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Well-quasi-orderings

Definition: A well-quasi-ordering (WQO), is quasi-ordering
which has no infinite descending sequences and no infinite antichains.

Example: The following sets are WQO under an embeddability relation:
o finite strings over a finite alphabet [Higman 52];
o finite trees [Kruskal 60],
o labeled transfinite sequences with finite labels [Nash-Williams 65];
@ countable linear orderings [Laver 71];
o finite graphs [Robertson, Seymour].

Definition:
A well-partial-ordering (WPO), is a WQO which is a partial ordering.
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Well-partial-orders

There are many equivalent characterizations of WPOs:

e P is well-founded and has no infinite antichains;
o for every f : N — P there exists i < j such that (i) <p f(j);
@ every subset of P has a finite set of minimal elements;

@ all linear extensions of P are well-orders.

The reverse mathematics and computability theory of these equivalences
was been studied in [Cholak-Marcone-Solomon 04].
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Closure properties of WPOs

@ The sum and disjoint sum of two WPOs are WPO.

@ The product of two WPOs is WPO.

o Finite strings over a WPO are a WPO (Higman, 1952).

@ Finite trees with labels from a WPO are a WPO (Kruskal, 1960).
°

Transfinite sequences with labels from a WPO which use only finitely
many labels are a WPO (Nash-Williams, 1965).
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So, for any {xp}new, there are i < j with (x; <, x;), hence x; #/ x;.)

Definition: The length of P = (P,<,) is

Y X p
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Recall: Every linearization of a WPO is well-ordered.
(<, is a linearization of (P, <,) if it's linear and x <, y = x <, y.

So, for any {xp}new, there are i < j with (x; <, x;), hence x; #/ x;.)

Definition: The length of P = (P,<,) is
o(P) = sup{ordType(W,<,) : where <, is a linearization of P}.

Def: Bad(P) = {(x0, ..., Xn—1) € P<¥ : Vi <j (xi %p xj)}
Note: P is a WPO < Bad(P) is well-founded.

Theorem: [De Jongh, Parikh 77] o(P) + 1 = rk(Bad(P)).
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Corollary: [Friedman] (RCAg) Kruskal's theorem = Iy well-ordered.
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The “big five" subsystems of 2nd-order arithmetic

Axiom systems:
RCAoi

WKLy:

ACA()Z
ATRg:

Ni-CAo:
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ACAq: Arithmetic Comprehension + RCAg
& “for every set X, X’ exists”.
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The exact reversals

[Friedman] Neither of ATRp, or Kruskal's theorem implies the other.

Thm: [Rathjen—Weiermann 93] The length of 7 is 8Q2%, the Ackerman ordinal.
The following are equivalent over RCAq
o Kruskal's theorem.

@ The Mi-reflection principle for Mi-transfinite induction.

Thm: [M.-Weiermann 2006] The following are equivalent over RCAg
o ATRg

e Forevery P, if P is a WQO, then so is T (P),
where T (P) is the set of finite trees with labels in P, ordered by
T XS if 3f: T — S which preserves < and increasing on labels.
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The minor-graph theorem

Theorem: [Robertson-Seymour]

Let G be the set of finite graphs ordered by the minor relation.
Then G is a WQO.
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The minor-graph theorem

Theorem: [Robertson-Seymour]
Let G be the set of finite graphs ordered by the minor relation.
Then G is a WQO.

Theorem: [Friedman—Robertson-Seymour| The length of G is > ¢o(eq,+1)-
(where ¢o(eq, +1), the Takeuti-Feferman-Buchholz ordinal,
is the the proof-theoretic ordinal of Mi-CA,.

Mi-CAq - is the system that allows M{-comprehension.)

Corollary: [Friedman, Robertson, Seymour]
(RCAg) The minor-grarph theorem = ¢g(eq_+1) well-ordered.
Therefore,

Ni-CAg ¥ minor-graph theorem.
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Fraissé's Conjecture

Theorem [Fraissé's Conjecture '48; Laver '71]
FRA:The countable linear orderings are WQO under embeddablity.
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Fraissé's Conjecture

Theorem [Fraissé's Conjecture '48; Laver '71]
FRA:The countable linear orderings are WQO under embeddablity.

Mi-CAo
4
1
Theorem(Shore '93] nl'CAO\\
FRA implies ATRy over RCA,. i ERA
Vs
ATR
Conjecture:[Clote '90][Simpson '99][Marcone] v
FRA is equivalent to ATRg over RCA,. ACA
v
WKL,
¥
RCA,
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Fraissé's conjecture.

RCAp+FRA is the least system where it is possible to develop
a reasonable theory of embeddability of linear orderings.
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Fraissé's conjecture.

RCAp+FRA is the least system where it is possible to develop
a reasonable theory of embeddability of linear orderings.

Theorem ([M. 05])
The following are equivalent over RCAq
o FRA;
o Every scattered lin. ord. is a finite sum of indecomposables;

o Every indecomposable lin. ord. is either an w-sum or an w*-sum of
indecomposable l.o. of smaller rank.

Jullien’s characterization of extendible linear orderings
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A Partition theorem

Theorem:[Folklore] If we color Q with finitely many colors, there exists an
embedding Q — QQ whose image has only one color.
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A Partition theorem

Theorem:[Folklore] If we color Q with finitely many colors, there exists an
embedding Q — QQ whose image has only one color.

Theorem (x):[Laver '72]

For every countable L, there exists n; € N, such that:
If £ is colored with finitely many colors,

there is an embedding £ — £ whose image has at most n, colors.

Theorem ([M. 2005])

FRA is implied by Theorem (x) over RCAy.

Theorem ([Kach-Marcone-M.-Weiermann 2011])

FRA is equivalent to Theorem (x) over RCAy.
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Back to FRA

Def: Let L, be the set of linear orderings of Hausdorff rank < «,
quotiented by the bi-embeddability relation, and
ordered by the embeddability relation.
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Back to FRA

Def: Let L, be the set of linear orderings of Hausdorff rank < «,
quotiented by the bi-embeddability relation, and
ordered by the embeddability relation.

@ [Laver 71] For countable «, LL,, is countable.
@ [M. 05] For computable «, (L, <) is computably presentable.

© (This was used to prove that every hypearithmetic linear ordering is
bi-embeddable with a computable one in [M. 05])

O FRA is equivalent to "V ordinal o < w1 (L, is WQO)."

Question: Given «a, what is the length of L7
Given «, what is the rank of L, as a well-founded poset?
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Finite Hausdorff rank

Theorem ([Marcone, M 08])
The length of L, is €., ,
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Finite Hausdorff rank

Theorem ([Marcone, M 08])

The length of L, is €.,
where €., is the first fixed point of the function o — €,

where ¢, is the (o + 1)st fixed point for the function (3 +— wP.

Note: €., is the proof-theoretic ordinal of ACAT,
where ACA* is the system RCAq+VX (X«) exists).

(So €., is the least ordinal that ACA™ can’t prove is well-ordered.)

Theorem ([Marcone, M 08])

That L, is a WQO,
e follows from ACAT + ‘“e._ is well-ordered”,
@ but not from ACA™.
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complexity of maximal order types

Recall: o(P) = sup{ordType(P,<,): where <, is a linearization of P}.

Theorem: [De Jongh, Parikh 77]
Every WPO P has a linearization of order type o(P).

We call such a linearization, a maximal linearization of P.

Such linearizations have been found by different methods in different
examples.

Question [Schmidt 1979]:
Is the length of a computable WPO computable?
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Computable Length

Q: Is the length of a computable WPO, computable?

We mentioned that o(P) + 1 = rk(Bad(P)), where
Bad(P) = {(xo, ..., xn—1) € W= : Vi <j (xi €, xj)},

Since Bad(7P) is computable and well-founded, it has rank < w{K.
So, o(P) is a computable ordinal.

Q:

Does every computable WPO have a computable maximal linearization?
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A computable maximal linearization

Theorem ([M 2007])

Every computable WPQO has a computable maximal linearization.
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A computable maximal linearization

Theorem ([M 2007])

Every computable WPQO has a computable maximal linearization.

Q: Can we find them uniformly?

Theorem ([M 2007])

There is computable procedure that
given P produces a linearization L such that for some §

W’ < L < o(P) < Wt

v

Theorem ([M 2007])
Let a be a Turing degree. TFAE:

@ a uniformly computes maximal linearizations of computable WPOs.

Q@ a uniformly computes 0% for every 8 < wlK.
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The height of a WPO

We denote by Ch(P) the collection of all chains of P.

P is a WPO = all its chains are well-orders.

Definition

If P is well founded, its height is
ht(P) = sup{c : 3C € Ch(P) o = ordType(L)}.

Theorem: [Wolk 1967]
If P is a WPO, there exists C € Ch(P) with order type ht(P).

Such a chain is called a maximal chain of P.

Q: How difficult is it to compute maximal chains?
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Computing maximal chains

Theorem ([Marcone-Shore 2010])
Every computable WPO ‘P has a hyperarithmetic maximal chain.

(Recall: X C w is hyperarithmetic iff it's Al.)
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Computing maximal chains

Theorem ([Marcone-Shore 2010])

Every computable WPO ‘P has a hyperarithmetic maximal chain.

(Recall: X C w is hyperarithmetic iff it's Al.)

Maximal chains aren't easy to compute:

Theorem ([Marcone-M.~Shore 2012])

Let a < wiK.
There exists a computable WPO P such that
0(®) does not compute any maximal chain of P.
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Theorem ([Marcone-M.-Shore 2012])

Let G € 2% be hyperarithmetically generic.

Then G can compute a maximal chain in every computable WPO.

Pf:

e The key observation is that all downward closed subsets of P are computable.

e Suppose that P has cofinality w®*!.

e Then, build an operator CDE’G, that returns a sequence of computable
sub-partial orderings Py < P; < ..., such that, if G is generic, then infinitely
many of the P; will have cofinality w®.
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Computing maximal chains

Maximal chains are not easy to compute,
but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let G € 2% be hyperarithmetically generic.

Then G can compute a maximal chain in every computable WPO.

e The key observation is that all downward closed subsets of P are computable.

e Suppose that P has cofinality w®*!.

e Then, build an operator CDE’G, that returns a sequence of computable
sub-partial orderings Py < P; < ..., such that, if G is generic, then infinitely
many of the P; will have cofinality w®.

e Then use effective transfinite recursion.
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