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Dominating and unbounded reals

Definition

If V is a model of set theory and V [G] is a generic extension, a
real d ∈ V [G] ∩ ωω is called dominating if for every f ∈ V ∩ ωω we
have f ≤∗ d.

Here ≤∗ is the preorder of eventual domination

f ≤∗ g ⇔ (∀∞n)f(n) ≤ g(n).

We will also be interested in unbounded reals.

Definition

A real x ∈ V [G] ∩ ωω is called unbounded if for every f ∈ V ∩ ωω

we have x 6≤∗ f .
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Hechler forcing

The most basic method of adding a dominating real to the
universe is Hechler forcing D.

Conditions in D are of the form 〈s, f〉 where s ∈ ω<ω and f ∈ ωω.
We refer to s as the stem of the condition, which represents a
finite approximation of the real to be added; and we refer to f as
the commitment, which represents a restriction on the possible
values of the real beyond the stem.

The ordering is given by 〈s′, f ′〉 ≤ 〈s, f〉 if:

1 s ⊆ s′.
2 (∀n)f(n) ≤ f ′(n).

3 (∀n ∈ |s′| \ |s|)f(n) ≤ s′(n).
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Non-decreasing Hechler forcing

In order to simplify the analysis of the Hechler extension,
Baumgartner and Dordal (in “Adjoining dominating functions”)
used a slight variation which we denote Dnd.

The forcing is just
like D except the stems s ∈ ω<ω are taken to be nondecreasing.
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Rank analysis

Dnd admits a rank analysis.

Let A ⊆ ω<ω. For each nondecreasing
s ∈ ω<ω we define rkA(s) ∈ ON ∪ {∞} by recursion:

1 rkA(s) = 0 if s ∈ A.

2 rkA(s) ≤ α+ 1 if there is m ∈ ω and a sequence
{tl : l ∈ ω} ⊆ ωm with lim tl(0) =∞ and rkA(s _ tl) ≤ α.

The point of this definition is that A is a dense set exactly when
every nondecreasing s gets a rank. Using the rank analysis
Baumgartner and Dordal proved:

Theorem (Baumgartner, Dordal, 1985)

Say V � CH. Let G be generic for the finite support iteration of
Dnd. Then V [G] � s = ω1 ∧ b = 2ω. In particular s < b is
consistent.
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In “Combinatorial properties of Hechler forcing” Brendle, Judah
and Shelah used this same rank analysis to prove:

Theorem (Brendle, Judah and Shelah, 1992)

Forcing with Dnd adds a MAD family of size ω1 and a Luzin set of
size 2ω.

The existence of a Luzin set of size 2ω completely determines
Cichoń’s diagram of cardinal characteristics; it sets the left half
equal to ω1 and the right half equal to the continuum.

They also introduced a rank analysis for D and showed that their
theorem holds for the usual Hechler extension. It was an open
question whether D and Dnd are equivalent as forcing notions.
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Tree Hechler forcing

Brendle and Löwe (in “Eventually different functions and
inaccessible cardinals”) used a further variant of Hechler forcing.

(They used the notation D; in other recent literature it has been
referred to as L(Fin).) We shall denote this forcing by Dtree and
refer to it as the tree Hechler forcing.

Conditions in Dtree are trees T ⊆ ω<ω with a distinguished stem
s = stem(T ) so that:

1 (∀t ∈ T )s ⊆ t or t ⊆ s.

2 t ∈ T with s ⊆ t implies that (∀∞n)t _ n ∈ T .

The ordering is inclusion: T ′ ≤ T whenever T ′ ⊆ T .
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Brendle and Löwe wanted a model where ∆1
2(D) holds but ∆1

2(E)
fails. They introduced Dtree because it admits a rank analysis even
simpler than that of Dnd:

Let A ⊆ ω<ω. For each nondecreasing s ∈ ω<ω we define
rkA(s) ∈ ON ∪ {∞} by recursion:

1 rkA(s) = 0 if s ∈ A.

2 rkA(s) ≤ α+ 1 if (∃∞n)rkA(s _ n) ≤ α.

Both the Baumgartner-Dordal and the Brendle-Judah-Shelah
theorems go through for Dtree; the proofs are the same, but easier.

Since D, Dnd, and Dtree all admit a rank analysis and all have the
same effect on the common cardinal characteristics, it is natural to
ask: how do these forcings relate to each other? Are they actually
distinct as forcing notions?
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Theorem (Neeman, P.)

D and Dnd are equivalent as forcing notions.

The strategy of the proof is to first show that Dnd ∗ C and D are
equivalent and then show that Dnd ∗ C and Dnd are equivalent.
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Theorem (P.)

D and Dtree are not equivalent.

Proving this is complicated by the fact that each poset is a
subforcing of the other: forcing with D adds a Dtree-generic real
and vice versa.

Thus D and Dtree provide a counterexample to the natural
Cantor-Bernstein theorem in the category of forcing notions.
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To separate the two notions of forcing, we give a comparison of
the relationship between dominating reals and the unbounded reals
in the two extensions. We have the following two results:

Theorem (P.)

Let G be D-generic over V . There is an unbounded real x in V [G]
so that x ≤∗ y for every dominating real y ∈ V [G].

Theorem (P.)

Let G be Dtree-generic over V . Let x be an unbounded real in
V [G]. Then there is a dominating real y ∈ V [G] so that
(∃∞n)y(n) < x(n). (That is, x 6≤∗ y).
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A conjecture of Brendle and Löwe

Brendle and Löwe proved a dichotomy theorem for the possible
reals in the extension by Dtree:

Theorem (Brendle and Löwe, 2009)

Every real added by Dtree is either dominating or infinitely equal to
some ground model real.

Motivated by this, they made an analogous dichotomy-style
conjecture on the possible subforcings of Dtree:

Conjecture (Brendle and Löwe)

The only nontrivial subforcings of Dtree are Cohen forcing C and
Dtree itself.

We can see now that this conjecture is false. Forcing with Dtree

adds a D-generic real, which is neither equivalent to Dtree nor to C.
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Representation theorem for dominating reals in D

Constructing an unbounded real in V D dominated by every
dominating real requires a precise analysis of the dominating reals
in that extension.

Let ω↗ω denote the set of functions in ωω which
converge monotonically to infinity. Notice that if d is a dominating
real, and z ∈ V ∩ ω↗ω then both d ◦ z and z ◦ d are dominating.

Theorem (P.)

Let d be a Dnd-generic real, and suppose y ∈ V [d] is dominating.
Then there are z0, z1 ∈ V ∩ ω↗ω so that z0 ◦ d ◦ z1 ≤∗ y.

We can view this theorem as saying that d generates all the
dominating reals in V [d].
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This result has strong consequences for the cofinal structure of D,
the collection of dominating reals in V [d].

Corollary

The structures (V ∩ ωω,≤∗) and (D, ∗≥) are cofinally isomorphic.

Using this fact, one can extend work of Laflamme (“Bounding and
dominating numbers of families of functions on N”, 1993), and
give new consistently achievable values of the following three
cardinal characteristics for bounded F ⊆ ωω:

Definition (Laflamme)

1 b(F) = min{|H| : H ⊆ F is unbounded in F}
2 d(F) = min{|H| : H ⊆ F is dominating in F}
3 b↓(F) = min{|H| : H ⊆ F↓ is unbounded in (F↓, ∗≥)}

Here F↓ ⊆ ωω is the set of functions dominating F . (So if
F = V ∩ ωω then F↓ = D.)
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