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Diversity Is the Savior of Logical Truth
I. There is important mathematical diversity in

what we call ‘logic’ – 4 different classes of problems:
I Arithmetic
I Algebra (equations)
I Dynamical systems
I Probability

II. In arithmetic every formula has an elementary value
(like 0 or 1). But the other systems return more
complex objects (sets, graphs, polynomials):

{0, 1} {} 0
((
1hh θ3 + θ1θ2 − θ1θ3

Certain features of these objects seem paradoxical.

III. But when logic problems are properly classified, and
unorthodox objects like these are accepted as truth
values, many paradoxes disappear.∗

∗The Truth Fairy replaces paradoxes with complex truth values.
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Does the Truth Fairy Exist?

george boole 1815–1864
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Lies, Damn Lies, and Interpretations
I My Liar sentence: x : This sentence x is false.
I As a definition: x :: ¬x , x ∈ {true, false}
I Two interpretations: equation or recurrence relation

I Many senses of = (test, assignment, constraint)
I In C program, x==1-x and x=1-x are different.
I Mathematica Solve[x==1-x] different again.

I As an equation: x = 1− x , x ∈ {0, 1}
I From Boole: true 7→ 1; false 7→ 0; ¬x 7→ 1− x .

I As a recurrence: xt+1 ⇐ 1− xt , x ∈ {0, 1}
I Assignment introduces an arrow of time.

I What kinds of truth values do we get from these two
interpretations?
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Solving Equations Gives a Set of Solutions
I A logical axiom is a polynomial equation:

I Logical notation: A judgment ` ψ that asserts
the truth of its content (ψ in propositional calculus)

I Polynomial notation: An equation q = 0 where q
is 1− Poly (ψ) using Boole’s translation of logic:

I Poly (¬p) = 1 − p; Poly (p → q) = 1 − p + pq ; etc.
I ψ = true  Poly (ψ) = 1  1 − Poly (ψ) = 0

I The solution set to polynomial equations gives the
possible values of an objective formula φ subject to
some axioms ` ψ1, . . . ,` ψm :

SQ (p) ≡ { p(x) : xi ∈ {0, 1}, qj (x) = 0 }

with x = (x1, . . . , xn); p, q ∈ R[x]; p = Poly (φ);
each qj = 1− Poly (ψj ); Q = {q1, . . . , qm }.

I This solution set must be a subset of the set of
elementary values: for 2-valued logic SQ (p) ⊆ {0, 1}.
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Solution Sets Are Good Truth Values
I Solution set SQ (Poly (φ)) gives truth value of the

objective φ subject to the axioms ` ψj given as Q :
{1} φ is a theorem.
{0} φ is the negation of a theorem.

{0, 1} φ is ambiguous
{} φ is unsatisfiable: the axioms ` ψj are inconsistent

I Inverse sets of polynomials are useful:
I S−1

Q ({1}): the set of all theorems entailed by axioms Q
I S−1

Q ({0}): the ideal (algebraic geometry) Q generates
I This logic is paraconsistent and paracomplete.

I Some included middle: truth values come from
the power set {{0}, {1}, {0, 1}, {}} of the set {0, 1}.

I Different idea from adding new elementary objects
(like 1

2 or 2), as usual in ‘multivalued’ logics.
I No explosion from contradiction: inconsistent

axioms give every objective the empty solution set:
so nothing is declared a theorem, not everything.
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Sets of Solution Sets Give Modal Logic
s ≡ SQ (Poly (φ)) Description of φ given axioms ` ψj in Q
{0} {1} {0, 1} {} Set Modal Natural language

• s = {1} �(φ) necessarily true
• • • s 6= {1} ¬�(φ) not necessarily true
• s = {0} �(¬φ) necessarily false

• • • s 6= {0} ¬�(¬φ) not necessarily false
• • 1 ∈ s ♦(φ) possibly true

• • 1 /∈ s ¬♦(φ) not possibly true
• • 0 ∈ s ♦(¬φ) possibly false

• • 0 /∈ s ¬♦(¬φ) not possibly false
• s = {} �(φ) necessarily unsatisfiable

• |s | > 1 ./ (φ) necessarily ambiguous
• • |s | = 1 �(φ) determinate
• • • • s ⊆ {0, 1} ♥(φ) {0, 1}-compatible

I We reject ♦(φ) ≡ ¬�(¬φ): ‘not necessarily false’
allows inconsistent axioms, ‘possibly true’ does not.

I We reject �(φ) ≡ φ: �(φ) depends on axioms in Q
but φ itself does not. Better: �(φ|Q), ♦(φ|Q), etc.
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Curry’s Dynamical System
x : If this sentence x is true then y is true.

0. Definition: x :: x → y with x , y ∈ {true, false}
I Boolean Poly (x → y) = 1− x + xy with x , y ∈ {0, 1}

1. As recurrence: xt+1 ⇐ 1− xt + xtyt with x , y ∈ {0, 1}
I Dynamical system with state (x , y), transition graph:

0, 1 // 1, 1 ss

0, 0
++
1, 0kk

I There is one fixed point (x , y) = (1, 1).
I Because of the periodic cycle it seems paradoxical

when y = 0 (i.e. the consequent in x → y is false).
2. As equation: x = 1− x + xy with x , y ∈ {0, 1}

I Solution sets SQ (x ) = {1} and SQ (y) = {1}
I Interpretation #1 adds value: shows oscillating cycle
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Kripke’s Watergate Dynamical System
x : That sentence y is false (J: “Most Nixon assertions false”)

y : That sentence x is true (N: “Everything Jones says true”)

0. Definition: x :: ¬y , y :: x with x , y ∈ {true, false}
I Boolean Poly (¬y) = 1− y

1. As recurrences: xt+1 ⇐ 1− yt , yt+1 ⇐ xt ; x , y ∈ {0, 1}
I Dynamical system with state (x , y), transition graph:

0, 1

��

1, 1oo

0, 0 // 1, 0

OO

I There are no fixed points.
I Periodic cycle: every state seems paradoxical.

2. As equations: x = 1− y and y = x with x , y ∈ {0, 1}
I Solution sets SQ (x ) = {} and SQ (y) = {}

I Interpretation #1 adds value: pattern of infeasibility
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Gödel’s Dynamical System
x : This formula x is true if and only if it is not provable.

0. Definition: x :: ¬Provable(x ); x ∈ {true, false}
I Solution set {1} means ‘provable’; here no axioms.
I Revised definition x ::

(
S{} (x ) 6= {1}

)
or x :: ¬�(x ).

I But S{} (x ) is just {x }. Then ({x } 6= {1}) is true when
x = 0 and false when x = 1: its value is 1− x .

I Re-revised definition x :: 1− x (as the Liar x :: ¬x ).
1. As recurrence: xt+1 ⇐ 1− xt with x ∈ {0, 1}

I Dynamical system with state x and transition graph:

0
**
1jj

I There are no fixed points.
I Periodic cycle: Gödel called paradox undecidable.

2. As equation: x = 1− x with x ∈ {0, 1}
I Solution set SQ (x ) = {}
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The Logic of Parametric Probability
I My parametric probability analysis method

solves many problems in logic, including:
I Counterfactual conditionals
I Probabilities of formulas in the propositional calculus
I Aristotle’s syllogisms
I Smullyan’s puzzles with liars and truth-tellers

I Solutions to probability queries are polynomials in
the parameters θ1, θ2, . . . used to specify probabilities
(distinct from the primary variables x1, . . . , xn whose
probabilities are specified).

I These θ-polynomials can be used for secondary
analysis such as linear and nonlinear optimization,
search, and general algebra.

I Details are on arXiv.org. With some probability
0 6 θ 6 1, I will present at LC2012 in Manchester.
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Probability: Counterfactual Conditionals
I Goodman’s counterfactual piece of butter:

B1. If it had been heated it would have melted.
B2. If it had been heated it would not have melted.

I Undesired: Poly ((h → m)∧ (h → ¬m)) = 1− h .
B1, B2 as material implication say ¬h , not heated.

I Probability network (heat, melt; 0 6 θ1, θ2, θ3 6 1):

h // m

h Pr0 (h)

1 θ1

0 1 − θ1

Pr0 (m | h)

h m = 1 m = 0

1 θ2 1 − θ2
0 θ3 1 − θ3

h m Pr (h ,m)

1 1 θ1θ2

1 0 θ1 − θ1θ2
0 1 θ3 − θ1θ3
0 0 1 − θ1 − θ3 + θ1θ3

I Pr (m = 1 | h = 1)⇒ (θ1θ2) / (θ1) . . . 0/0 if θ1 = 0
I Pr (h = 1)⇒ θ1, Pr (m = 1)⇒ θ3 + θ1θ2 − θ1θ3

I B1 is constraint θ2 = 1; B2 is incompatible θ2 = 0.
I B1 and B2 constrain output Pr (m | h), not Pr (h).
I Results are quotients of polynomials in R[θ1, θ2, θ3].
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Post-Paradox Paradigm for Logic

dennis ritchie 1941–2011 · ken thompson 1943–
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Upgrade to Logicism 2.0
1.0: One Step 2.0: Layered Software and Systems

Mathematics
Number theory
Arithmetic

Logic
First-order logic

Set theory

OO

High-Level (User) Logic
First-order logic, theorem proving
Full set theory and number theory
Combined logic and probability

Intermediate Mathematics
General computer programming

Algebra, polynomial equations, finite sets
Dynamical systems, probability networks

OO

Low-Level (Machine) Logic
Finite-integer arithmetic, logic gates
Leibniz, Pascal calculators in 1600s
Programmable digital computers

OO
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Conclusion: Paradox Lost, Logic Found
I What we call ‘logic’ includes four different classes of

mathematical problems: arithmetic, algebra,
dynamical systems, and probability.

I When logic problems are appropriately classified and
analyzed (as if by the Truth Fairy), things that once
seemed paradoxical or undecidable become routine.

I In particular, some logic problems specify dynamical
systems with periodic orbits. These results are not
pathological and they do not render formal reasoning
incomplete in any fundamental way.

I For sound logic, celebrate mathematical diversity:
I Say it loud: polynomial and proud!
I Sets are solutions too
I Probability ♥ Logic
I Oscillation is not a crime
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Extra Slides

gottfried wilhelm leibniz 1646–1716
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Paradoxes Get in the Way of Applications
For medical decision making I need formal reasoning
systems that deliver a few important features:
I Reasoning under uncertainty and ambiguity
I Learning from observations and data
I Verifiable correctness
I Introspection and metalevel reasoning

But these features are exactly the subjects of several
paradoxes and other challenges in mathematical logic,
decision theory, and probability theory.
I What seems paradoxical to logicians and why?
I Can we solve these issues?
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Philosophy: From Pythagoras to Gödel
I Gödel took as his prototype the Liar sentence of

Eubulides (ca. 350 b.c., with Aristotle).
I We can also learn from Pythagoras (ca. 500 b.c.).

I a2 + b2 = c2 gives irrational c for some integers a , b.
I The Pythagoreans regarded only ‘natural numbers’

as acceptable; they drowned Hippasus at sea for
√
2!

I It took time to accept
√
2,
√
−1, etc. as numbers; we

still insult them as ‘irrational’ (alìgos, not logical)
and ‘imaginary’ (not ‘real’).

I Is Gödel’s ‘undecidable’ like Pythagoras’ ‘irrational’?
Is the orthodox view to accept only theorem or
negation-of-theorem as answers too narrow?

1. Are there some mathematical objects that make
sense as truth values for self-referential formulas like
Gödel’s, Russell’s, etc.? Yes!

2. (But can we do interesting logic with them?)
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Arithmetic: Polynomial Propositions
The propositional calculus can be viewed as
arithmetic where logical operators act on polynomials.

I Logical formula φ(x1, . . . , xn) 7→ p ∈ R[x1, . . . , xn ].
I Function Poly maps formulas to polynomials.

I Boole showed how to interpret logical operators for
polynomial arguments (p, q) and polynomial values:

true 7→ 1
false 7→ 0

¬p 7→ 1− p

p ∧ q 7→ p × q
p ∨ q 7→ p + q − pq
p → q 7→ 1− p + pq
p ↔ q 7→ 1− p − q + 2pq

I Each xi ∈ {0, 1}, so xi = x 2
i : can substitute xi for x 2

i

I For example (using R[x , y ] as elementary set):
I x ∧ (x → y)⇒ x × (1− x + xy)⇒ x − x 2 + x 2y ⇒ xy
I So Poly (x ∧ (x → y)) = xy just as Poly (2+ 2) = 4
I Inverse: Poly−1 (xy) = {x ∧ y , x ∧ (x → y), . . .}



Saving Truth
from Orthodoxy

Joseph Norman

Introduction

Equations

Dynamical
Systems

Probability

Conclusion

References

Extras

Using Inverse Evaluation Functions
I Inverse arithmetical evaluation gives the logical
preimage of a polynomial:

Poly−1 (p) ≡ {φ : φ ∈ La , Poly (φ) = p}

These logical formulas share the same truth table.
I E.g. Poly−1 (xy) = {x ∧ y , x ∧ (x → y), . . .}

I Inverse algebraic evaluation gives the set of all
polynomials with a common solution set given A:

S−1
Q (s) ≡ {p : p ∈ K [x1, . . . , xn ], SQ (p) = s}

Therefore S−1
Q ({1}) is the set of all theorems

entailed by the axioms in Q (in polynomial form).
I Like the ideal S−1

Q ({0}) this set has a closed form.
I Using F2, the set S−1

Q ({1}) ⊂ F2[x1, . . . , xn ] is finite.
I The logical preimage Poly−1 (p) gives logical

notation for each polynomial theorem p ∈ S−1
Q ({1}).
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The Dynamic Topology of Truth
I In dynamical systems the value of a formula is a

state-transition graph. Each state is usually an
elementary object or a vector or set of them.

I The topology of each graph specifies a truth value.
I How many fixed points?

0 inconsistent
1 consistent

> 2 contingent
I Any nonconvergent orbits (periodic or infinite)?

yes unsteady (These really bother logicians!)
no steady

I Thus 6 categories of dynamic truth: meta-modalities
that concern stability rather than necessity.

I In each state, every formula has a usual solution set.

I A dynamical system can be solved for its fixed points
(thus interpreted as a set of simultaneous equations).
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The Logic of Parametric Probability
Two ways to apply parametric probability analysis:
I Embedding: Probability tables copy truth tables.

I E.g. for φ = A→ B add C and derived Pr (C |A,B):

A B A → B

T T T

T F F

F T T

F F T

 

A B Pr (C = T) Pr (C = F)

T T 1 0
T F 0 1
F T 1 0
F F 1 0

Ask Pr ([A→ B ]), Pr (B |A), Pr (A | [A→ B ]), etc.
I Direct encoding: Conditional probabilities encode

if/then statements (without material implication).
I By clever factoring we can constrain Pr (B |A)

without affecting Pr (A), and get the desired
semantics for counterfactual conditionals.

I Solutions: polynomials in the parameters θi used to
specify probabilities (with rational coefficients).

I Secondary analysis: optimization, search, etc.
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Embedding: A Challenge in the Cards
Embedding allows reasoning about the probabilities of
statements in the propositional calculus.

I A problem from Johnson-Laird told by Bringsjord:
0 If one of the following is true then so is the other:
1 There is a king in the hand iff there is an ace.
2 There is a king in the hand.
I Which is more likely, if either: the king or the ace?

I Logical formula for Sentence 0: (K ↔ A)↔ K
I Query: Relative values of Pr (A = T) and Pr (K = T)

Detour: easy resolution of illusion
I Johnson-Laird’s ‘illusory inference’ problems are

mostly about simplifying nested biconditionals.
I Boolean interpretation Poly ((K ↔ A)↔ K ) = A.
I The ace is present with certainty if Sentence 0 holds;

hence it is as likely or more likely than the king.
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Probability Network, Embedded Logic
We can also use parametric probability with embedded
propositional calculus to solve this ace-king problem.

I Binary variables A and K ; add P for (K ↔ A)↔ K

I Network graph:
A

((� P
K

66

I Real parameters 0 6 xi 6 1 with x1 + x2 + x3 + x4 = 1.
I Component probabilities: Pr (A,K ) is uninformative,

Pr (P |A,K ) copies truth table for (K ↔ A)↔ K .

A K Pr0 (A,K )

T T x1
T F x2
F T x3
F F x4

Pr0 (P |A,K )

A K P = T P = F

T T 1 0
T F 1 0
F T 0 1
F F 0 1
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Primary and Secondary Analysis
We compare the probabilities of A versus K , given the
condition P for the problem’s assertion (K ↔ A)↔ K .
I Primary analysis is symbolic probability inference:

I Pr (A = T)⇒ x1 + x2
I Pr (K = T)⇒ x1 + x3
I Pr (P = T)⇒ x1 + x2

I Here, secondary analysis is linear optimization:
I The difference Pr (A = T) − Pr (K = T) is x2 − x3.
I We desire minimum and maximum values of x2 − x3

subject to 0 6 xi 6 1, x1 + x2 + x3 + x4 = 1, and the
constraint Pr (P = T) = 1, hence x1 + x2 = 1.

I By linear programming: minimum 0, maximum 1.
I These bounds 0 6 Pr (A = T) − Pr (K = T) 6 1

imply Pr (A = T) > Pr (K = T): the ace is at least as
likely as the king (when (K ↔ A)↔ K holds).

I Many problems about the probabilities of logical
formulas are also linear optimization problems.
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The Familiar Fibonacci Numbers
Annotated state-transition graph using evolution function
F (x , y) : (y , x + y) and objective G(x , y) : x extracted
from the Fibonacci recurrence xt+2 ⇐ xt + xt+1

0, 1 0 // 1, 1 1 // 1, 2 1 // 2, 3 2 // 3, 5 3 // · · ·

2, 1 2 // 1, 3 1 // 3, 4 3 // 4, 7 4 // 7, 11 7 // · · ·

0, 0
0

tt · · · · · · · · ·

I Each orbit gives an infinite sequence of objective
values. From (0, 1) the usual (0, 1, 1, 2, 3, 5, 8, . . .).

I A unique fixed point at (0, 0) since (0, 0) = F (0, 0)
I All other orbits do not converge
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Self-Referential Quadratic Equations
c is the number of real solutions to 2x 2 + 3x + c = 0.

b is the number of real solutions to y2 + 6by + 11 = 0.

I As recurrences for b and c, state space {0, 1, 2} ⊂ R:

ct+1 ⇐ ∣∣{x : x ∈ R, ct ∈ R, 2x 2 + 3x + ct = 0
}∣∣

bt+1 ⇐ ∣∣{y : y ∈ R, bt ∈ R, y2 + 6bty + 11 = 0
}∣∣

I Dynamical system for c (edges show solutions for x ):

0

{− 3
2 ,0}

((
1 {−1,− 1

2 } 33 2

{}

hh

I Dynamical system for b (edges show solutions for y):

0{}
((

1
{}
oo 2 {−11,−1}hh
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Outline: Diverse Systems and Solutions
I Arithmetic: 2+ 2⇒ 4
I Algebra (equations):

I Data: x ∈ R, x 2 = x
I Query:

{
x : x ∈ R, x 2 = x

} ⇒ {0, 1}
I Dynamical systems:

I Data: x ∈ {0, 1}, xt+1 ⇐ 1− xt
I Query: [Phase portrait of x ]⇒ 0

''
1gg

I Query: [Orbit of x from x0 = 0]⇒ (0, 1, 0, 1, . . .)
I Probability:

I Data: P ,Q ,R ∈ {0, 1}; P //
%%

Q // R ; x , y , z ∈ R;

P Pr0 (P)

1 x
0 1 − x

Pr0 (Q |P)

P Q = 1 Q = 0

1 y 1 − y
0 z 1 − z

Pr0 (R |P ,Q)

P Q R = 1 R = 0

1 1 1 0
1 0 0 1
0 1 1 0
0 0 1 0

I Query: Pr (R = 1) − Pr (Q = 1 |P = 1)⇒
1− x − y + xy with 0 < x 6 1; 0 6 y 6 1
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