Model Companion of Unstable Theories with an Automorphism

Koushik Pal (joint with Chris Laskowski)

University of Maryland College Park

2012 ASL North American Annual Meeting April 2, 2012

(4) (E) (b)

Let \mathcal{L} be a first-order language, and \mathcal{T} be an \mathcal{L} -theory.

Let σ be a "new" unary function symbol, and let $\mathcal{L}_{\sigma} := \mathcal{L} \cup \{\sigma\}$.

Let $T_{\sigma} := T \cup \{ "\sigma \text{ is an } \mathcal{L}\text{-automorphism"} \}.$

Question: Does T_{σ} have a model companion in \mathcal{L}_{σ} ? (If it does, we denote the model companion by T_{A} .)

・ 同下 ・ ヨト ・ ヨト

2/12

Let \mathcal{L} be a first-order language, and \mathcal{T} be an \mathcal{L} -theory.

Let σ be a "new" unary function symbol, and let $\mathcal{L}_{\sigma} := \mathcal{L} \cup \{\sigma\}$.

Let $T_{\sigma} := T \cup \{ "\sigma \text{ is an } \mathcal{L}\text{-automorphism"} \}.$

Question: Does T_{σ} have a model companion in \mathcal{L}_{σ} ? (If it does, we denote the model companion by T_{A} .)

・ 同 ト ・ ヨ ト ・ ヨ ト …

2/12

Let \mathcal{L} be a first-order language, and \mathcal{T} be an \mathcal{L} -theory.

Let σ be a "new" unary function symbol, and let $\mathcal{L}_{\sigma} := \mathcal{L} \cup \{\sigma\}$.

Let $T_{\sigma} := T \cup \{ \text{"}\sigma \text{ is an } \mathcal{L}\text{-automorphism"} \}.$

Question: Does T_{σ} have a model companion in \mathcal{L}_{σ} ? (If it does, we denote the model companion by T_{A} .)

伺下 イヨト イヨト

Let \mathcal{L} be a first-order language, and \mathcal{T} be an \mathcal{L} -theory.

Let σ be a "new" unary function symbol, and let $\mathcal{L}_{\sigma} := \mathcal{L} \cup \{\sigma\}$.

Let $T_{\sigma} := T \cup \{ \text{``}\sigma \text{ is an } \mathcal{L}\text{-automorphism''} \}.$

Question: Does T_{σ} have a model companion in \mathcal{L}_{σ} ? (If it does, we denote the model companion by $T_{\mathcal{A}}$.)

伺下 イヨト イヨト

Let \mathcal{L} be a first-order language, and \mathcal{T} be an \mathcal{L} -theory.

Let σ be a "new" unary function symbol, and let $\mathcal{L}_{\sigma} := \mathcal{L} \cup \{\sigma\}$.

Let $T_{\sigma} := T \cup \{ \text{``}\sigma \text{ is an } \mathcal{L}\text{-automorphism''} \}.$

Question: Does T_{σ} have a model companion in \mathcal{L}_{σ} ? (If it does, we denote the model companion by T_{A} .)

伺下 イヨト イヨト

Theorem (Kikyo, 2000) If T is unstable without IP, then T_A does not exist.

Theorem (Kikyo-Shelah, 2002) *If T has SOP, then T_A does not exist.*

Theorem (Kudaibergenov, ????) If T is stable and has the fcp, then T_A does not exist.

Theorem (Baldwin-Shelah, 2003) If T is stable, then T_A exists iff T does not admit obstructions.

Open Problem: What happens if T has IP?

▲ □ ► ▲ □ ►

Theorem (Kikyo, 2000)

If T is unstable without IP, then T_A does not exist.

Theorem (Kikyo-Shelah, 2002)

If T has SOP, then T_A does not exist.

Theorem (Kudaibergenov, ????)

If T is stable and has the fcp, then T_A does not exist.

Theorem (Baldwin-Shelah, 2003)

If T is stable, then T_A exists iff T does not admit obstructions.

Open Problem: What happens if T has IP?

A (1) < (1) < (1) < (1) </p>

Theorem (Kikyo, 2000)

If T is unstable without IP, then T_A does not exist.

Theorem (Kikyo-Shelah, 2002)

If T has SOP, then T_A does not exist.

Theorem (Kudaibergenov, ????) If T is stable and has the fcp, then T_A does not exist.

Theorem (Baldwin-Shelah, 2003)

If T is stable, then T_A exists iff T does not admit obstructions.

Open Problem: What happens if T has IP?

Theorem (Kikyo, 2000)

If T is unstable without IP, then T_A does not exist.

Theorem (Kikyo-Shelah, 2002)

If T has SOP, then T_A does not exist.

Theorem (Kudaibergenov, ????) If T is stable and has the fcp, then T_A does not exist.

Theorem (Baldwin-Shelah, 2003) If T is stable, then T_A exists iff T does not admit obstructions.

Open Problem: What happens if T has IP?

Theorem (Kikyo, 2000)

If T is unstable without IP, then T_A does not exist.

Theorem (Kikyo-Shelah, 2002)

If T has SOP, then T_A does not exist.

Theorem (Kudaibergenov, ????) If T is stable and has the fcp, then T_A does not exist.

Theorem (Baldwin-Shelah, 2003) If T is stable, then T_A exists iff T does not admit obstructions.

Open Problem: What happens if T has IP?

Theorem (Kikyo-Shelah, 2002)

If T has SOP, then T_A does not exist.

Proof Sketch.

Let $(M, \sigma) \models T_{\sigma}$ and $\langle a_i : i < \omega \rangle$ in M satisfy $a_i < a_{i+1} = \sigma(a_i)$

Assuming T_A exists, extend (M, σ) to a sufficiently saturated model (N, σ) of T_A .

Let $p(x) := \{x > a_i : i < \omega\}$ and $\psi(x) := \exists y(a_0 < \sigma(y) < y < x)$

In (N,σ) ,

 $\bullet p(x) \vdash \psi(x)$

2 if q(x) is a finite subset of p(x), then $q(x) \not\vdash \psi(x)$.

This is a contradiction to the saturation of $(N,\sigma).$

Theorem (Kikyo-Shelah, 2002) If T has SOP, then T_A does not exist.

Proof Sketch. Let $(M, \sigma) \models T_{\sigma}$ and $\langle a_i : i < \omega \rangle$ in M satisfy $a_i < a_{i+1} = \sigma(a_i)$.

Assuming T_A exists, extend (M, σ) to a sufficiently saturated model (N, σ) of T_A .

Let $p(x) := \{x > a_i : i < \omega\}$ and $\psi(x) := \exists y(a_0 < \sigma(y) < y < x)$

In (N,σ) ,

 $p(x) \vdash \psi(x)$

(2) if q(x) is a finite subset of p(x), then $q(x) \not\vdash \psi(x)$.

This is a contradiction to the saturation of $(N,\sigma).$

Proof Sketch.

Theorem (Kikyo-Shelah, 2002) If T has SOP, then T_A does not exist.

Let $(M, \sigma) \models T_{\sigma}$ and $\langle a_i : i < \omega \rangle$ in M satisfy $a_i < a_{i+1} = \sigma(a_i)$.

Assuming T_A exists, extend (M, σ) to a sufficiently saturated model (N, σ) of T_A .

Let $p(x) := \{x > a_i : i < \omega\}$ and $\psi(x) := \exists y(a_0 < \sigma(y) < y < x)$

In (N,σ) ,

 $p(x) \vdash \psi(x)$

② if q(x) is a finite subset of p(x), then $q(x) \not\vdash \psi(x)$.

This is a contradiction to the saturation of (N,σ)

Theorem (Kikyo-Shelah, 2002) If T has SOP, then T_A does not exist.

Proof Sketch. Let $(M, \sigma) \models T_{\sigma}$ and $\langle a_i : i < \omega \rangle$ in M satisfy $a_i < a_{i+1} = \sigma(a_i)$.

Assuming T_A exists, extend (M, σ) to a sufficiently saturated model (N, σ) of T_A .

Let
$$p(x) := \{x > a_i : i < \omega\}$$
 and $\psi(x) := \exists y(a_0 < \sigma(y) < y < x).$

 $\ln (N, \sigma),$

 $\bullet p(x) \vdash \psi(x)$

2 if q(x) is a finite subset of p(x), then $q(x) \not\vdash \psi(x)$.

This is a contradiction to the saturation of $(N,\sigma).$

Theorem (Kikyo-Shelah, 2002) If T has SOP, then T_A does not exist.

Proof Sketch. Let $(M, \sigma) \models T_{\sigma}$ and $\langle a_i : i < \omega \rangle$ in M satisfy $a_i < a_{i+1} = \sigma(a_i)$. Assuming T_A exists, extend (M, σ) to a sufficiently saturated

model (N, σ) of T_A .

Let
$$p(x) := \{x > a_i : i < \omega\}$$
 and $\psi(x) := \exists y(a_0 < \sigma(y) < y < x).$

In (N, σ) ,

- $p(x) \vdash \psi(x)$
- 2 if q(x) is a finite subset of p(x), then $q(x) \not\vdash \psi(x)$.

This is a contradiction to the saturation of (N,σ)

Theorem (Kikyo-Shelah, 2002) If T has SOP, then T_A does not exist.

Proof Sketch. Let $(M, \sigma) \models T_{\sigma}$ and $\langle a_i : i < \omega \rangle$ in M satisfy $a_i < a_{i+1} = \sigma(a_i)$. Assuming T_A exists, extend (M, σ) to a sufficiently saturated model (N, σ) of T_A .

Let
$$p(x) := \{x > a_i : i < \omega\}$$
 and $\psi(x) := \exists y(a_0 < \sigma(y) < y < x).$

In (N, σ) ,

•
$$p(x) \vdash \psi(x)$$

2 if q(x) is a finite subset of p(x), then $q(x) \not\vdash \psi(x)$.

This is a contradiction to the saturation of (N, σ) .

Definition

Let *L* be a linear order in the language $\mathcal{L}_O := \{<\}$. An \mathcal{L}_O -automorphism σ of *L* is called increasing if $\forall x(x < \sigma(x))$.

Definition

Let LO_{σ}^+ (DLO_{σ}^+) denote the $\mathcal{L}_{O,\sigma}$ -theory of (dense) linear orders together with the axioms denoting " σ is an increasing \mathcal{L}_{O} -automorphism".

Theorem (P.)

 LO_{σ}^+ has a model companion (namely DLO_{σ}^+) in $\mathcal{L}_{O,\sigma}$. Moreover, DLO_{σ}^+ eliminates quantifiers and is o-minimal.

イロト イポト イヨト イヨト

Definition

Let *L* be a linear order in the language $\mathcal{L}_O := \{<\}$. An \mathcal{L}_O -automorphism σ of *L* is called increasing if $\forall x(x < \sigma(x))$.

Definition

Let LO_{σ}^+ (DLO_{σ}^+) denote the $\mathcal{L}_{O,\sigma}$ -theory of (dense) linear orders together with the axioms denoting " σ is an increasing \mathcal{L}_{O} -automorphism".

Theorem (P.)

 LO_{σ}^+ has a model companion (namely DLO_{σ}^+) in $\mathcal{L}_{O,\sigma}$. Moreover, DLO_{σ}^+ eliminates quantifiers and is o-minimal.

イロト イポト イヨト イヨト

Definition

Let *L* be a linear order in the language $\mathcal{L}_O := \{<\}$. An \mathcal{L}_O -automorphism σ of *L* is called increasing if $\forall x(x < \sigma(x))$.

Definition

Let LO_{σ}^+ (DLO_{σ}^+) denote the $\mathcal{L}_{O,\sigma}$ -theory of (dense) linear orders together with the axioms denoting " σ is an increasing \mathcal{L}_{O} -automorphism".

Theorem (P.)

 LO_{σ}^{+} has a model companion (namely DLO_{σ}^{+}) in $\mathcal{L}_{O,\sigma}$. Moreover, DLO_{σ}^{+} eliminates quantifiers and is o-minimal.

▲ □ ► ▲ □ ►

Definition

Let *L* be a linear order in the language $\mathcal{L}_O := \{<\}$. An \mathcal{L}_O -automorphism σ of *L* is called increasing if $\forall x(x < \sigma(x))$.

Definition

Let LO_{σ}^+ (DLO_{σ}^+) denote the $\mathcal{L}_{O,\sigma}$ -theory of (dense) linear orders together with the axioms denoting " σ is an increasing \mathcal{L}_{O} -automorphism".

Theorem (P.)

 LO_{σ}^{+} has a model companion (namely DLO_{σ}^{+}) in $\mathcal{L}_{O,\sigma}$. Moreover, DLO_{σ}^{+} eliminates quantifiers and is o-minimal.

Definition

Let G be an ordered abelian group in the language $\mathcal{L}_{OG} := \{+, -, 0, <\}$. An \mathcal{L}_{OG} -automorphism σ of G is called (positive) increasing if $\forall x > 0(x < \sigma(x))$.

Definition

Let $ODAG_{\sigma}^+$ denote the $\mathcal{L}_{OG,\sigma}$ -theory of ordered divisible abelian groups together with a (positive) increasing automorphism.

Definition

Let G be an ordered abelian group in the language $\mathcal{L}_{OG} := \{+, -, 0, <\}$. An \mathcal{L}_{OG} -automorphism σ of G is called (positive) increasing if $\forall x > 0(x < \sigma(x))$.

Definition

Let $ODAG_{\sigma}^{+}$ denote the $\mathcal{L}_{OG,\sigma}$ -theory of ordered divisible abelian groups together with a (positive) increasing automorphism.

Theorem (P.-Laskowski)

 $ODAG_{\sigma}^{+}$ does not have a model companion in $\mathcal{L}_{OG,\sigma}$.

Proof Sketch.

Consider (\mathbb{Q}, σ) where $\sigma(x) = 3x$. Clearly $(\mathbb{Q}, \sigma) \models ODAG_{\sigma}^+$. Let $\langle a_i : i < \omega \rangle$ in M satisfy $\sigma(a_i) = a_{i+1} = 3a_i$.

Extend (\mathbb{Q}, σ) to (sufficiently saturated) $(N, \sigma) \models (ODAG_{\sigma}^+)_A$. Define

 $p(x) := \{x > a_i : i < \omega\} \text{ and } \psi(x) := \exists y (a_0 < y < x \land \sigma(y) = 2y).$

 $\ln (N, \sigma),$

- $\bullet p(x) \vdash \psi(x)$
- (a) if q(x) is a finite subset of p(x), then $q(x) \not\vdash \psi(x)$.

This is a contradiction to the saturation of (N, o

Theorem (P.-Laskowski)

 $ODAG_{\sigma}^{+}$ does not have a model companion in $\mathcal{L}_{OG,\sigma}$.

Proof Sketch.

Consider (\mathbb{Q}, σ) where $\sigma(x) = 3x$. Clearly $(\mathbb{Q}, \sigma) \models ODAG_{\sigma}^+$. Let $\langle a_i : i < \omega \rangle$ in M satisfy $\sigma(a_i) = a_{i+1} = 3a_i$.

Extend (\mathbb{Q}, σ) to (sufficiently saturated) $(N, \sigma) \models (ODAG_{\sigma}^+)_A$. Define

 $p(x) := \{x > a_i : i < \omega\}$ and $\psi(x) := \exists y(a_0 < y < x \land \sigma(y) = 2y).$

 $\ln (N, \sigma),$

 $\bullet p(x) \vdash \psi(x)$

(2) if q(x) is a finite subset of p(x), then $q(x) \not\vdash \psi(x)$.

This is a contradiction to the saturation of (*N*, a

Theorem (P.-Laskowski)

 $ODAG_{\sigma}^{+}$ does not have a model companion in $\mathcal{L}_{OG,\sigma}$.

Proof Sketch.

Consider (\mathbb{Q}, σ) where $\sigma(x) = 3x$. Clearly $(\mathbb{Q}, \sigma) \models ODAG_{\sigma}^+$. Let $\langle a_i : i < \omega \rangle$ in M satisfy $\sigma(a_i) = a_{i+1} = 3a_i$.

Extend (\mathbb{Q}, σ) to (sufficiently saturated) $(N, \sigma) \models (ODAG_{\sigma}^+)_A$. Define

 $p(x) := \{x > a_i : i < \omega\}$ and $\psi(x) := \exists y(a_0 < y < x \land \sigma(y) = 2y).$

In (N,σ) ,

 $\bullet p(x) \vdash \psi(x)$

(a) if q(x) is a finite subset of p(x), then $q(x) \not\vdash \psi(x)$.

This is a contradiction to the saturation of (N, lpha

Theorem (P.-Laskowski)

 $ODAG_{\sigma}^{+}$ does not have a model companion in $\mathcal{L}_{OG,\sigma}$.

Proof Sketch.

Consider (\mathbb{Q}, σ) where $\sigma(x) = 3x$. Clearly $(\mathbb{Q}, \sigma) \models ODAG_{\sigma}^+$. Let $\langle a_i : i < \omega \rangle$ in M satisfy $\sigma(a_i) = a_{i+1} = 3a_i$.

Extend (\mathbb{Q}, σ) to (sufficiently saturated) $(N, \sigma) \models (ODAG_{\sigma}^+)_A$. Define

 $p(x) := \{x > a_i : i < \omega\}$ and $\psi(x) := \exists y(a_0 < y < x \land \sigma(y) = 2y).$

 $\ln (N, \sigma),$

 $p(x) \vdash \psi(x)$

(2) if q(x) is a finite subset of p(x), then $q(x) \not\vdash \psi(x)$.

This is a contradiction to the saturation of (N, a)

Theorem (P.-Laskowski)

 $ODAG_{\sigma}^{+}$ does not have a model companion in $\mathcal{L}_{OG,\sigma}$.

Proof Sketch.

Consider (\mathbb{Q}, σ) where $\sigma(x) = 3x$. Clearly $(\mathbb{Q}, \sigma) \models ODAG_{\sigma}^+$. Let $\langle a_i : i < \omega \rangle$ in M satisfy $\sigma(a_i) = a_{i+1} = 3a_i$.

Extend (\mathbb{Q}, σ) to (sufficiently saturated) $(N, \sigma) \models (ODAG_{\sigma}^+)_A$. Define

 $p(x) := \{x > a_i : i < \omega\}$ and $\psi(x) := \exists y(a_0 < y < x \land \sigma(y) = 2y).$

In (N,σ) ,

 $p(x) \vdash \psi(x)$

(2) if q(x) is a finite subset of p(x), then $q(x) \not\vdash \psi(x)$.

This is a contradiction to the saturation of (N, σ)

Theorem (P.-Laskowski)

 $ODAG_{\sigma}^{+}$ does not have a model companion in $\mathcal{L}_{OG,\sigma}$.

Proof Sketch.

Consider (\mathbb{Q}, σ) where $\sigma(x) = 3x$. Clearly $(\mathbb{Q}, \sigma) \models ODAG_{\sigma}^+$. Let $\langle a_i : i < \omega \rangle$ in M satisfy $\sigma(a_i) = a_{i+1} = 3a_i$.

Extend (\mathbb{Q}, σ) to (sufficiently saturated) $(N, \sigma) \models (ODAG_{\sigma}^+)_A$. Define

 $p(x) := \{x > a_i : i < \omega\}$ and $\psi(x) := \exists y(a_0 < y < x \land \sigma(y) = 2y).$

In (N, σ) ,

•
$$p(x) \vdash \psi(x)$$

2 if q(x) is a finite subset of p(x), then $q(x) \not\vdash \psi(x)$.

This is a contradiction to the saturation of (N,σ)

Theorem (P.-Laskowski)

 $ODAG_{\sigma}^{+}$ does not have a model companion in $\mathcal{L}_{OG,\sigma}$.

Proof Sketch.

Consider (\mathbb{Q}, σ) where $\sigma(x) = 3x$. Clearly $(\mathbb{Q}, \sigma) \models ODAG_{\sigma}^+$. Let $\langle a_i : i < \omega \rangle$ in M satisfy $\sigma(a_i) = a_{i+1} = 3a_i$.

Extend (\mathbb{Q}, σ) to (sufficiently saturated) $(N, \sigma) \models (ODAG_{\sigma}^+)_A$. Define

$$p(x) := \{x > a_i : i < \omega\}$$
 and $\psi(x) := \exists y(a_0 < y < x \land \sigma(y) = 2y).$

In (N, σ) ,

•
$$p(x) \vdash \psi(x)$$

2 if q(x) is a finite subset of p(x), then $q(x) \not\vdash \psi(x)$.

This is a contradiction to the saturation of (N, σ) .

Multiplicative Ordered Abelian Groups

Recall that G is an ordered difference abelian group. So to get a model companion, we at least need to answer if following type of equations has a solution:

$$L(x) := (m_0 + m_1 \sigma + \dots + m_{k-1} \sigma^{k-1} + m_k \sigma^k)(x) = 0,$$

where $k \in \mathbb{N}, m_0, \dots, m_k \in \mathbb{Z}$. Thus $L \in \mathbb{Z}[\sigma]$. Such equations are called linear difference equations.

向下 イヨト イヨト

Multiplicative Ordered Abelian Groups

Recall that G is an ordered difference abelian group. So to get a model companion, we at least need to answer if following type of equations has a solution:

 $L(x) := (m_0 + m_1\sigma + \dots + m_{k-1}\sigma^{k-1} + m_k\sigma^k)(x) = 0,$

where $k \in \mathbb{N}, m_0, \dots, m_k \in \mathbb{Z}$. Thus $L \in \mathbb{Z}[\sigma]$. Such equations are called linear difference equations.

向下 イヨト イヨト

Recall that G is an ordered difference abelian group. So to get a model companion, we at least need to answer if following type of equations has a solution:

$$L(x) := (m_0 + m_1\sigma + \dots + m_{k-1}\sigma^{k-1} + m_k\sigma^k)(x) = 0,$$

where $k \in \mathbb{N}, m_0, \ldots, m_k \in \mathbb{Z}$. Thus $L \in \mathbb{Z}[\sigma]$. Such equations are called linear difference equations.

向下 イヨト イヨト

Recall that G is an ordered difference abelian group. So to get a model companion, we at least need to answer if following type of equations has a solution:

$$L(x) := (m_0 + m_1\sigma + \dots + m_{k-1}\sigma^{k-1} + m_k\sigma^k)(x) = 0,$$

where $k \in \mathbb{N}, m_0, \ldots, m_k \in \mathbb{Z}$. Thus $L \in \mathbb{Z}[\sigma]$. Such equations are called linear difference equations.

Axiom OM: for each $L \in \mathbb{Z}[\sigma]$, $(\forall x > 0 \ (L(x) > 0)) \bigvee (\forall x > 0 \ (L(x) = 0)) \bigvee (\forall x > 0 \ (L(x) < 0)).$

Definition (P.)

An ordered difference abelian group is called multiplicative (denoted MODAG) if it satisfies Axiom OM.

Definition

A non-trivial MODAG is called divisible (denoted div-MODAG) if

$$\Big(\forall x (L(x) = 0) \Big) \lor \Big(\forall y \exists x (L(x) = y) \Big), \quad \text{for } L \in \mathbb{Z}[\sigma].$$

Theorem (P.)

Axiom OM: for each $L \in \mathbb{Z}[\sigma]$, $(\forall x > 0 (L(x) > 0)) \bigvee (\forall x > 0 (L(x) = 0)) \bigvee (\forall x > 0 (L(x) < 0)).$

Definition (P.)

An ordered difference abelian group is called multiplicative (denoted MODAG) if it satisfies Axiom OM.

Definition

A non-trivial MODAG is called divisible (denoted div-MODAG) if

$$\Big(\forall x(L(x) = 0) \Big) \lor \Big(\forall y \exists x(L(x) = y) \Big), \quad \text{for } L \in \mathbb{Z}[\sigma].$$

Axiom OM: for each $L \in \mathbb{Z}[\sigma]$, $(\forall x > 0 \ (L(x) > 0)) \bigvee (\forall x > 0 \ (L(x) = 0)) \bigvee (\forall x > 0 \ (L(x) < 0)).$

Definition (P.)

An ordered difference abelian group is called multiplicative (denoted MODAG) if it satisfies Axiom OM.

Definition

A non-trivial MODAG is called divisible (denoted div-MODAG) if

$$\Big(orall x(L(x)=0) \Big) \lor \Big(orall y \exists x(L(x)=y) \Big), \qquad ext{for } L \in \mathbb{Z}[\sigma].$$

Theorem (P.)

Axiom OM: for each $L \in \mathbb{Z}[\sigma]$, $(\forall x > 0 \ (L(x) > 0)) \bigvee (\forall x > 0 \ (L(x) = 0)) \bigvee (\forall x > 0 \ (L(x) < 0)).$

Definition (P.)

An ordered difference abelian group is called multiplicative (denoted MODAG) if it satisfies Axiom OM.

Definition

A non-trivial MODAG is called divisible (denoted div-MODAG) if

$$\Big(orall x(L(x)=0) \Big) \lor \Big(orall y \exists x(L(x)=y) \Big), \qquad ext{for } L \in \mathbb{Z}[\sigma].$$

Theorem (P.)

Axiom OM: for each $L \in \mathbb{Z}[\sigma]$, $(\forall x > 0 \ (L(x) > 0)) \bigvee (\forall x > 0 \ (L(x) = 0)) \bigvee (\forall x > 0 \ (L(x) < 0)).$

Definition (P.)

An ordered difference abelian group is called multiplicative (denoted MODAG) if it satisfies Axiom OM.

Definition

A non-trivial MODAG is called divisible (denoted div-MODAG) if

$$\Big(orall x(L(x)=0) \Big) \lor \Big(orall y \exists x(L(x)=y) \Big), \qquad ext{for } L \in \mathbb{Z}[\sigma].$$

Theorem (P.)

Definition

Let $\mathbf{G} = (G, +_G, -_G, 0_G, <_G, \sigma_G)$ and $\mathbf{H} = (H, +_H, -_H, 0_H, <_H, \sigma_H)$ be two ordered abelian groups with automorphism. Define a new ordered difference abelian group $\mathbf{G} \oplus \mathbf{H} = (G \oplus H, +, -, 0, <, \sigma)$ as follows:

- $g_1 \oplus h_1 + g_2 \oplus h_2 := (g_1 +_G g_2) \oplus (h_1 +_H h_2)$
- $0 := 0_G \oplus 0_H$
- $g_1 \oplus h_1 < g_2 \oplus h_2$

 \iff either $(h_1 < h_2)$ or $(h_1 = h_2$ and $g_1 < g_2)$

• $\sigma(g \oplus h) := \sigma_G(g) \oplus \sigma_H(h)$

Clearly there are isomorphic copies of **G** and **H** inside $\mathbf{G} \oplus \mathbf{H}$, namely $\{g \oplus 0_H \mid g \in G\}$ and $\{0_G \oplus h \mid h \in H\}$.

(4月) (4日) (4日)

Definition

Let $\mathbf{G} = (G, +_G, -_G, 0_G, <_G, \sigma_G)$ and $\mathbf{H} = (H, +_H, -_H, 0_H, <_H, \sigma_H)$ be two ordered abelian groups with automorphism. Define a new ordered difference abelian group $\mathbf{G} \oplus \mathbf{H} = (G \oplus H, +, -, 0, <, \sigma)$ as follows:

•
$$g_1 \oplus h_1 + g_2 \oplus h_2 := (g_1 +_G g_2) \oplus (h_1 +_H h_2)$$

- 0 := 0_G \oplus 0_H
- $g_1 \oplus h_1 < g_2 \oplus h_2$

 \iff either $(h_1 < h_2)$ or $(h_1 = h_2$ and $g_1 < g_2)$

• $\sigma(g \oplus h) := \sigma_G(g) \oplus \sigma_H(h)$

Clearly there are isomorphic copies of **G** and **H** inside $\mathbf{G} \oplus \mathbf{H}$, namely $\{g \oplus 0_H \mid g \in G\}$ and $\{0_G \oplus h \mid h \in H\}$.

マロト イヨト イヨト

Definition

Let $\mathbf{G} = (G, +_G, -_G, 0_G, <_G, \sigma_G)$ and $\mathbf{H} = (H, +_H, -_H, 0_H, <_H, \sigma_H)$ be two ordered abelian groups with automorphism. Define a new ordered difference abelian group $\mathbf{G} \oplus \mathbf{H} = (G \oplus H, +, -, 0, <, \sigma)$ as follows:

•
$$g_1 \oplus h_1 + g_2 \oplus h_2 := (g_1 +_G g_2) \oplus (h_1 +_H h_2)$$

• $0 := 0_G \oplus 0_H$

• $g_1 \oplus h_1 < g_2 \oplus h_2$ \iff either $(h_1 < h_2)$ or $(h_1 = h_2$ and $g_1 < g_2$

• $\sigma(g \oplus h) := \sigma_G(g) \oplus \sigma_H(h)$

Clearly there are isomorphic copies of **G** and **H** inside $\mathbf{G} \oplus \mathbf{H}$, namely $\{g \oplus 0_H \mid g \in G\}$ and $\{0_G \oplus h \mid h \in H\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let $\mathbf{G} = (G, +_G, -_G, 0_G, <_G, \sigma_G)$ and $\mathbf{H} = (H, +_H, -_H, 0_H, <_H, \sigma_H)$ be two ordered abelian groups with automorphism. Define a new ordered difference abelian group $\mathbf{G} \oplus \mathbf{H} = (G \oplus H, +, -, 0, <, \sigma)$ as follows:

•
$$g_1 \oplus h_1 + g_2 \oplus h_2 := (g_1 +_G g_2) \oplus (h_1 +_H h_2)$$

•
$$0 := 0_G \oplus 0_H$$

$$\begin{array}{ll} \bullet \ g_1 \oplus h_1 < g_2 \oplus h_2 \\ \Leftrightarrow & \text{either } (h_1 < h_2) \text{ or } (h_1 = h_2 \text{ and } g_1 < g_2) \end{array}$$

• $\sigma(g \oplus h) := \sigma_G(g) \oplus \sigma_H(h)$

Clearly there are isomorphic copies of **G** and **H** inside $\mathbf{G} \oplus \mathbf{H}$, namely $\{g \oplus 0_H \mid g \in G\}$ and $\{0_G \oplus h \mid h \in H\}$.

Definition

Let $\mathbf{G} = (G, +_G, -_G, 0_G, <_G, \sigma_G)$ and $\mathbf{H} = (H, +_H, -_H, 0_H, <_H, \sigma_H)$ be two ordered abelian groups with automorphism. Define a new ordered difference abelian group $\mathbf{G} \oplus \mathbf{H} = (G \oplus H, +, -, 0, <, \sigma)$ as follows:

•
$$g_1 \oplus h_1 + g_2 \oplus h_2 := (g_1 +_G g_2) \oplus (h_1 +_H h_2)$$

•
$$0 := 0_G \oplus 0_H$$

•
$$g_1 \oplus h_1 < g_2 \oplus h_2$$

 \iff either $(h_1 < h_2)$ or $(h_1 = h_2$ and $g_1 < g_2)$

•
$$\sigma(g \oplus h) := \sigma_G(g) \oplus \sigma_H(h)$$

Clearly there are isomorphic copies of **G** and **H** inside **G** \oplus **H**, namely { $g \oplus 0_H | g \in G$ } and { $0_G \oplus h | h \in H$ }.

Definition

Let
$$\mathbf{G} = (G, +_G, -_G, 0_G, <_G, \sigma_G)$$
 and
 $\mathbf{H} = (H, +_H, -_H, 0_H, <_H, \sigma_H)$ be two ordered abelian groups with
automorphism. Define a new ordered difference abelian group
 $\mathbf{G} \oplus \mathbf{H} = (G \oplus H, +, -, 0, <, \sigma)$ as follows:

•
$$g_1 \oplus h_1 + g_2 \oplus h_2 := (g_1 +_G g_2) \oplus (h_1 +_H h_2)$$

•
$$0 := 0_G \oplus 0_H$$

•
$$g_1 \oplus h_1 < g_2 \oplus h_2$$

 \iff either $(h_1 < h_2)$ or $(h_1 = h_2$ and $g_1 < g_2)$

•
$$\sigma(g \oplus h) := \sigma_G(g) \oplus \sigma_H(h)$$

Clearly there are isomorphic copies of **G** and **H** inside $\mathbf{G} \oplus \mathbf{H}$, namely $\{g \oplus 0_H \mid g \in G\}$ and $\{0_G \oplus h \mid h \in H\}$.

Theorem (P.-Laskowski)

Let **G** and **H** be models of model complete theories T_G and T_H of ordered abelian groups with (certain restricted class of)

automorphism. Further assume that there are quantifier-free $\mathcal{L}_{OG,\sigma}$ -formulas $\theta_G(x)$ and $\theta_H(x)$ that define G and H inside $\mathbf{G} \oplus \mathbf{H}$. Then the theory $T_{G \oplus H}$ of $\mathbf{G} \oplus \mathbf{H}$ is also model complete. In addition, if T_G and T_H eliminate quantifiers, then $T_{G \oplus H}$ also eliminates quantifiers.

Example

The theory of the ordered abelian group $\mathbb{Q} \oplus \mathbb{Q}$, with automorphism σ defined as $\sigma(a \oplus b) = 2a \oplus 3b$, eliminates quantifiers, and is hence model complete. More generally, any two distinct multiplicative automorphism in each coordinate will work!

イロト イポト イヨト イヨト

Theorem (P.-Laskowski)

Let **G** and **H** be models of model complete theories T_G and T_H of ordered abelian groups with (certain restricted class of) automorphism. Further assume that there are quantifier-free $\mathcal{L}_{OG,\sigma}$ -formulas $\theta_G(x)$ and $\theta_H(x)$ that define G and H inside $\mathbf{G} \oplus \mathbf{H}$. Then the theory $T_{G\oplus H}$ of $\mathbf{G} \oplus \mathbf{H}$ is also model complete. In addition, if T_G and T_H eliminate quantifiers, then $T_{G\oplus H}$ also eliminates quantifiers.

Example

The theory of the ordered abelian group $\mathbb{Q} \oplus \mathbb{Q}$, with automorphism σ defined as $\sigma(a \oplus b) = 2a \oplus 3b$, eliminates quantifiers, and is hence model complete. More generally, any two distinct multiplicative automorphism in each coordinate will work!

イロト イポト イヨト イヨト

Theorem (P.-Laskowski)

Let **G** and **H** be models of model complete theories T_G and T_H of ordered abelian groups with (certain restricted class of) automorphism. Further assume that there are quantifier-free $\mathcal{L}_{OG,\sigma}$ -formulas $\theta_G(x)$ and $\theta_H(x)$ that define G and H inside $\mathbf{G} \oplus \mathbf{H}$. Then the theory $T_{G \oplus H}$ of $\mathbf{G} \oplus \mathbf{H}$ is also model complete. In addition, if T_G and T_H eliminate quantifiers, then $T_{G \oplus H}$ also eliminates quantifiers.

Example

The theory of the ordered abelian group $\mathbb{Q} \oplus \mathbb{Q}$, with automorphism σ defined as $\sigma(a \oplus b) = 2a \oplus 3b$, eliminates quantifiers, and is hence model complete. More generally, any two distinct multiplicative automorphism in each coordinate will work!

Theorem (P.-Laskowski)

Let **G** and **H** be models of model complete theories T_G and T_H of ordered abelian groups with (certain restricted class of) automorphism. Further assume that there are quantifier-free $\mathcal{L}_{OG,\sigma}$ -formulas $\theta_G(x)$ and $\theta_H(x)$ that define G and H inside $\mathbf{G} \oplus \mathbf{H}$. Then the theory $T_{G \oplus H}$ of $\mathbf{G} \oplus \mathbf{H}$ is also model complete. In addition, if T_G and T_H eliminate quantifiers, then $T_{G \oplus H}$ also eliminates quantifiers.

Example

The theory of the ordered abelian group $\mathbb{Q} \oplus \mathbb{Q}$, with automorphism σ defined as $\sigma(a \oplus b) = 2a \oplus 3b$, eliminates quantifiers, and is hence model complete. More generally, any two **distinct** multiplicative automorphism in each coordinate will work!

Theorem (P.-Laskowski)

Let **G** and **H** be models of model complete theories T_G and T_H of ordered abelian groups with (certain restricted class of) automorphism. Further assume that there are quantifier-free $\mathcal{L}_{OG,\sigma}$ -formulas $\theta_G(x)$ and $\theta_H(x)$ that define G and H inside $\mathbf{G} \oplus \mathbf{H}$. Then the theory $T_{G \oplus H}$ of $\mathbf{G} \oplus \mathbf{H}$ is also model complete. In addition, if T_G and T_H eliminate quantifiers, then $T_{G \oplus H}$ also eliminates quantifiers.

Example

The theory of the ordered abelian group $\mathbb{Q} \oplus \mathbb{Q}$, with automorphism σ defined as $\sigma(a \oplus b) = 2a \oplus 3b$, eliminates quantifiers, and is hence model complete.

More generally, any two distinct multiplicative automorphism in each coordinate will work!

イロト イポト イヨト イヨト

Э

Theorem (P.-Laskowski)

Let **G** and **H** be models of model complete theories T_G and T_H of ordered abelian groups with (certain restricted class of) automorphism. Further assume that there are quantifier-free $\mathcal{L}_{OG,\sigma}$ -formulas $\theta_G(x)$ and $\theta_H(x)$ that define G and H inside $\mathbf{G} \oplus \mathbf{H}$. Then the theory $T_{G \oplus H}$ of $\mathbf{G} \oplus \mathbf{H}$ is also model complete. In addition, if T_G and T_H eliminate quantifiers, then $T_{G \oplus H}$ also eliminates quantifiers.

Example

The theory of the ordered abelian group $\mathbb{Q} \oplus \mathbb{Q}$, with automorphism σ defined as $\sigma(a \oplus b) = 2a \oplus 3b$, eliminates quantifiers, and is hence model complete. More generally, any two distinct multiplicative automorphism in each coordinate will work!

イロト イポト イヨト イヨト

э

Definition

Let F be an ordered field in the language $\mathcal{L}_{OR} := \{+, -, \times, 0, 1, <\}$. An \mathcal{L}_{OR} -automorphism σ is said to be (eventually) increasing if $\exists y \forall x (x > y \implies x < \sigma(x))$.

Definition

Let RCF_{σ}^+ denote the $\mathcal{L}_{OR,\sigma}$ -theory of real-closed fields together with an (eventually) increasing automorphism.

Theorem (P.-Laskowski)

 RCF^+_σ does not have a model companion in $\mathcal{L}_{\mathsf{OR},\sigma}.$

Definition

Let F be an ordered field in the language $\mathcal{L}_{OR} := \{+, -, \times, 0, 1, <\}$. An \mathcal{L}_{OR} -automorphism σ is said to be (eventually) increasing if $\exists y \forall x (x > y \implies x < \sigma(x))$.

Definition

Let RCF_{σ}^+ denote the $\mathcal{L}_{OR,\sigma}$ -theory of real-closed fields together with an (eventually) increasing automorphism.

Theorem (P.-Laskowski)

 RCF_{σ}^+ does not have a model companion in $\mathcal{L}_{OR,\sigma}$.

Definition

Let F be an ordered field in the language $\mathcal{L}_{OR} := \{+, -, \times, 0, 1, <\}$. An \mathcal{L}_{OR} -automorphism σ is said to be (eventually) increasing if $\exists y \forall x (x > y \implies x < \sigma(x))$.

Definition

Let RCF_{σ}^+ denote the $\mathcal{L}_{OR,\sigma}$ -theory of real-closed fields together with an (eventually) increasing automorphism.

Theorem (P.-Laskowski)

 ${\it RCF}^+_\sigma$ does not have a model companion in ${\cal L}_{{\it OR},\sigma}.$

Definition

Let F be an ordered field in the language $\mathcal{L}_{OR} := \{+, -, \times, 0, 1, <\}$. An \mathcal{L}_{OR} -automorphism σ is said to be (eventually) increasing if $\exists y \forall x (x > y \implies x < \sigma(x))$.

Definition

Let RCF_{σ}^+ denote the $\mathcal{L}_{OR,\sigma}$ -theory of real-closed fields together with an (eventually) increasing automorphism.

Theorem (P.-Laskowski)

 RCF_{σ}^{+} does not have a model companion in $\mathcal{L}_{OR,\sigma}$.