Model Companion of Unstable Theories with an Automorphism

Koushik Pal (joint with Chris Laskowski)

University of Maryland College Park

2012 ASL North American Annual Meeting April 2, 2012

Let $\mathcal L$ be a first-order language, and T be an $\mathcal L$ -theory.

 $4.57 + 4.77 +$

Let $\mathcal L$ be a first-order language, and T be an $\mathcal L$ -theory.

Let σ be a "new" unary function symbol, and let $\mathcal{L}_{\sigma} := \mathcal{L} \cup \{\sigma\}.$

 $4.60 \times 4.72 \times$

Let $\mathcal L$ be a first-order language, and T be an $\mathcal L$ -theory.

Let σ be a "new" unary function symbol, and let $\mathcal{L}_{\sigma} := \mathcal{L} \cup \{\sigma\}.$

Let $T_{\sigma} := T \cup \{ \text{``}\sigma \text{ is an \mathcal{L}-automorphism''} \}.$

ALC: N

 290

Let $\mathcal L$ be a first-order language, and T be an $\mathcal L$ -theory.

Let σ be a "new" unary function symbol, and let $\mathcal{L}_{\sigma} := \mathcal{L} \cup \{\sigma\}.$

Let $T_{\sigma} := T \cup \{ \text{``}\sigma \text{ is an \mathcal{L}-automorphism''} \}.$

Question: Does T_{σ} have a model companion in \mathcal{L}_{σ} ?

 290

Let $\mathcal L$ be a first-order language, and T be an $\mathcal L$ -theory.

Let σ be a "new" unary function symbol, and let $\mathcal{L}_{\sigma} := \mathcal{L} \cup \{\sigma\}.$

Let $T_{\sigma} := T \cup \{ \text{``}\sigma \text{ is an \mathcal{L}-automorphism''} \}.$

Question: Does T_{σ} have a model companion in \mathcal{L}_{σ} ? (If it does, we denote the model companion by T_{A} .)

 290

Theorem (Kikyo, 2000) If T is unstable without IP, then T_A does not exist.

 \mathcal{A} \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{B}

Theorem (Kikyo, 2000)

If T is unstable without IP, then T_A does not exist.

Theorem (Kikyo-Shelah, 2002)

If T has SOP, then T_A does not exist.

Theorem (Kikyo, 2000)

If T is unstable without IP, then T_A does not exist.

Theorem (Kikyo-Shelah, 2002)

If T has SOP, then T_A does not exist.

Theorem (Kudaibergenov, ????) If T is stable and has the fcp, then T_A does not exist.

Theorem (Kikyo, 2000)

If T is unstable without IP, then T_A does not exist.

Theorem (Kikyo-Shelah, 2002)

If T has SOP, then T_A does not exist.

Theorem (Kudaibergenov, ????) If T is stable and has the fcp, then T_A does not exist.

Theorem (Baldwin-Shelah, 2003) If T is stable, then T_A exists iff T does not admit obstructions.

Theorem (Kikyo, 2000)

If T is unstable without IP, then T_A does not exist.

Theorem (Kikyo-Shelah, 2002)

If T has SOP, then T_A does not exist.

Theorem (Kudaibergenov, ????) If T is stable and has the fcp, then T_A does not exist.

Theorem (Baldwin-Shelah, 2003) If T is stable, then T_A exists iff T does not admit obstructions.

Open Problem: What happens if T has IP?

Theorem (Kikyo-Shelah, 2002) If T has SOP, then T_A does not exist.

Proof Sketch.

Theorem (Kikyo-Shelah, 2002) If T has SOP, then T_A does not exist.

Proof Sketch. Let $(M,\sigma)\models \mathcal{T}_\sigma$ and $\langle a_i : i<\omega\rangle$ in M satisfy $a_i < a_{i+1} = \sigma(a_i).$

Theorem (Kikyo-Shelah, 2002) If T has SOP, then T_A does not exist.

Proof Sketch. Let $(M,\sigma)\models \mathcal{T}_\sigma$ and $\langle a_i : i<\omega\rangle$ in M satisfy $a_i < a_{i+1} = \sigma(a_i).$

Assuming T_A exists, extend (M, σ) to a sufficiently saturated model (N, σ) of T_A .

 \bullet $p(x) \vdash \psi(x)$

Theorem (Kikyo-Shelah, 2002) If T has SOP, then T_A does not exist.

Proof Sketch. Let $(M,\sigma)\models \mathcal{T}_\sigma$ and $\langle a_i : i<\omega\rangle$ in M satisfy $a_i < a_{i+1} = \sigma(a_i).$

Assuming T_A exists, extend (M, σ) to a sufficiently saturated model (N, σ) of T_A .

Let $p(x) := \{x > a_i : i < \omega\}$ and $\psi(x) := \exists y (a_0 < \sigma(y) < y < x)$.

 \bullet $p(x) \vdash \psi(x)$

Theorem (Kikyo-Shelah, 2002) If T has SOP, then T_A does not exist.

Proof Sketch. Let $(M,\sigma)\models \mathcal{T}_\sigma$ and $\langle a_i : i<\omega\rangle$ in M satisfy $a_i < a_{i+1} = \sigma(a_i).$

Assuming T_A exists, extend (M, σ) to a sufficiently saturated model (N, σ) of T_A .

Let
$$
p(x) := \{x > a_i : i < \omega\}
$$
 and $\psi(x) := \exists y (a_0 < \sigma(y) < y < x).$

In (N, σ) ,

$$
\bullet \ \ p(x) \vdash \psi(x)
$$

Theorem (Kikyo-Shelah, 2002) If T has SOP, then T_A does not exist.

Proof Sketch. Let $(M,\sigma)\models \mathcal{T}_\sigma$ and $\langle a_i : i<\omega\rangle$ in M satisfy $a_i < a_{i+1} = \sigma(a_i).$ Assuming T_A exists, extend (M, σ) to a sufficiently saturated model (N, σ) of T_A .

Let
$$
p(x) := \{x > a_i : i < \omega\}
$$
 and $\psi(x) := \exists y (a_0 < \sigma(y) < y < x)$.

In (N, σ) ,

$$
\bullet \ \ p(x) \vdash \psi(x)
$$

2 if $q(x)$ is a finite subset of $p(x)$, then $q(x) \not\vdash \psi(x)$.

This is a contradiction to the saturation of (N, σ) .

Definition

Let L be a linear order in the language $\mathcal{L}_O := \{ \langle \rangle \}$. An \mathcal{L}_O -automorphism σ of L is called increasing if $\forall x(x < \sigma(x))$.

4 m k

 \mathcal{A} and \mathcal{A} in \mathcal{A} . In the set of the se

Definition

Let L be a linear order in the language $\mathcal{L}_O := \{ \langle \rangle \}$. An \mathcal{L}_O -automorphism σ of L is called increasing if $\forall x(x < \sigma(x))$.

Definition

Let $\mathsf{LO}^+_\sigma\left(\mathsf{DLO}^+_\sigma\right)$ denote the $\mathcal{L}_{O,\sigma}\text{-theory}$ of (dense) linear orders together with the axioms denoting " σ is an increasing \mathcal{L}_O -automorphism".

 \mathcal{A} and \mathcal{A} in \mathcal{A} . If \mathcal{A}

Definition

Let L be a linear order in the language $\mathcal{L}_O := \{ \langle \rangle \}$. An \mathcal{L}_O -automorphism σ of L is called increasing if $\forall x(x < \sigma(x))$.

Definition

Let $\mathsf{LO}^+_\sigma\left(\mathsf{DLO}^+_\sigma\right)$ denote the $\mathcal{L}_{O,\sigma}\text{-theory}$ of (dense) linear orders together with the axioms denoting " σ is an increasing \mathcal{L}_O -automorphism".

Theorem (P.)

 LO_{σ}^+ has a model companion (namely DLO_{σ}^+) in $\mathcal{L}_{O,\sigma}$. Moreover,

Definition

Let L be a linear order in the language $\mathcal{L}_O := \{ \langle \rangle \}$. An \mathcal{L}_O -automorphism σ of L is called increasing if $\forall x(x < \sigma(x))$.

Definition

Let $\mathsf{LO}^+_\sigma\left(\mathsf{DLO}^+_\sigma\right)$ denote the $\mathcal{L}_{O,\sigma}\text{-theory}$ of (dense) linear orders together with the axioms denoting " σ is an increasing \mathcal{L}_O -automorphism".

Theorem (P.)

 LO_{σ}^+ has a model companion (namely DLO_{σ}^+) in $\mathcal{L}_{O,\sigma}.$ Moreover, DLO_{σ}^+ eliminates quantifiers and is o-minimal.

Definition

Let G be an ordered abelian group in the language $\mathcal{L}_{OG} := \{+, -, 0, <\}.$ An \mathcal{L}_{OG} -automorphism σ of G is called (positive) increasing if $\forall x > 0$ ($x < \sigma(x)$).

Definition

Let G be an ordered abelian group in the language $\mathcal{L}_{OG} := \{+, -, 0, <\}.$ An \mathcal{L}_{OG} -automorphism σ of G is called (positive) increasing if $\forall x > 0$ ($x < \sigma(x)$).

Definition

Let ODAG^+_σ denote the $\mathcal{L}_{OG,\sigma}$ -theory of ordered divisible abelian groups together with a (positive) increasing automorphism.

Theorem (P.-Laskowski)

 $ODAG_{\sigma}^{+}$ does not have a model companion in $\mathcal{L}_{OG,\sigma}$.

Theorem (P.-Laskowski)

 $ODAG_{\sigma}^{+}$ does not have a model companion in $\mathcal{L}_{OG,\sigma}$.

Proof Sketch.

Consider (\mathbb{Q}, σ) where $\sigma(x) = 3x$. Clearly $(\mathbb{Q}, \sigma) \models \text{ODAG}_{\sigma}^+$.

Extend (\mathbb{Q}, σ) to (sufficiently saturated) $(N, \sigma) \models (\mathsf{ODAG}^+_\sigma)_A$.

Theorem (P.-Laskowski)

 $ODAG_{\sigma}^{+}$ does not have a model companion in $\mathcal{L}_{OG,\sigma}$.

Proof Sketch.

Consider (\mathbb{Q}, σ) where $\sigma(x) = 3x$. Clearly $(\mathbb{Q}, \sigma) \models \text{ODAG}_{\sigma}^+$. Let $\langle a_i : i \langle \omega \rangle$ in M satisfy $\sigma(a_i) = a_{i+1} = 3a_i$.

Extend (\mathbb{Q}, σ) to (sufficiently saturated) $(N, \sigma) \models (\mathsf{ODAG}^+_\sigma)_A$.

Theorem (P.-Laskowski)

 $ODAG_{\sigma}^{+}$ does not have a model companion in $\mathcal{L}_{OG,\sigma}$.

Proof Sketch.

Consider (\mathbb{Q}, σ) where $\sigma(x) = 3x$. Clearly $(\mathbb{Q}, \sigma) \models \text{ODAG}_{\sigma}^+$. Let $\langle a_i : i \langle \omega \rangle$ in M satisfy $\sigma(a_i) = a_{i+1} = 3a_i$.

Extend (\mathbb{Q}, σ) to (sufficiently saturated) $(\mathcal{N}, \sigma) \models (\mathsf{ODAG}^+_\sigma)_A$.

 $\mathbf{0} \ \mathbf{p}(x) \vdash \psi(x)$

Theorem (P.-Laskowski)

 $ODAG_{\sigma}^{+}$ does not have a model companion in $\mathcal{L}_{OG,\sigma}$.

Proof Sketch.

Consider (\mathbb{Q}, σ) where $\sigma(x) = 3x$. Clearly $(\mathbb{Q}, \sigma) \models \text{ODAG}_{\sigma}^+$. Let $\langle a_i : i \langle \omega \rangle$ in M satisfy $\sigma(a_i) = a_{i+1} = 3a_i$.

Extend (\mathbb{Q}, σ) to (sufficiently saturated) $(\mathcal{N}, \sigma) \models (\mathsf{ODAG}^+_\sigma)_A$. Define

 $p(x):=\{x>a_i:i<\omega\}$ and $\psi(x):=\exists y(a_0< y< x\wedge \sigma(y)=2y).$

 \bullet $p(x) \vdash \psi(x)$

Theorem (P.-Laskowski)

 $ODAG_{\sigma}^{+}$ does not have a model companion in $\mathcal{L}_{OG,\sigma}$.

Proof Sketch.

Consider (\mathbb{Q}, σ) where $\sigma(x) = 3x$. Clearly $(\mathbb{Q}, \sigma) \models \text{ODAG}_{\sigma}^+$. Let $\langle a_i : i \langle \omega \rangle$ in M satisfy $\sigma(a_i) = a_{i+1} = 3a_i$.

Extend (\mathbb{Q}, σ) to (sufficiently saturated) $(\mathcal{N}, \sigma) \models (\mathsf{ODAG}^+_\sigma)_A$. Define

 $p(x):=\{x>a_i:i<\omega\}$ and $\psi(x):=\exists y(a_0< y< x\wedge \sigma(y)=2y).$

In (N, σ) ,

$$
\bullet \ \ p(x) \vdash \psi(x)
$$

Theorem (P.-Laskowski)

 $ODAG_{\sigma}^{+}$ does not have a model companion in $\mathcal{L}_{OG,\sigma}$.

Proof Sketch.

Consider (\mathbb{Q}, σ) where $\sigma(x) = 3x$. Clearly $(\mathbb{Q}, \sigma) \models \text{ODAG}_{\sigma}^+$. Let $\langle a_i : i \langle \omega \rangle$ in M satisfy $\sigma(a_i) = a_{i+1} = 3a_i$.

Extend (\mathbb{Q}, σ) to (sufficiently saturated) $(\mathcal{N}, \sigma) \models (\mathsf{ODAG}^+_\sigma)_A$. Define

 $p(x):=\{x>a_i:i<\omega\}$ and $\psi(x):=\exists y(a_0< y< x\wedge \sigma(y)=2y).$

In (N, σ) ,

$$
\bullet \ \ p(x) \vdash \psi(x)
$$

2 if $q(x)$ is a finite subset of $p(x)$, then $q(x) \not\vdash \psi(x)$.

This is a contradiction to the saturation of (N, σ) (N, σ) (N, σ) .

Multiplicative Ordered Abelian Groups

Recall that G is an ordered difference abelian group. So to get a

$$
L(x) := (m_0 + m_1 \sigma + \cdots + m_{k-1} \sigma^{k-1} + m_k \sigma^k)(x) = 0,
$$

where $k \in \mathbb{N}$, $m_0, \ldots, m_k \in \mathbb{Z}$. Thus $L \in \mathbb{Z}[\sigma]$.

Multiplicative Ordered Abelian Groups

Recall that G is an ordered difference abelian group. So to get a model companion, we at least need to answer if following type of equations has a solution:

Recall that G is an ordered difference abelian group. So to get a model companion, we at least need to answer if following type of equations has a solution:

$$
L(x) := (m_0 + m_1 \sigma + \cdots + m_{k-1} \sigma^{k-1} + m_k \sigma^k)(x) = 0,
$$

where $k \in \mathbb{N}$, $m_0, \ldots, m_k \in \mathbb{Z}$. Thus $L \in \mathbb{Z}[\sigma]$.

Recall that G is an ordered difference abelian group. So to get a model companion, we at least need to answer if following type of equations has a solution:

$$
L(x) := (m_0 + m_1 \sigma + \cdots + m_{k-1} \sigma^{k-1} + m_k \sigma^k)(x) = 0,
$$

where $k \in \mathbb{N}$, $m_0, \ldots, m_k \in \mathbb{Z}$. Thus $L \in \mathbb{Z}[\sigma]$. Such equations are called linear difference equations.

Axiom OM: for each $L \in \mathbb{Z}[\sigma]$,

$$
\Big(\forall x>0\ (L(x)>0)\Big)\bigvee\Big(\forall x>0\ (L(x)=0)\Big)\bigvee\Big(\forall x>0\ (L(x)<0)\Big).
$$

(denoted MODAG) if it satisfies Axiom OM.

$$
\Big(\forall x(L(x) = 0)\Big) \vee \Big(\forall y \exists x(L(x) = y)\Big), \qquad \text{for } L \in \mathbb{Z}[\sigma].
$$

Axiom OM: for each $L \in \mathbb{Z}[\sigma]$,

$$
\Big(\forall x > 0 \ (L(x) > 0)\Big) \bigvee \Big(\forall x > 0 \ (L(x) = 0)\Big) \bigvee \Big(\forall x > 0 \ (L(x) < 0)\Big).
$$

Definition (P.)

An ordered difference abelian group is called multiplicative (denoted MODAG) if it satisfies Axiom OM.

$$
(\forall x(L(x) = 0)) \vee (\forall y \exists x(L(x) = y)), \quad \text{for } L \in \mathbb{Z}[\sigma].
$$

Axiom OM: for each $L \in \mathbb{Z}[\sigma]$,

$$
\Big(\forall x > 0 \ (L(x) > 0)\Big) \bigvee \Big(\forall x > 0 \ (L(x) = 0)\Big) \bigvee \Big(\forall x > 0 \ (L(x) < 0)\Big).
$$

Definition (P.)

An ordered difference abelian group is called multiplicative (denoted MODAG) if it satisfies Axiom OM.

Definition

A non-trivial MODAG is called divisible (denoted div-MODAG) if

$$
(\forall x(L(x) = 0)) \vee (\forall y \exists x(L(x) = y)), \quad \text{for } L \in \mathbb{Z}[\sigma].
$$

Axiom OM: for each $L \in \mathbb{Z}[\sigma]$,

$$
\Big(\forall x > 0 \ (L(x) > 0)\Big) \bigvee \Big(\forall x > 0 \ (L(x) = 0)\Big) \bigvee \Big(\forall x > 0 \ (L(x) < 0)\Big).
$$

Definition (P.)

An ordered difference abelian group is called multiplicative (denoted MODAG) if it satisfies Axiom OM.

Definition

A non-trivial MODAG is called divisible (denoted div-MODAG) if

$$
(\forall x(L(x) = 0)) \vee (\forall y \exists x(L(x) = y)), \quad \text{for } L \in \mathbb{Z}[\sigma].
$$

Theorem (P.)

MODAG has a model companion (namely, div-MODAG) in $\mathcal{L}_{OG, \sigma}$.

Axiom OM: for each $L \in \mathbb{Z}[\sigma]$,

$$
\Big(\forall x>0\ (L(x)>0)\Big)\bigvee\Big(\forall x>0\ (L(x)=0)\Big)\bigvee\Big(\forall x>0\ (L(x)<0)\Big).
$$

Definition (P.)

An ordered difference abelian group is called multiplicative (denoted MODAG) if it satisfies Axiom OM.

Definition

A non-trivial MODAG is called divisible (denoted div-MODAG) if

$$
(\forall x(L(x) = 0)) \vee (\forall y \exists x(L(x) = y)), \quad \text{for } L \in \mathbb{Z}[\sigma].
$$

Theorem (P.)

MODAG has a model companion (namely, div-MODAG) in $\mathcal{L}_{OG, \sigma}$. Moreover, div-MODAG eliminates quantifier[s a](#page-37-0)[nd](#page-39-0)[is](#page-34-0)[o](#page-39-0)[-m](#page-0-0)[ini](#page-54-0)[m](#page-0-0)[al.](#page-54-0)

Definition

Let ${\bf G} = (G, +_G, -_G, 0_G, <_G, \sigma_G)$ and $H = (H, +_H, -_H, 0_H, < _H, \sigma_H)$ be two ordered abelian groups with automorphism. Define a new ordered difference abelian group $\mathbf{G} \oplus \mathbf{H} = (G \oplus H, +, -, 0, <, \sigma)$ as follows:

- \bullet g₁ ⊕ h₁ + g₂ ⊕ h₂ := (g₁ + \circ g₂) ⊕ (h₁ + μ h₂)
- \bullet 0 := 0_G \oplus 0_H
-

Definition

Let $\mathbf{G} = (G, +_G, -_G, 0_G, <_G, \sigma_G)$ and $H = (H, +_H, -_H, 0_H, < _H, \sigma_H)$ be two ordered abelian groups with automorphism. Define a new ordered difference abelian group $\mathbf{G} \oplus \mathbf{H} = (G \oplus H, +, -, 0, <, \sigma)$ as follows:

- $g_1 \oplus h_1 + g_2 \oplus h_2 := (g_1 + g_2) \oplus (h_1 + h_2)$
- \bullet 0 := 0_G \oplus 0_H
- \bullet g₁ \oplus h₁ \lt g₂ \oplus h₂
-

Definition

Let ${\bf G} = (G, +_G, -_G, 0_G, <_G, \sigma_G)$ and $H = (H, +_H, -_H, 0_H, < _H, \sigma_H)$ be two ordered abelian groups with automorphism. Define a new ordered difference abelian group $\mathbf{G} \oplus \mathbf{H} = (G \oplus H, +, -, 0, <, \sigma)$ as follows:

•
$$
g_1 \oplus h_1 + g_2 \oplus h_2 := (g_1 +_G g_2) \oplus (h_1 +_H h_2)
$$

 \bullet 0 := 0_G \oplus 0_H

 \bullet g₁ \oplus h₁ \lt g₂ \oplus h₂

 $\sigma(g \oplus h) := \sigma_G(g) \oplus \sigma_H(h)$

∽≏ດ

Definition

Let $\mathbf{G} = (G, +_G, -_G, 0_G, <_G, \sigma_G)$ and $H = (H, +_H, -_H, 0_H, < _H, \sigma_H)$ be two ordered abelian groups with automorphism. Define a new ordered difference abelian group $G \oplus H = (G \oplus H, +, -, 0, <, \sigma)$ as follows:

- $g_1 \oplus h_1 + g_2 \oplus h_2 := (g_1 + g_2) \oplus (h_1 + h_2)$
- \bullet 0 := 0_G \oplus 0_H
- $g_1 \oplus h_1 < g_2 \oplus h_2$ \iff either $(h_1 < h_2)$ or $(h_1 = h_2$ and $g_1 < g_2$)

 $\sigma(g \oplus h) := \sigma_G(g) \oplus \sigma_H(h)$

Clearly there are isomorphic copies of G and H inside $G \oplus H$,

Definition

Let
$$
G = (G, +_G, -_G, 0_G, <_G, \sigma_G)
$$
 and
\n $H = (H, +_H, -_H, 0_H, <_H, \sigma_H)$ be two ordered abelian groups with
\nautomorphism. Define a new ordered difference abelian group
\n $G \oplus H = (G \oplus H, +, -, 0, <, \sigma)$ as follows:

•
$$
g_1 \oplus h_1 + g_2 \oplus h_2 := (g_1 + g_2) \oplus (h_1 + h_2)
$$

$$
\bullet\ 0:=0_{G}\oplus 0_{H}
$$

\n- •
$$
g_1 \oplus h_1 < g_2 \oplus h_2
$$
\n- • either $(h_1 < h_2)$ or $(h_1 = h_2)$ and $g_1 < g_2$
\n

$$
\bullet\ \sigma(g\oplus h):=\sigma_{G}(g)\oplus\sigma_{H}(h)
$$

Clearly there are isomorphic copies of G and H inside $G \oplus H$,

Definition

Let
$$
G = (G, +_G, -_G, 0_G, <_G, \sigma_G)
$$
 and
\n $H = (H, +_H, -_H, 0_H, <_H, \sigma_H)$ be two ordered abelian groups with
\nautomorphism. Define a new ordered difference abelian group
\n $G \oplus H = (G \oplus H, +, -, 0, <, \sigma)$ as follows:

•
$$
g_1 \oplus h_1 + g_2 \oplus h_2 := (g_1 +_G g_2) \oplus (h_1 +_H h_2)
$$

$$
\bullet\ 0:=0_{G}\oplus 0_{H}
$$

•
$$
g_1 \oplus h_1 < g_2 \oplus h_2
$$

\n \iff either $(h_1 < h_2)$ or $(h_1 = h_2 \text{ and } g_1 < g_2)$

$$
\bullet\ \sigma(g\oplus h):=\sigma_{G}(g)\oplus\sigma_{H}(h)
$$

Clearly there are isomorphic copies of G and H inside $G \oplus H$, namely $\{g \oplus 0_H \mid g \in G\}$ and $\{0_G \oplus h \mid h \in H\}$.

Theorem (P.-Laskowski)

Let G and H be models of model complete theories T_G and T_H of ordered abelian groups with (certain restricted class of)

automorphism. Further assume that there are quantifier-free $G \oplus H$. Then the theory $T_{G \oplus H}$ of $G \oplus H$ is also model complete.

イロメ マ桐 どマ ラメ マラメ

Theorem (P.-Laskowski)

Let G and H be models of model complete theories T_G and T_H of ordered abelian groups with (certain restricted class of) automorphism. Further assume that there are quantifier-free $\mathcal{L}_{OG,\sigma}$ -formulas $\theta_G(x)$ and $\theta_H(x)$ that define G and H inside $G \oplus H$. Then the theory $T_{G \oplus H}$ of $G \oplus H$ is also model complete.

イロト イ部 トイモト イモト

Theorem (P.-Laskowski)

Let G and H be models of model complete theories T_G and T_H of ordered abelian groups with (certain restricted class of) automorphism. Further assume that there are quantifier-free $\mathcal{L}_{OG, \sigma}$ -formulas $\theta_G(x)$ and $\theta_H(x)$ that define G and H inside $G \oplus H$. Then the theory $T_{G \oplus H}$ of $G \oplus H$ is also model complete.

イロメ イタメ イラメ イラメ

Theorem (P.-Laskowski)

Let G and H be models of model complete theories T_G and T_H of ordered abelian groups with (certain restricted class of) automorphism. Further assume that there are quantifier-free $\mathcal{L}_{OG,\sigma}$ -formulas $\theta_G(x)$ and $\theta_H(x)$ that define G and H inside $G \oplus H$. Then the theory $T_{G \oplus H}$ of $G \oplus H$ is also model complete. In addition, if T_G and T_H eliminate quantifiers, then $T_{G\oplus H}$ also eliminates quantifiers.

イロメ イタメ イチメ イチメー

Theorem (P.-Laskowski)

Let G and H be models of model complete theories T_G and T_H of ordered abelian groups with (certain restricted class of) automorphism. Further assume that there are quantifier-free $\mathcal{L}_{OG, \sigma}$ -formulas $\theta_G(x)$ and $\theta_H(x)$ that define G and H inside $G \oplus H$. Then the theory $T_{G \oplus H}$ of $G \oplus H$ is also model complete. In addition, if T_G and T_H eliminate quantifiers, then $T_{G\oplus H}$ also eliminates quantifiers.

Example

The theory of the ordered abelian group $\mathbb{Q} \oplus \mathbb{Q}$, with automorphism σ defined as $\sigma(a \oplus b) = 2a \oplus 3b$, eliminates quantifiers, and is hence model complete.

イロト イ押 トイラト イラト

÷,

Theorem (P.-Laskowski)

Let G and H be models of model complete theories T_G and T_H of ordered abelian groups with (certain restricted class of) automorphism. Further assume that there are quantifier-free $\mathcal{L}_{OG, \sigma}$ -formulas $\theta_G(x)$ and $\theta_H(x)$ that define G and H inside $G \oplus H$. Then the theory $T_{G \oplus H}$ of $G \oplus H$ is also model complete. In addition, if T_G and T_H eliminate quantifiers, then $T_{G\oplus H}$ also eliminates quantifiers.

Example

The theory of the ordered abelian group $\mathbb{Q} \oplus \mathbb{Q}$, with automorphism σ defined as $\sigma(a \oplus b) = 2a \oplus 3b$, eliminates quantifiers, and is hence model complete. More generally, any two distinct multiplicative automorphism in each coordinate will work!

イロト イ押 トイラト イラト

 \equiv

 \mathcal{A} $\mathcal{F}^{\mathcal{A}}$ \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{B} \mathcal{B}

Definition

Let F be an ordered field in the language $\mathcal{L}_{OR} := \{+, -, \times, 0, 1, <\}.$ An \mathcal{L}_{OR} -automorphism σ is said to be (eventually) increasing if $\exists y \forall x (x > y \implies x < \sigma(x))$.

Definition

Let F be an ordered field in the language $\mathcal{L}_{OR} := \{+, -, \times, 0, 1, \lt\}.$ An \mathcal{L}_{OR} -automorphism σ is said to be (eventually) increasing if $\exists y \forall x (x > y \implies x < \sigma(x))$.

Definition

Let RCF^+_σ denote the $\mathcal{L}_{OR,\sigma}$ -theory of real-closed fields together with an (eventually) increasing automorphism.

Definition

Let F be an ordered field in the language $\mathcal{L}_{OR} := \{+, -, \times, 0, 1, \lt\}.$ An \mathcal{L}_{OR} -automorphism σ is said to be (eventually) increasing if $\exists y \forall x (x > y \implies x < \sigma(x))$.

Definition

Let RCF^+_σ denote the $\mathcal{L}_{OR,\sigma}$ -theory of real-closed fields together with an (eventually) increasing automorphism.

Theorem (P.-Laskowski)

 RCF_{σ}^+ does not have a model companion in $\mathcal{L}_{OR,\sigma}.$