Saving Truth from Orthodoxy

Joseph Norman

Saving Truth from Orthodoxy Better Logic Through Algebra, Probability, and Dynamical Systems

> Joseph W. Norman, M.D., Ph.D. University of Michigan, Ann Arbor

> Association for Symbolic Logic 2012 Madison, Wisconsin

Diversity Is the Savior of Logical Truth

- I. There is important MATHEMATICAL DIVERSITY in what we call 'logic' 4 different classes of problems:
 - Arithmetic
 - Algebra (equations)
 - Dynamical systems
 - Probability
- II. In arithmetic every formula has an elementary value (like 0 or 1). But the other systems return more complex objects (sets, graphs, polynomials):

 $\{0,1\} \qquad \{\} \qquad \textcircled{0,1} \qquad \theta_3 + \theta_1 \theta_2 - \theta_1 \theta_3$

Certain features of these objects seem paradoxical.

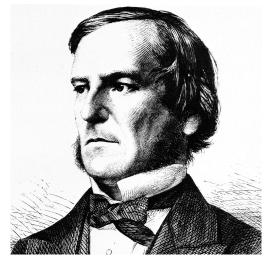
III. But when logic problems are properly classified, and unorthodox objects like these are accepted as truth values, many paradoxes disappear.* Saving Truth from Orthodoxy

Joseph Norman

Introduction Equations Dynamical Systems Probability Conclusion References Extras

^{*}The TRUTH FAIRY replaces paradoxes with complex truth values.

Does the Truth Fairy Exist?



GEORGE BOOLE 1815-1864

Saving Truth from Orthodoxy

Joseph Norman

Introduction Equations Dynamical Systems Probability Conclusion References

Lies, Damn Lies, and Interpretations

- My Liar sentence: x: This sentence x is false.
- ► As a definition: $x :: \neg x, x \in \{\text{TRUE}, \text{FALSE}\}$
- ▶ Two interpretations: equation or recurrence relation
 - ▶ Many senses of = (test, assignment, constraint)
 - In C program, x=1-x and x=1-x are different.
 - ► Mathematica Solve [x==1-x] different again.
- As an equation: $x = 1 x, x \in \{0, 1\}$
 - From Boole: true \mapsto 1; false \mapsto 0; $\neg x \mapsto 1 x$.
- As a recurrence: $x_{t+1} \leftarrow 1 x_t, \ x \in \{0, 1\}$
 - Assignment introduces an arrow of time.
- What kinds of truth values do we get from these two interpretations?

Saving Truth from Orthodoxy

Joseph Norman

Introduction

Equations

Dynamical Systems

Probability

Conclusion

References

Solving Equations Gives a Set of Solutions

• A logical **AXIOM** is a polynomial **EQUATION**:

- ► LOGICAL NOTATION: A judgment ⊢ ψ that asserts the truth of its content (ψ in propositional calculus)
- POLYNOMIAL NOTATION: An equation q = 0 where q is 1 - POLY (ψ) using Boole's translation of logic:

• POLY
$$(\neg p) = 1 - p$$
; POLY $(p \rightarrow q) = 1 - p + pq$; etc.

•
$$\psi = \text{true} \iff \text{Poly}(\psi) = 1 \iff 1 - \text{Poly}(\psi) = 0$$

The SOLUTION SET to polynomial equations gives the possible values of an objective formula φ subject to some axioms ⊢ ψ₁,...,⊢ ψ_m:

$$\mathbb{S}_Q(p) \equiv \{ p(\mathbf{x}) : x_i \in \{0,1\}, q_j(\mathbf{x}) = 0 \}$$

- with $\mathbf{x} = (x_1, \dots, x_n); p, q \in \mathbb{R}[\mathbf{x}]; p = \text{Poly}(\phi);$ each $q_j = 1 - \text{Poly}(\psi_j); Q = \{q_1, \dots, q_m\}.$
- ► This solution set must be a subset of the set of elementary values: for 2-valued logic S_Q (p) ⊆ {0,1}.

Saving Truth from Orthodoxy

Joseph Norman

ntroduction

Equations

Dynamical Systems Probability Conclusion References

Solution Sets Are Good Truth Values

- Solution set S_Q (POLY (φ)) gives truth value of the objective φ subject to the axioms ⊢ ψ_i given as Q:
 - $\{1\} \phi \text{ is a THEOREM.}$
 - $\{0\}\ \varphi$ is the negation of a theorem.
 - $\{0,1\}\ \varphi$ is ambiguous
 - {} ϕ is **UNSATISFIABLE**: the axioms $\vdash \psi_j$ are inconsistent
- Inverse sets of polynomials are useful:
 - ▶ S_Q⁻¹({1}): the set of all theorems entailed by axioms Q
 - ▶ $S_Q^{-1}(\{0\})$: the *ideal* (algebraic geometry) Q generates
- ► This logic is **PARACONSISTENT** and **PARACOMPLETE**.
 - ► SOME INCLUDED MIDDLE: truth values come from the POWER SET {{0}, {1}, {0, 1}, {}} of the set {0, 1}.
 - Different idea from adding new elementary objects (like ¹/₂ or 2), as usual in 'multivalued' logics.
 - NO EXPLOSION FROM CONTRADICTION: inconsistent axioms give every objective the empty solution set: so *nothing* is declared a theorem, not *everything*.

Saving Truth from Orthodoxy

Joseph Norman

ntroduction

Equations

Dynamical Systems Probability Conclusion References

Sets of Solution Sets Give Modal Logic

$s \equiv S_Q (\text{Poly}(\phi))$	Description of ϕ given axioms $\vdash \psi_j$ in Q				
$\{0\}$ $\{1\}$ $\{0,1\}$ $\{\}$	Set	Modal	NATURAL LANGUAGE		
•	$s = \{1\}$	$\Box(\phi)$	necessarily true		
• • •	$s eq \{1\}$	$\neg \Box(\phi)$	not necessarily true		
•	$s = \{0\}$	$\Box(\neg \varphi)$	necessarily false		
• • •	$s eq \{0\}$	$\neg \Box (\neg \varphi)$	not necessarily false		
• •	$1\in s$	$\Diamond(\phi)$	possibly true		
• •	1 otin s	$\neg \Diamond(\varphi)$	not possibly true		
• •	$0 \in s$	$\Diamond(\neg \varphi)$	possibly false		
• •	0 ∉ <i>s</i>	$\neg \Diamond (\neg \varphi)$	not possibly false		
•	$s = \{\}$	$\oslash(\varphi)$	necessarily unsatisfiable		
•	s > 1	ы (ф)	necessarily ambiguous		
• •	s = 1	⊡(φ)	determinate		
• • • •	$s \subseteq \{0,1\}$	♡(φ)	$\{0,1\}$ -compatible		

Saving Truth from Orthodoxy

Joseph Norman

ntroduction

Equations

Dynamical Systems

Probability

Conclusion

References

Extras

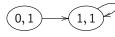
We reject ◊(φ) ≡ ¬□(¬φ): 'not necessarily false' allows inconsistent axioms, 'possibly true' does not.

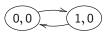
We reject □(φ) ≡ φ: □(φ) depends on axioms in Q but φ itself does not. Better: □(φ|Q), ◊(φ|Q), etc.

Curry's Dynamical System

x: If this sentence x is true then y is true.

- **0**. Definition: $x :: x \to y$ with $x, y \in \{\text{TRUE}, \text{FALSE}\}$
 - ▶ Boolean POLY $(x \rightarrow y) = 1 x + xy$ with $x, y \in \{0, 1\}$
- 1. As recurrence: $x_{t+1} \leftarrow 1 x_t + x_t y_t$ with $x, y \in \{0, 1\}$
 - ▶ Dynamical system with state (*x*, *y*), transition graph:





- There is one fixed point (x, y) = (1, 1).
- Because of the periodic cycle it seems PARADOXICAL when y = 0 (i.e. the consequent in $x \rightarrow y$ is false).
- 2. As equation: x = 1 x + xy with $x, y \in \{0, 1\}$
 - Solution sets $S_Q(x) = \{1\}$ and $S_Q(y) = \{1\}$
- ▶ Interpretation #1 adds value: shows oscillating cycle

Saving Truth from Orthodoxy

Joseph Norman

ntroduction

Equations

Dynamical Systems

Probability

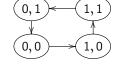
Conclusion

References

Kripke's Watergate Dynamical System

x: That sentence y is false (J: "Most Nixon assertions false")
y: That sentence x is true (N: "Everything Jones says true")

- **0**. Definition: $x :: \neg y, y :: x$ with $x, y \in \{\text{TRUE}, \text{FALSE}\}$
 - Boolean POLY $(\neg y) = 1 y$
- 1. As recurrences: $x_{t+1} \leftarrow 1 y_t$, $y_{t+1} \leftarrow x_t$; $x, y \in \{0, 1\}$
 - ▶ Dynamical system with state (*x*, *y*), transition graph:



- There are no fixed points.
- Periodic cycle: every state seems PARADOXICAL.

2. As equations: x = 1 - y and y = x with $x, y \in \{0, 1\}$

- Solution sets $S_Q(x) = \{\}$ and $S_Q(y) = \{\}$
- Interpretation #1 adds value: pattern of infeasibility

Saving Truth from Orthodoxy

Joseph Norman

ntroduction

Equations

Dynamical Systems

Probability

Conclusion

References

Gödel's Dynamical System

x: This formula x is true if and only if it is not provable.

- **0.** Definition: $x :: \neg PROVABLE(x); x \in \{TRUE, FALSE\}$
 - Solution set {1} means 'provable'; here no axioms.
 - Revised definition $x :: (S_{\{\}}(x) \neq \{1\})$ or $x :: \neg \Box(x)$.
 - ▶ But $S_{\{\}}(x)$ is just $\{x\}$. Then $(\{x\} \neq \{1\})$ is true when x = 0 and false when x = 1: its value is 1 x.
 - Re-revised definition x := 1 x (as the Liar $x := \neg x$).
- 1. As recurrence: $x_{t+1} \leftarrow 1 x_t$ with $x \in \{0, 1\}$
 - Dynamical system with state x and transition graph:

- There are no fixed points.
- ▶ Periodic cycle: Gödel called paradox UNDECIDABLE.
- 2. As equation: x = 1 x with $x \in \{0, 1\}$
 - Solution set $S_Q(x) = \{\}$

Saving Truth from Orthodoxy

Joseph Norman

ntroduction

Equations

Dynamical Systems

Probability

Conclusion

References

The Logic of Parametric Probability

- My PARAMETRIC PROBABILITY ANALYSIS method solves many problems in logic, including:
 - Counterfactual conditionals
 - Probabilities of formulas in the propositional calculus
 - Aristotle's syllogisms
 - Smullyan's puzzles with liars and truth-tellers
- Solutions to probability queries are polynomials in the parameters θ₁, θ₂,... used to specify probabilities (distinct from the primary variables x₁,..., x_n whose probabilities are specified).
- These θ-polynomials can be used for secondary analysis such as linear and nonlinear optimization, search, and general algebra.
- Details are on arXiv.org. With some probability
 0 ≤ θ ≤ 1, I will present at LC2012 in Manchester.

Saving Truth from Orthodoxy

Joseph Norman

ntroduction

Equations

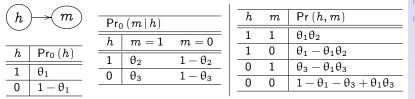
Dynamical Systems

Probability

Conclusion References

Probability: Counterfactual Conditionals

- Goodman's counterfactual piece of butter:
 B1. If it had been heated it would have melted.
 B2. If it had been heated it would not have melted.
- Undesired: POLY ((h→m)∧(h→¬m)) = 1-h.
 B1, B2 as material implication say ¬h, not heated.
- ▶ Probability network (heat, melt; $0 \leq \theta_1, \theta_2, \theta_3 \leq 1$):



Saving Truth from Orthodoxy

Joseph Norman

ntroduction

Equations

Dynamical Systems

Probability

Conclusion

References

Extras

- ► Pr (m = 1 | h = 1) \Rightarrow $(\theta_1 \theta_2) / (\theta_1) \dots 0/0$ if $\theta_1 = 0$
- ► $\Pr(h = 1) \Rightarrow \theta_1$, $\Pr(m = 1) \Rightarrow \theta_3 + \theta_1 \theta_2 \theta_1 \theta_3$

► B1 is constraint $\theta_2 = 1$; B2 is incompatible $\theta_2 = 0$.

- ▶ B1 and B2 constrain output Pr(m | h), not Pr(h).
- Results are quotients of polynomials in $\mathbb{R}[\theta_1, \theta_2, \theta_3]$.

Post-Paradox Paradigm for Logic

DENNIS RITCHIE 1941-2011 · KEN THOMPSON 1943-

Saving Truth from Orthodoxy

Joseph Norman

ntroduction

Equations

Dynamical Systems

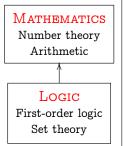
Probability

Conclusion

References

Upgrade to Logicism 2.0

1.0: One Step | 2.0: Layered Software and Systems



HIGH-LEVEL (USER) LOGIC First-order logic, theorem proving Full set theory and number theory Combined logic and probability

INTERMEDIATE MATHEMATICS

General computer programming Algebra, polynomial equations, finite sets Dynamical systems, probability networks

LOW-LEVEL (MACHINE) LOGIC Finite-integer arithmetic, logic gates Leibniz, Pascal calculators in 1600s Programmable digital computers Saving Truth from Orthodoxy

Joseph Norman

ntroduction

Equations

Dynamical Systems

robability

Conclusion

References

Conclusion: Paradox Lost, Logic Found

- What we call 'logic' includes four different classes of mathematical problems: arithmetic, algebra, dynamical systems, and probability.
- When logic problems are appropriately classified and analyzed (as if by the Truth Fairy), things that once seemed paradoxical or undecidable become routine.
- In particular, some logic problems specify dynamical systems with periodic orbits. These results are not pathological and they do not render formal reasoning incomplete in any fundamental way.
- ▶ For sound logic, celebrate mathematical diversity:
 - Say it loud: polynomial and proud!
 - Sets are solutions too
 - Probability \heartsuit Logic
 - Oscillation is not a crime

Saving Truth from Orthodoxy

Joseph Norman

Introduction Equations Dynamical Systems Probability Conclusion

References

References

George Boole.

An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and Probabilities. Macmillan, London, 1854.

Selmer Bringsjord.

The logicist manifesto: At long last let logic-based artificial intelligence become a field unto itself.

Journal of Applied Logic, 6:502-525, 2008.

Haskell B. Curry.

The inconsistency of certain formal logics. *Journal of Symbolic Logic*, 7:115–117, 1942.

Kurt Gödel.

On formally undecidable propositions of $\ensuremath{\mathsf{PRINCIPIA}}$ MATHEMATICA and related systems I (1931).

In Jean van Heijenoort, editor, From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, pages 596-616. Harvard University Press, 1967.

Nelson Goodman.

Fact, Fiction, and Forecast. Harvard, fourth edition, 1983.

Saul Kripke.

Outline of a theory of truth. Journal of Philosophy, 72:690-716, 1975.

Joseph W. Norman.

The logic of parametric probability. Preprint at arXiv:1201.3142 [math.L0], January 2012.

Saving Truth from Orthodoxy

Joseph Norman

ntroduction

Equations

Dynamica Systems

Probability

Conclusion

References

Extra Slides

Saving Truth from Orthodoxy

Joseph Norman

ntroduction Equations Dynamical Systems

Probability

Conclusion

References

Extras

GOTTFRIED WILHELM LEIBNIZ 1646-1716

Paradoxes Get in the Way of Applications

For MEDICAL DECISION MAKING I need formal reasoning systems that deliver a few important features:

- Reasoning under uncertainty and ambiguity
- Learning from observations and data
- Verifiable correctness
- Introspection and metalevel reasoning

But these features are exactly the subjects of several **PARADOXES** and other challenges in mathematical logic, decision theory, and probability theory.

- What seems paradoxical to logicians and why?
- Can we solve these issues?

from Orthodoxy Joseph Norman Introduction Equations Dynamical Systems Probability Conclusion References

Saving Truth

Philosophy: From Pythagoras to Gödel

- Gödel took as his prototype the Liar sentence of Eubulides (ca. 350 B.C., with Aristotle).
- ▶ We can also learn from Pythagoras (ca. 500 B.C.).
 - $a^2 + b^2 = c^2$ gives irrational c for some integers a, b.
 - ► The Pythagoreans regarded only 'natural numbers' as acceptable; they drowned Hippasus at sea for √2!
 - It took time to accept √2, √-1, etc. as numbers; we still insult them as 'irrational' (αλόγος, not logical) and 'imaginary' (not 'real').
- ► Is Gödel's 'undecidable' like Pythagoras' 'irrational'? Is the orthodox view to accept only THEOREM or NEGATION-OF-THEOREM as answers too narrow?
 - 1. Are there some mathematical objects that make sense as truth values for self-referential formulas like Gödel's, Russell's, etc.? Yes!
 - 2. (But can we do interesting logic with them?)

Saving Truth from Orthodoxy

Joseph Norman

Introduction Equations Dynamical Systems Probability Conclusion References Extras

Arithmetic: Polynomial Propositions

The **PROPOSITIONAL CALCULUS** can be viewed as arithmetic where logical operators act on polynomials.

- ► Logical formula $\phi(x_1, \ldots, x_n) \mapsto p \in \mathbb{R}[x_1, \ldots, x_n].$
 - Function **POLY** maps formulas to polynomials.
- Boole showed how to interpret logical operators for polynomial arguments (p, q) and polynomial values:

TRUE	\mapsto	1	$p \wedge q$	\mapsto	p imes q
THOE	. /	-	$\mathcal{D} \vee \mathcal{A}$	\mapsto	p+q-pq
FALSE	\mapsto	0			
		4	$p \rightarrow q$	\mapsto	1-p+pq
$\neg p$	\mapsto	1-p			1-p-q+2pq
			$p \leftrightarrow q$	\mapsto	1 - p - q + 2pq

▶ Each $x_i \in \{0,1\}$, so $x_i = x_i^2$: can substitute x_i for x_i^2

• For example (using $\mathbb{R}[x, y]$ as elementary set):

 $\blacktriangleright \ x \land (x \to y) \Rightarrow x \times (1 - x + xy) \Rightarrow x - x^2 + x^2y \Rightarrow xy$

- So POLY $(x \land (x \to y)) = xy$ just as POLY (2+2) = 4
- ▶ Inverse: $\operatorname{POLy}^{-1}(xy) = \{x \land y, x \land (x \to y), \ldots\}$

Saving Truth from Orthodoxy

Joseph Norman

Introduction Equations Dynamical Systems Probability Conclusion References Extras

Using Inverse Evaluation Functions

 Inverse arithmetical evaluation gives the LOGICAL PREIMAGE of a polynomial:

$$\operatorname{Poly}^{-1}(p) \equiv \{ \varphi : \varphi \in \mathcal{L}_a, \operatorname{Poly}(\varphi) = p \}$$

These logical formulas share the same truth table.

- ▶ E.g. $\operatorname{Poly}^{-1}(xy) = \{x \land y, x \land (x \to y), \ldots\}$
- Inverse algebraic evaluation gives the set of all polynomials with a common solution set given A:

$$\mathbb{S}_Q^{-1}(s) \hspace{.1in} \equiv \hspace{.1in} \{p: p \in K[x_1, \ldots, x_n], \hspace{.1in} \mathbb{S}_Q \hspace{.05in} (p) = s\}$$

Therefore $S_Q^{-1}(\{1\})$ is the SET OF ALL THEOREMS entailed by the axioms in Q (in polynomial form).

- ▶ Like the *ideal* S_Q⁻¹({0}) this set has a closed form.
- ▶ Using \mathbb{F}_2 , the set $S_Q^{-1}(\{1\}) \subset \mathbb{F}_2[x_1, \ldots, x_n]$ is finite.
- ► The logical preimage POLY⁻¹ (p) gives logical notation for each polynomial theorem p ∈ S_Q⁻¹({1}).

Saving Truth from Orthodoxy

Joseph Norman

Introduction Equations Dynamical Systems Probability Conclusion References

The Dynamic Topology of Truth

- ► In DYNAMICAL SYSTEMS the value of a formula is a state-transition graph. Each state is usually an elementary object or a vector or set of them.
- The topology of each graph specifies a truth value.
 - How many fixed points?
 - **0** INCONSISTENT
 - 1 CONSISTENT
 - ≥ 2 CONTINGENT
 - Any nonconvergent orbits (periodic or infinite)?
 yes UNSTEADY (These really bother logicians!)
 no STEADY
 - Thus 6 categories of dynamic truth: meta-modalities that concern stability rather than necessity.
 - In each state, every formula has a usual solution set.
- A dynamical system can be solved for its fixed points (thus interpreted as a set of simultaneous equations).

Saving Truth from Orthodoxy

Joseph Norman

Introductio Equations Dynamical Systems Probability Conclusion References

The Logic of Parametric Probability

~

Two ways to apply PARAMETRIC PROBABILITY ANALYSIS:

- **EMBEDDING**: Probability tables copy truth tables.
 - E.g. for $\phi = A \rightarrow B$ add *C* and derived $\Pr(C | A, B)$:

A	В	$A \rightarrow B$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

	Α	В	$\Pr\left(C=T\right)$	$\Pr\left(C = F\right)$
ſ	Т	Т	1	0
ſ	Т	F	0	1
	F	Т	1	0
	F	F	1	0

Ask $\Pr([A \rightarrow B])$, $\Pr(B \mid A)$, $\Pr(A \mid [A \rightarrow B])$, etc.

- ► **DIRECT ENCODING**: Conditional probabilities encode if/then statements (without material implication).
 - By clever factoring we can constrain Pr (B | A) without affecting Pr (A), and get the desired semantics for counterfactual conditionals.
- Solutions: polynomials in the parameters θ_i used to specify probabilities (with rational coefficients).
- Secondary analysis: optimization, search, etc.

Saving Truth from Orthodoxy

Joseph Norman

ntroduction

Equations

Dynamical Systems

Probability

Conclusion

References

Embedding: A Challenge in the Cards

Embedding allows reasoning about the probabilities of statements in the propositional calculus.

- ▶ A problem from Johnson-Laird told by Bringsjord:
 - 0 If one of the following is true then so is the other:
 - 1 There is a king in the hand iff there is an ace.
 - 2 There is a king in the hand.
 - Which is more likely, if either: the king or the ace?
- ▶ Logical formula for Sentence 0: $(K \leftrightarrow A) \leftrightarrow K$
- Query: Relative values of Pr(A = T) and Pr(K = T)

Detour: easy resolution of illusion

- Johnson-Laird's 'illusory inference' problems are mostly about simplifying nested biconditionals.
- ▶ Boolean interpretation POLY $((K \leftrightarrow A) \leftrightarrow K) = A$.
- The ace is present with certainty if Sentence 0 holds; hence it is as likely or more likely than the king.

Saving Truth from Orthodoxy

Joseph Norman

Introduction Equations Dynamical Systems Probability Conclusion References

Probability Network, Embedded Logic

We can also use parametric probability with embedded propositional calculus to solve this ace-king problem.

- ▶ Binary variables A and K; add P for $(K \leftrightarrow A) \leftrightarrow K$
- Network graph:

- Real parameters $0 \leqslant x_i \leqslant 1$ with $x_1 + x_2 + x_3 + x_4 = 1$.
- ▶ Component probabilities: $\Pr(A, K)$ is uninformative, $\Pr(P | A, K)$ copies truth table for $(K \leftrightarrow A) \leftrightarrow K$.

Α	Κ	$Pr_{0}\left(A,K ight)$
Т	Т	x_1
Т	F	x_2
F	Т	x_3
F	F	x_4

$\Pr_0(P \mid A, K)$					
Α	Κ	P = T	P = F		
Т	Т	1	0		
Т	F	1	0		
F	Т	0	1		
F	F	0	1		

Saving Truth from Orthodoxy

Joseph Norman

ntroduction Equations Dynamical Systems Probability Conclusion References

Primary and Secondary Analysis

We compare the probabilities of A versus K, given the condition P for the problem's assertion $(K \leftrightarrow A) \leftrightarrow K$.

> Primary analysis is symbolic probability inference:

•
$$\Pr(A = \mathsf{T}) \Rightarrow x_1 + x_2$$

•
$$\Pr(K = \mathsf{T}) \Rightarrow x_1 + x_3$$

•
$$\Pr(P = \mathsf{T}) \Rightarrow x_1 + x_2$$

- ▶ Here, secondary analysis is linear optimization:
 - The difference $\Pr(A = T) \Pr(K = T)$ is $x_2 x_3$.
 - We desire minimum and maximum values of $x_2 x_3$ subject to $0 \le x_i \le 1$, $x_1 + x_2 + x_3 + x_4 = 1$, and the constraint Pr (P = T) = 1, hence $x_1 + x_2 = 1$.
 - ▶ By linear programming: minimum 0, maximum 1.
 - ▶ These bounds $0 \leq \Pr(A = T) \Pr(K = T) \leq 1$ imply $\Pr(A = T) \geq \Pr(K = T)$: the ace is at least as likely as the king (when $(K \leftrightarrow A) \leftrightarrow K$ holds).
- Many problems about the probabilities of logical formulas are also linear optimization problems.

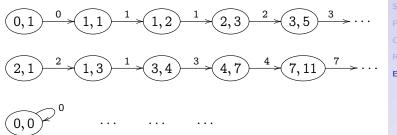
Saving Truth from Orthodoxy

Joseph Norman

Introduction Equations Dynamical Systems Probability Conclusion References

The Familiar Fibonacci Numbers

Annotated state-transition graph using evolution function F(x, y) : (y, x + y) and objective G(x, y) : x extracted from the Fibonacci recurrence $x_{t+2} \leftarrow x_t + x_{t+1}$



- Each ORBIT gives an infinite sequence of objective values. From (0,1) the usual (0,1,1,2,3,5,8,...).
- A unique FIXED POINT at (0,0) since (0,0) = F(0,0)
- All other orbits do not converge

Saving Truth from Orthodoxy

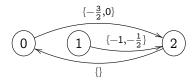
Joseph Norman

ntroduction Equations Dynamical Systems Probability Conclusion

References

Self-Referential Quadratic Equations

- c is the number of real solutions to $2x^2 + 3x + c = 0$.
- b is the number of real solutions to $y^2 + 6by + 11 = 0$.
 - ► As recurrences for b and c, state space $\{0, 1, 2\} \subset \mathbb{R}$: $c_{t+1} \quad \Leftarrow \quad \left| \left\{ x : x \in \mathbb{R}, \ c_t \in \mathbb{R}, \ 2x^2 + 3x + c_t = 0 \right\} \right|$ $b_{t+1} \quad \Leftarrow \quad \left| \left\{ y : y \in \mathbb{R}, \ b_t \in \mathbb{R}, \ y^2 + 6b_t y + 11 = 0 \right\} \right|$
 - Dynamical system for c (edges show solutions for x):



Dynamical system for b (edges show solutions for y):

Saving Truth from Orthodoxy

Joseph Norman

Introduction Equations Dynamical Systems Probability Conclusion References Extras

Outline: Diverse Systems and Solutions

- Arithmetic: $2 + 2 \Rightarrow 4$
- ALGEBRA (EQUATIONS):
 - Data: $x \in \mathbb{R}, x^2 = x$
 - Query: $\left\{x: x \in \mathbb{R}, x^2 = x\right\} \Rightarrow \{0, 1\}$
- DYNAMICAL SYSTEMS:
 - Data: $x \in \{0,1\}$, $x_{t+1} \leftarrow 1 x_t$
 - Query: [Phase portrait of x] \Rightarrow (0, 1)
 - Query: [Orbit of x from $x_0 = 0$] \Rightarrow (0, 1, 0, 1, ...)
- PROBABILITY:
 - ▶ Data: $P, Q, R \in \{0, 1\}; P \rightarrow Q \rightarrow R; x, y, z \in \mathbb{R};$

					Pr ₀	$(R \mid R)$	(Q)	
P	$\Pr(P)$	Pr ₀	(Q P)		Р	Q	R = 1	R = 0
1	<i>r</i>	P	Q = 1	Q = 0	1	1	1	0
-0	$\frac{x}{1-x}$	1	y	1-y	1	0	0	1
		0	z	1-z	0	1	1	0
					0	0	1	0

▶ Query: $\Pr(R = 1) - \Pr(Q = 1 | P = 1) \Rightarrow$ 1 - x - y + xy with 0 < x ≤ 1; 0 ≤ y ≤ 1 Saving Truth from Orthodoxy

Joseph Norman

troduction

Equations

Dynamical Systems

Probability

Conclusion

References