rank.
- Jullien's characterization of extendible linear orderings

Theorem (*):[Laver '72] For every countable \mathcal{L} , there exists $n_{\mathcal{L}} \in \mathbb{N}$, such that: If \mathcal{L} is colored with finitely many colors, there is an embedding $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ colors.

Theorem (*):[Laver '72] For every countable \mathcal{L} , there exists $n_{\mathcal{L}} \in \mathbb{N}$, such that: If \mathcal{L} is colored with finitely many colors, there is an embedding $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ colors.

Theorem ([M. 2005])

FRA is implied by Theorem (*) over RCA_0 .

Theorem (*):[Laver '72] For every countable \mathcal{L} , there exists $n_{\mathcal{L}} \in \mathbb{N}$, such that: If \mathcal{L} is colored with finitely many colors, there is an embedding $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ colors.

Theorem ([M. 2005])

FRA is implied by Theorem (*) over RCA_0 .

Theorem ([Kach–Marcone–M.–Weiermann 2011])

FRA is equivalent to Theorem (*) over RCA_0 .

1 [Laver 71] For countable α , \mathbb{L}_{α} is countable.

- **1** [Laver 71] For countable α , \mathbb{L}_{α} is countable.
- ② [M. 05] For computable α , (\mathbb{L}_{α} , ≼) is computably presentable.

- [Laver 71] For countable α , \mathbb{L}_{α} is countable.
- **2** [M. 05] For computable α , $(\mathbb{L}_{\alpha}, \preccurlyeq)$ is computably presentable.
- (This was used to prove that every hypearithmetic linear ordering is bi-embeddable with a computable one in [M. 05])

- [Laver 71] For countable α , \mathbb{L}_{α} is countable.
- 2 [M. 05] For computable α , $(\mathbb{L}_{\alpha}, \preccurlyeq)$ is computably presentable.
- (This was used to prove that every hypearithmetic linear ordering is bi-embeddable with a computable one in [M. 05])
- **9** FRA is equivalent to " \forall ordinal $\alpha < \omega_1$ (\mathbb{L}_{α} is WQO)."

- [Laver 71] For countable α , \mathbb{L}_{α} is countable.
- 2 [M. 05] For computable α , $(\mathbb{L}_{\alpha}, \preccurlyeq)$ is computably presentable.
- (This was used to prove that every hypearithmetic linear ordering is bi-embeddable with a computable one in [M. 05])
- **9** FRA is equivalent to " \forall ordinal $\alpha < \omega_1$ (\mathbb{L}_{α} is WQO)."

Question: Given α , what is the length of \mathbb{L}_{α} ?

- [Laver 71] For countable α , \mathbb{L}_{α} is countable.
- 2 [M. 05] For computable α , $(\mathbb{L}_{\alpha}, \preccurlyeq)$ is computably presentable.
- (This was used to prove that every hypearithmetic linear ordering is bi-embeddable with a computable one in [M. 05])
- **§** FRA is equivalent to " \forall ordinal $\alpha < \omega_1$ (\mathbb{L}_{α} is WQO)."

Question: Given α , what is the length of \mathbb{L}_{α} ? Given α , what is the rank of \mathbb{L}_{α} as a well-founded poset?

Finite Hausdorff rank

Theorem ([Marcone, M 08])

The length of \mathbb{L}_{ω} is $\epsilon_{\epsilon_{\epsilon...}}$,

Theorem ([Marcone, M 08])

The length of \mathbb{L}_{ω} is $\epsilon_{\epsilon_{\epsilon...}}$,

where $\epsilon_{\epsilon_{\epsilon...}}$ is the first fixed point of the function $\alpha \mapsto \epsilon_{\alpha}$, where ϵ_{α} is the $(\alpha + 1)$ st fixed point for the function $\beta \mapsto \omega^{\beta}$.

Theorem ([Marcone, M 08])

The length of \mathbb{L}_{ω} is $\epsilon_{\epsilon_{\epsilon...}}$, where $\epsilon_{\epsilon_{\epsilon...}}$ is the first fixed point of the function $\alpha \mapsto \epsilon_{\alpha}$, where ϵ_{α} is the $(\alpha + 1)$ st fixed point for the function $\beta \mapsto \omega^{\beta}$.

Note: $\epsilon_{\epsilon_{\epsilon...}}$ is the proof-theoretic ordinal of ACA⁺, where ACA⁺ is the system RCA₀+ $\forall X(X^{(\omega)} exists)$. (So $\epsilon_{\epsilon_{\epsilon...}}$ is the least ordinal that ACA⁺ can't prove is well-ordered.)

Theorem ([Marcone, M 08])

The length of \mathbb{L}_{ω} is $\epsilon_{\epsilon_{\epsilon...}}$,

where $\epsilon_{\epsilon_{\epsilon...}}$ is the first fixed point of the function $\alpha \mapsto \epsilon_{\alpha}$, where ϵ_{α} is the $(\alpha + 1)$ st fixed point for the function $\beta \mapsto \omega^{\beta}$.

Note: $\epsilon_{\epsilon_{\epsilon...}}$ is the proof-theoretic ordinal of ACA⁺, where ACA⁺ is the system RCA₀+ $\forall X(X^{(\omega)} exists)$. (So $\epsilon_{\epsilon_{\epsilon...}}$ is the least ordinal that ACA⁺ ca**n't** prove is well-ordered.)

Theorem ([Marcone, M 08])

That \mathbb{L}_{ω} is a WQO,

- follows from ACA^+ + " $\epsilon_{\epsilon_{\epsilon...}}$ is well-ordered",
- but not from ACA⁺.

イロト イポト イラト イラト

WQOs in Proof Theory

- Kruskal's theorem and the graph-minor theorem
- Linear orderings and Fraïssé's Conjecture

3 WPOs in Computability Theory

Antonio Montalbán (U. of Chicago)

Well-Partial-Orderings

complexity of maximal order types

Recall: $o(\mathcal{P}) = \sup\{ \operatorname{ordType}(\mathcal{P}, \leq_L) : \text{ where } \leq_L \text{ is a linearization of } \mathcal{P} \}.$

complexity of maximal order types

Recall: $o(\mathcal{P}) = \sup\{ \operatorname{ordType}(\mathcal{P}, \leq_L) : \text{ where } \leq_L \text{ is a linearization of } \mathcal{P} \}.$

Theorem: [De Jongh, Parikh 77] Every WPO \mathcal{P} has a linearization of order type $o(\mathcal{P})$.
Recall: $o(\mathcal{P}) = \sup\{ \operatorname{ordType}(\mathcal{P}, \leq_L) : \text{ where } \leq_L \text{ is a linearization of } \mathcal{P} \}.$

Theorem: [De Jongh, Parikh 77] Every WPO \mathcal{P} has a linearization of order type $o(\mathcal{P})$.

We call such a linearization, a *maximal linearization* of \mathcal{P} .

Recall: $o(\mathcal{P}) = \sup\{ \operatorname{ordType}(\mathcal{P}, \leq_L) : \text{ where } \leq_L \text{ is a linearization of } \mathcal{P} \}.$

Theorem: [De Jongh, Parikh 77] Every WPO \mathcal{P} has a linearization of order type $o(\mathcal{P})$.

We call such a linearization, a *maximal linearization* of \mathcal{P} .

Such linearizations have been found by different methods in different examples.

Recall: $o(\mathcal{P}) = \sup\{ \operatorname{ordType}(\mathcal{P}, \leq_L) : \text{ where } \leq_L \text{ is a linearization of } \mathcal{P} \}.$

Theorem: [De Jongh, Parikh 77] Every WPO \mathcal{P} has a linearization of order type $o(\mathcal{P})$.

We call such a linearization, a *maximal linearization* of \mathcal{P} .

Such linearizations have been found by different methods in different examples.

Question [Schmidt 1979]: Is the length of a computable WPO computable?

Q: Is the length of a computable WPO, computable?

Q: Is the length of a computable WPO, computable?

We mentioned that $o(\mathcal{P}) + 1 = \mathsf{rk}(\mathbb{B}ad(\mathcal{P}))$, where

$$\mathbb{B}\mathrm{ad}(\mathcal{P}) = \{ \langle x_0, ..., x_{n-1} \rangle \in W^{<\omega} : \forall i < j \ (x_i \not\leq_P x_j) \},\$$

Since $\mathbb{B}ad(\mathcal{P})$ is computable and well-founded, it has rank $< \omega_1^{CK}$. So, $o(\mathcal{P})$ is a computable ordinal. $\ensuremath{\mathbf{Q}}\xspace$: Is the length of a computable WPO, computable?

We mentioned that $o(\mathcal{P}) + 1 = \mathsf{rk}(\mathbb{B}ad(\mathcal{P}))$, where

$$\mathbb{B}\mathrm{ad}(\mathcal{P}) = \{ \langle x_0, ..., x_{n-1} \rangle \in W^{<\omega} : \forall i < j \ (x_i \not\leq_P x_j) \},\$$

Since $\mathbb{B}ad(\mathcal{P})$ is computable and well-founded, it has rank $< \omega_1^{CK}$. So, $o(\mathcal{P})$ is a computable ordinal.

Q:

Does every computable WPO have a computable maximal linearization?

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

Q: Can we find them uniformly?

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

Q: Can we find them uniformly?

Theorem ([M 2007])

There is computable procedure that

given \mathcal{P} produces a linearization \mathcal{L} such that for some δ

 $\omega^{\delta} \leqslant \mathcal{L} \leqslant o(\mathcal{P}) < \omega^{\delta+1}.$

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

Q: Can we find them uniformly?

Theorem ([M 2007])

There is computable procedure that

given \mathcal{P} produces a linearization \mathcal{L} such that for some δ

 $\omega^{\delta} \leqslant \mathcal{L} \leqslant o(\mathcal{P}) < \omega^{\delta+1}.$

Theorem ([M 2007])

Let a be a Turing degree. TFAE:

- **0** a uniformly computes maximal linearizations of computable WPOs.
- **2** a uniformly computes $0^{(\beta)}$ for every $\beta < \omega_1^{CK}$.

The height of a WPO

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

The height of a WPO

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 $\mathcal P$ is a WPO \Rightarrow all its chains are well-orders.

The height of a WPO

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 $\mathcal P$ is a WPO \Rightarrow all its chains are well-orders.

Definition

If \mathcal{P} is well founded, its *height* is

 $\mathsf{ht}(\mathcal{P}) = \mathsf{sup}\{\alpha : \exists \mathcal{C} \in \mathsf{Ch}(\mathcal{P}) \alpha = \mathrm{ordType}(\mathbb{L})\}.$

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 $\mathcal P$ is a WPO \Rightarrow all its chains are well-orders.

Definition

If \mathcal{P} is well founded, its *height* is

 $\mathsf{ht}(\mathcal{P}) = \mathsf{sup}\{\alpha : \exists \mathcal{C} \in \mathsf{Ch}(\mathcal{P}) \alpha = \mathrm{ordType}(\mathbb{L})\}.$

Theorem: [Wolk 1967] If \mathcal{P} is a WPO, there exists $\mathcal{C} \in Ch(\mathcal{P})$ with order type $ht(\mathcal{P})$.

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 $\mathcal P$ is a WPO \Rightarrow all its chains are well-orders.

Definition

If \mathcal{P} is well founded, its *height* is

 $\mathsf{ht}(\mathcal{P}) = \mathsf{sup}\{\alpha : \exists \mathcal{C} \in \mathsf{Ch}(\mathcal{P}) \alpha = \mathrm{ordType}(\mathbb{L})\}.$

Theorem: [Wolk 1967] If \mathcal{P} is a WPO, there exists $\mathcal{C} \in Ch(\mathcal{P})$ with order type $ht(\mathcal{P})$. Such a chain is called a *maximal chain* of \mathcal{P} .

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 $\mathcal P$ is a WPO \Rightarrow all its chains are well-orders.

Definition

If \mathcal{P} is well founded, its *height* is

 $\mathsf{ht}(\mathcal{P}) = \mathsf{sup}\{\alpha : \exists \mathcal{C} \in \mathsf{Ch}(\mathcal{P}) \alpha = \mathrm{ordType}(\mathbb{L})\}.$

Theorem: [Wolk 1967] If \mathcal{P} is a WPO, there exists $\mathcal{C} \in Ch(\mathcal{P})$ with order type $ht(\mathcal{P})$. Such a chain is called a *maximal chain* of \mathcal{P} .

Q: How difficult is it to compute maximal chains?

Theorem ([Marcone-Shore 2010])

Every computable WPO \mathcal{P} has a hyperarithmetic maximal chain.

(Recall: $X \subseteq \omega$ is hyperarithmetic iff it's Δ_1^1 .)

Theorem ([Marcone-Shore 2010])

Every computable WPO \mathcal{P} has a hyperarithmetic maximal chain.

(Recall: $X \subseteq \omega$ is hyperarithmetic iff it's Δ_1^1 .)

Maximal chains aren't easy to compute:

Theorem ([Marcone-Shore 2010])

Every computable WPO \mathcal{P} has a hyperarithmetic maximal chain.

(Recall: $X \subseteq \omega$ is hyperarithmetic iff it's Δ_1^1 .)

Maximal chains aren't easy to compute:

Theorem ([Marcone–M.–Shore 2012])

Let $\alpha < \omega_1^{CK}$. There exists a computable WPO \mathcal{P} such that $0^{(\alpha)}$ does not compute any maximal chain of \mathcal{P} .

but almost everybody can compute them.

but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let $G \in 2^{\omega}$ be hyperarithmetically generic.

Then G can compute a maximal chain in every computable WPO.

but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let $G \in 2^{\omega}$ be hyperarithmetically generic.

Then G can compute a maximal chain in every computable WPO.

Pf:

• The key observation is that all downward closed subsets of *P* are computable.

but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let $G \in 2^{\omega}$ be hyperarithmetically generic.

Then G can compute a maximal chain in every computable WPO.

Pf:

- The key observation is that all downward closed subsets of *P* are computable.
- Suppose that \mathcal{P} has cofinality $\omega^{\alpha+1}$.
- Then, build an operator Φ^{P,G}_α, that returns a sequence of computable sub-partial orderings P₀ ≤ P₁ ≤ ..., such that, if G is generic, then infinitely many of the P_i will have cofinality ω^α.

but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let $G \in 2^{\omega}$ be hyperarithmetically generic.

Then G can compute a maximal chain in every computable WPO.

Pf:

- The key observation is that all downward closed subsets of *P* are computable.
- Suppose that \mathcal{P} has cofinality $\omega^{\alpha+1}$.
- Then, build an operator Φ^{P,G}_α, that returns a sequence of computable sub-partial orderings P₀ ≤ P₁ ≤ ..., such that, if G is generic, then infinitely many of the P_i will have cofinality ω^α.
- Then use effective transfinite recursion.