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Basic Set-up

Let L be a first-order language, and T be an L-theory.

Let σ be a “new” unary function symbol, and let Lσ := L ∪ {σ}.

Let Tσ := T ∪ {“σ is an L-automorphism”}.

Question: Does Tσ have a model companion in Lσ?
(If it does, we denote the model companion by TA.)
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History

Theorem (Kikyo, 2000)

If T is unstable without IP, then TA does not exist.

Theorem (Kikyo-Shelah, 2002)

If T has SOP, then TA does not exist.

Theorem (Kudaibergenov, ????)

If T is stable and has the fcp, then TA does not exist.

Theorem (Baldwin-Shelah, 2003)

If T is stable, then TA exists iff T does not admit obstructions.

Open Problem: What happens if T has IP?
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Kikyo-Shelah

Theorem (Kikyo-Shelah, 2002)

If T has SOP, then TA does not exist.

Proof Sketch.

Let (M, σ) |= Tσ and 〈ai : i < ω〉 in M satisfy ai < ai+1 = σ(ai ).

Assuming TA exists, extend (M, σ) to a sufficiently saturated
model (N, σ) of TA.

Let p(x) := {x > ai : i < ω} and ψ(x) := ∃y(a0 < σ(y) < y < x).

In (N, σ),

1 p(x) ` ψ(x)

2 if q(x) is a finite subset of p(x), then q(x) 6` ψ(x).

This is a contradiction to the saturation of (N, σ).
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Linear Order

Definition

Let L be a linear order in the language LO := {<}. An
LO-automorphism σ of L is called increasing if ∀x(x < σ(x)).

Definition

Let LO+
σ (DLO+

σ ) denote the LO,σ-theory of (dense) linear orders
together with the axioms denoting “σ is an increasing
LO-automorphism”.

Theorem (P.)

LO+
σ has a model companion (namely DLO+

σ ) in LO,σ. Moreover,
DLO+

σ eliminates quantifiers and is o-minimal.
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Ordered Abelian Groups

Definition

Let G be an ordered abelian group in the language
LOG := {+,−, 0, <}. An LOG -automorphism σ of G is called
(positive) increasing if ∀x > 0(x < σ(x)).

Definition

Let ODAG+
σ denote the LOG ,σ-theory of ordered divisible abelian

groups together with a (positive) increasing automorphism.
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Ordered Abelian Groups

Theorem (P.-Laskowski)

ODAG+
σ does not have a model companion in LOG ,σ.

Proof Sketch.

Consider (Q, σ) where σ(x) = 3x . Clearly (Q, σ) |= ODAG+
σ .

Let 〈ai : i < ω〉 in M satisfy σ(ai ) = ai+1 = 3ai .

Extend (Q, σ) to (sufficiently saturated) (N, σ) |= (ODAG+
σ )A.

Define

p(x) := {x > ai : i < ω} and ψ(x) := ∃y(a0 < y < x∧σ(y) = 2y).

In (N, σ),

1 p(x) ` ψ(x)

2 if q(x) is a finite subset of p(x), then q(x) 6` ψ(x).

This is a contradiction to the saturation of (N, σ).
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Multiplicative Ordered Abelian Groups

Recall that G is an ordered difference abelian group. So to get a
model companion, we at least need to answer if following type of
equations has a solution:

L(x) := (m0 + m1σ + · · ·+ mk−1σ
k−1 + mkσ

k)(x) = 0,

where k ∈ N,m0, . . . ,mk ∈ Z. Thus L ∈ Z[σ].
Such equations are called linear difference equations.
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MODAG and div-MODAG
Axiom OM: for each L ∈ Z[σ],(
∀x > 0 (L(x) > 0)

)∨(
∀x > 0 (L(x) = 0)

)∨(
∀x > 0 (L(x) < 0)

)
.

Definition (P.)

An ordered difference abelian group is called multiplicative
(denoted MODAG) if it satisfies Axiom OM.

Definition

A non-trivial MODAG is called divisible (denoted div-MODAG) if(
∀x(L(x) = 0)

)
∨
(
∀y∃x(L(x) = y)

)
, for L ∈ Z[σ].

Theorem (P.)

MODAG has a model companion (namely, div-MODAG) in LOG ,σ.
Moreover, div-MODAG eliminates quantifiers and is o-minimal.
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Direct sum of ordered difference abelian groups

Definition

Let G = (G ,+G ,−G , 0G , <G , σG ) and
H = (H,+H ,−H , 0H , <H , σH) be two ordered abelian groups with
automorphism. Define a new ordered difference abelian group
G⊕H = (G ⊕ H,+,−, 0, <, σ) as follows:

g1 ⊕ h1 + g2 ⊕ h2 := (g1 +G g2)⊕ (h1 +H h2)

0 := 0G ⊕ 0H

g1 ⊕ h1 < g2 ⊕ h2

⇐⇒ either (h1 < h2) or (h1 = h2 and g1 < g2)

σ(g ⊕ h) := σG (g)⊕ σH(h)

Clearly there are isomorphic copies of G and H inside G⊕H,
namely {g ⊕ 0H | g ∈ G} and {0G ⊕ h | h ∈ H}.
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G⊕H = (G ⊕ H,+,−, 0, <, σ) as follows:

g1 ⊕ h1 + g2 ⊕ h2 := (g1 +G g2)⊕ (h1 +H h2)

0 := 0G ⊕ 0H

g1 ⊕ h1 < g2 ⊕ h2

⇐⇒ either (h1 < h2) or (h1 = h2 and g1 < g2)

σ(g ⊕ h) := σG (g)⊕ σH(h)

Clearly there are isomorphic copies of G and H inside G⊕H,
namely {g ⊕ 0H | g ∈ G} and {0G ⊕ h | h ∈ H}.
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More model complete ordered difference abelian groups

Theorem (P.-Laskowski)

Let G and H be models of model complete theories TG and TH of
ordered abelian groups with (certain restricted class of)
automorphism. Further assume that there are quantifier-free
LOG ,σ-formulas θG (x) and θH(x) that define G and H inside
G⊕H. Then the theory TG⊕H of G⊕H is also model complete.
In addition, if TG and TH eliminate quantifiers, then TG⊕H also
eliminates quantifiers.

Example

The theory of the ordered abelian group Q⊕Q, with
automorphism σ defined as σ(a⊕ b) = 2a⊕ 3b, eliminates
quantifiers, and is hence model complete.
More generally, any two distinct multiplicative automorphism in
each coordinate will work!
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Ordered Fields

Definition

Let F be an ordered field in the language
LOR := {+,−,×, 0, 1, <}. An LOR -automorphism σ is said to be
(eventually) increasing if ∃y∀x(x > y =⇒ x < σ(x)).

Definition

Let RCF+
σ denote the LOR,σ-theory of real-closed fields together

with an (eventually) increasing automorphism.

Theorem (P.-Laskowski)

RCF+
σ does not have a model companion in LOR,σ.
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