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Well-quasi-orderings

Definition: A well-quasi-ordering (WQO), is quasi-ordering
which has no infinite descending sequences and no infinite antichains.

Example: The following sets are WQO under an embeddability relation:

finite strings over a finite alphabet [Higman 52];

finite trees [Kruskal 60],

labeled transfinite sequences with finite labels [Nash-Williams 65];

countable linear orderings [Laver 71];

finite graphs [Robertson, Seymour].

Definition:
A well-partial-ordering (WPO), is a WQO which is a partial ordering.
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Well-partial-orders

There are many equivalent characterizations of WPOs:

P is well-founded and has no infinite antichains;

for every f : N→ P there exists i < j such that f (i) 6P f (j);

every subset of P has a finite set of minimal elements;

all linear extensions of P are well-orders.

The reverse mathematics and computability theory of these equivalences
was been studied in [Cholak-Marcone-Solomon 04].
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Closure properties of WPOs

The sum and disjoint sum of two WPOs are WPO.

The product of two WPOs is WPO.

Finite strings over a WPO are a WPO (Higman, 1952).

Finite trees with labels from a WPO are a WPO (Kruskal, 1960).

Transfinite sequences with labels from a WPO which use only finitely
many labels are a WPO (Nash-Williams, 1965).
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Length

Recall: Every linearization of a WPO is well-ordered.

(6
L

is a linearization of (P,6
P

) if it’s linear and x 6
P

y ⇒ x 6
L

y .

So, for any {xn}n∈ω, there are i < j with (xi 6
P

xj), hence xi 6>L xj .)

Definition: The length of P = (P,6
P

) is

o(P) = sup{ordType(W ,6
L
) : where 6

L
is a linearization of P}.

Def: Bad(P) = {〈x0, ..., xn−1〉 ∈ P<ω : ∀i < j (xi 66P
xj)},

Note: P is a WPO ⇔ Bad(P) is well-founded.

Theorem: [De Jongh, Parikh 77] o(P) + 1 = rk(Bad(P)).
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Kruskal’s theorem

Theorem: [Kruskal 60] Let T be the set of finite trees ordered by
T 4 S if there is an embedding : T → S preserving < and g .l .b.

Then T is a WQO.

Theorem: [Friedman] The length of T is > Γ0, the Feferman–Schütte ordinal.

(Γ0 is the the proof-theoretic ordinal of ATR0.
It’s the “least ordinal” that ATR0 can’t prove it’s an ordinal.

ATR0 –Arithmetic Transfinite Recursion– is the subsystem of 2nd-order arithmetic

that allows the iteration of the Turing jump along any ordinal.)

Corollary: [Friedman] (RCA0) Kruskal’s theorem ⇒ Γ0 well-ordered.
Therefore,

ATR0 6` Kruskal’s theorem.
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The “big five” subsystems of 2nd-order arithmetic

Axiom systems:
RCA0:

Recursive Comprehension + Σ0
1-induction + Semiring ax.

WKL0:

Weak König’s lemma + RCA0

ACA0:

Arithmetic Comprehension + RCA0

⇔ “for every set X , X ′ exists”.

ATR0:

Arithmetic Transfinite recursion + ACA0.
⇔ “ ∀X , ∀ ordinal α, X (α) exists”.

Π1
1-CA0:

Π1
1-Comprehension + ACA0.

⇔ “∀X , the hyper-jump of X exists”.
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The exact reversals

[Friedman] Neither of ATR0, or Kruskal’s theorem implies the other.

Thm: [Rathjen–Weiermann 93] The length of T is θΩω, the Ackerman ordinal.
The following are equivalent over RCA0

Kruskal’s theorem.

The Π1
1-reflection principle for Π1

2-transfinite induction.

Thm: [M.–Weiermann 2006] The following are equivalent over RCA0

ATR0

For every P, if P is a WQO, then so is T (P),
where T (P) is the set of finite trees with labels in P, ordered by

T � S if ∃f : T → S which preserves < and increasing on labels.
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The minor-graph theorem

Theorem: [Robertson–Seymour]

Let G be the set of finite graphs ordered by the minor relation.
Then G is a WQO.

Theorem: [Friedman–Robertson–Seymour] The length of G is > φ0(εΩω+1).

(where φ0(εΩω+1), the Takeuti-Feferman-Buchholz ordinal,
is the the proof-theoretic ordinal of Π1

1-CA0.

Π1
1-CA0 – is the system that allows Π1

1-comprehension.)

Corollary: [Friedman, Robertson, Seymour]

(RCA0) The minor-grarph theorem ⇒ φ0(εΩω+1) well-ordered.
Therefore,

Π1
1-CA0 6` minor-graph theorem.
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Fräıssé’s Conjecture

Theorem [Fräıssé’s Conjecture ’48; Laver ’71]

FRA:The countable linear orderings are WQO under embeddablity.

Theorem[Shore ’93]

FRA implies ATR0 over RCA0.

Conjecture:[Clote ’90][Simpson ’99][Marcone]

FRA is equivalent to ATR0 over RCA0.

Π1
2-CA0

��

��;
;;

;;
;;

;

Π1
1-CA0

��
FRA

wwooo
ATR0

��
ACA0

��
WKL0

��
RCA0
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The “big five” subsystems of 2nd-order arithmetic

Axiom systems:
RCA0: Recursive Comprehension + Σ0

1-induction + Semiring ax.

WKL0: Weak König’s lemma + RCA0

ACA0: Arithmetic Comprehension + RCA0

⇔ “for every set X , X ′ exists”.

ATR0: Arithmetic Transfinite recursion + ACA0.
⇔ “ ∀X , ∀ ordinal α, X (α) exists”.

Π1
1-CA0: Π1

1-Comprehension + ACA0.
⇔ “∀X , the hyper-jump of X exists”.
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Fräıssé’s conjecture.

Claim

RCA0+FRA is the least system where it is possible to develop
a reasonable theory of embeddability of linear orderings.

Theorem ([M. 05])

The following are equivalent over RCA0

FRA;

Every scattered lin. ord. is a finite sum of indecomposables;

Every indecomposable lin. ord. is either an ω-sum or an ω∗-sum of
indecomposable l.o. of smaller rank.

Jullien’s characterization of extendible linear orderings
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A Partition theorem

Theorem:[Folklore] If we color Q with finitely many colors, there exists an
embedding Q→ Q whose image has only one color.

Theorem (∗):[Laver ’72]

For every countable L, there exists nL ∈ N, such that:
If L is colored with finitely many colors,

there is an embedding L → L whose image has at most nL colors.

Theorem ([M. 2005])

FRA is implied by Theorem (∗) over RCA0.

Theorem ([Kach–Marcone–M.–Weiermann 2011])

FRA is equivalent to Theorem (∗) over RCA0.
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Back to FRA

Def: Let Lα be the set of linear orderings of Hausdorff rank < α,
quotiented by the bi-embeddability relation, and
ordered by the embeddability relation.

1 [Laver 71] For countable α, Lα is countable.

2 [M. 05] For computable α, (Lα,4) is computably presentable.

3 (This was used to prove that every hypearithmetic linear ordering is

bi-embeddable with a computable one in [M. 05])

4 FRA is equivalent to “∀ ordinal α < ω1 (Lα is WQO).”

Question: Given α, what is the length of Lα?
Given α, what is the rank of Lα as a well-founded poset?
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Finite Hausdorff rank

Theorem ([Marcone, M 08])

The length of Lω is εεε... ,

where εεε... is the first fixed point of the function α 7→ εα,

where εα is the (α + 1)st fixed point for the function β 7→ ωβ .

Note: εεε... is the proof-theoretic ordinal of ACA+,
where ACA+ is the system RCA0+∀X (X (ω) exists).

(So εεε... is the least ordinal that ACA+ can’t prove is well-ordered.)

Theorem ([Marcone, M 08])

That Lω is a WQO,

follows from ACA+ + “εεε... is well-ordered”,

but not from ACA+.
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1 Background on WQOs

2 WQOs in Proof Theory
Kruskal’s theorem and the graph-minor theorem
Linear orderings and Fräıssé’s Conjecture

3 WPOs in Computability Theory
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complexity of maximal order types

Recall: o(P) = sup{ordType(P,6
L
) : where 6

L
is a linearization of P}.

Theorem: [De Jongh, Parikh 77]

Every WPO P has a linearization of order type o(P).

We call such a linearization, a maximal linearization of P.

Such linearizations have been found by different methods in different
examples.

Question [Schmidt 1979]:
Is the length of a computable WPO computable?
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Computable Length

Q: Is the length of a computable WPO, computable?

We mentioned that o(P) + 1 = rk(Bad(P)), where

Bad(P) = {〈x0, ..., xn−1〉 ∈W<ω : ∀i < j (xi 66P
xj)},

Since Bad(P) is computable and well-founded, it has rank < ωCK
1 .

So, o(P) is a computable ordinal.

Q:
Does every computable WPO have a computable maximal linearization?
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A computable maximal linearization

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

Q: Can we find them uniformly?

Theorem ([M 2007])

There is computable procedure that
given P produces a linearization L such that for some δ

ωδ 6 L 6 o(P) < ωδ+1.

Theorem ([M 2007])

Let a be a Turing degree. TFAE:

1 a uniformly computes maximal linearizations of computable WPOs.

2 a uniformly computes 0(β) for every β < ωCK
1 .
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The height of a WPO

We denote by Ch(P) the collection of all chains of P.

P is a WPO ⇒ all its chains are well-orders.

Definition

If P is well founded, its height is

ht(P) = sup{α : ∃C ∈ Ch(P)α = ordType(L)}.

Theorem: [Wolk 1967]
If P is a WPO, there exists C ∈ Ch(P) with order type ht(P).

Such a chain is called a maximal chain of P.

Q: How difficult is it to compute maximal chains?
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Such a chain is called a maximal chain of P.

Q: How difficult is it to compute maximal chains?
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Computing maximal chains

Theorem ([Marcone-Shore 2010])

Every computable WPO P has a hyperarithmetic maximal chain.

(Recall: X ⊆ ω is hyperarithmetic iff it’s ∆1
1.)

Maximal chains aren’t easy to compute:

Theorem ([Marcone–M.–Shore 2012])

Let α < ωCK
1 .

There exists a computable WPO P such that
0(α) does not compute any maximal chain of P.
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Computing maximal chains

Maximal chains are not easy to compute,

but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let G ∈ 2ω be hyperarithmetically generic.

Then G can compute a maximal chain in every computable WPO.

Pf:
• The key observation is that all downward closed subsets of P are computable.

• Suppose that P has cofinality ωα+1.

• Then, build an operator ΦP,Gα , that returns a sequence of computable
sub-partial orderings P0 6 P1 6 ..., such that, if G is generic, then infinitely
many of the Pi will have cofinality ωα.

• Then use effective transfinite recursion.
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