Dominating and unbounded reals in Hechler extensions

Justin Palumbo

UCLA

ASL

2012 North American Annual Meeting University of Wisconsin Madison March 31, 2012

・ロン ・聞と ・ヨン ・ヨン

If V is a model of set theory and V[G] is a generic extension, a real $d \in V[G] \cap \omega^{\omega}$ is called *dominating* if for every $f \in V \cap \omega^{\omega}$ we have $f \leq^* d$.

・ 回 > ・ ヨ > ・ ヨ >

If V is a model of set theory and V[G] is a generic extension, a real $d \in V[G] \cap \omega^{\omega}$ is called *dominating* if for every $f \in V \cap \omega^{\omega}$ we have $f \leq^* d$.

Here \leq^* is the preorder of *eventual domination*

▲□→ ▲注→ ▲注→

If V is a model of set theory and V[G] is a generic extension, a real $d \in V[G] \cap \omega^{\omega}$ is called *dominating* if for every $f \in V \cap \omega^{\omega}$ we have $f \leq^* d$.

Here \leq^* is the preorder of *eventual domination*

$$f \leq^* g \Leftrightarrow (\forall^{\infty} n) f(n) \leq g(n).$$

▲□→ ▲注→ ▲注→

If V is a model of set theory and V[G] is a generic extension, a real $d \in V[G] \cap \omega^{\omega}$ is called *dominating* if for every $f \in V \cap \omega^{\omega}$ we have $f \leq^* d$.

Here \leq^* is the preorder of *eventual domination*

$$f \leq^* g \Leftrightarrow (\forall^\infty n) f(n) \leq g(n).$$

We will also be interested in *unbounded reals*.

・ 同 ト ・ ヨ ト ・ ヨ ト

If V is a model of set theory and V[G] is a generic extension, a real $d \in V[G] \cap \omega^{\omega}$ is called *dominating* if for every $f \in V \cap \omega^{\omega}$ we have $f \leq^* d$.

Here \leq^* is the preorder of *eventual domination*

$$f \leq^* g \Leftrightarrow (\forall^{\infty} n) f(n) \leq g(n).$$

We will also be interested in unbounded reals.

Definition

A real $x \in V[G] \cap \omega^{\omega}$ is called *unbounded* if for every $f \in V \cap \omega^{\omega}$ we have $x \not\leq^* f$.

소리가 소문가 소문가 소문가

<ロ> (四) (四) (三) (三) (三)

Conditions in \mathbb{D} are of the form $\langle s, f \rangle$ where $s \in \omega^{<\omega}$ and $f \in \omega^{\omega}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ●

Conditions in \mathbb{D} are of the form $\langle s, f \rangle$ where $s \in \omega^{<\omega}$ and $f \in \omega^{\omega}$. We refer to s as the stem of the condition, which represents a finite approximation of the real to be added;

Conditions in \mathbb{D} are of the form $\langle s, f \rangle$ where $s \in \omega^{<\omega}$ and $f \in \omega^{\omega}$. We refer to s as the stem of the condition, which represents a finite approximation of the real to be added; and we refer to f as the commitment, which represents a restriction on the possible values of the real beyond the stem.

Conditions in \mathbb{D} are of the form $\langle s, f \rangle$ where $s \in \omega^{<\omega}$ and $f \in \omega^{\omega}$. We refer to s as the stem of the condition, which represents a finite approximation of the real to be added; and we refer to f as the commitment, which represents a restriction on the possible values of the real beyond the stem.

The ordering is given by $\langle s', f' \rangle \leq \langle s, f \rangle$ if:

$$s \subseteq s'.$$

Conditions in \mathbb{D} are of the form $\langle s, f \rangle$ where $s \in \omega^{<\omega}$ and $f \in \omega^{\omega}$. We refer to s as the stem of the condition, which represents a finite approximation of the real to be added; and we refer to f as the commitment, which represents a restriction on the possible values of the real beyond the stem.

The ordering is given by $\langle s',f'\rangle\leq \langle s,f\rangle$ if:

$$s \subseteq s'.$$

 $(\forall n) f(n) \le f'(n).$

Conditions in \mathbb{D} are of the form $\langle s, f \rangle$ where $s \in \omega^{<\omega}$ and $f \in \omega^{\omega}$. We refer to s as the stem of the condition, which represents a finite approximation of the real to be added; and we refer to f as the commitment, which represents a restriction on the possible values of the real beyond the stem.

The ordering is given by $\langle s',f'\rangle\leq \langle s,f\rangle$ if:

$$1 s \subseteq s'.$$

$$(\forall n) f(n) \le f'(n).$$

$$(\forall n \in |s'| \setminus |s|) f(n) \le s'(n).$$

In order to simplify the analysis of the Hechler extension, Baumgartner and Dordal (in *"Adjoining dominating functions"*) used a slight variation which we denote \mathbb{D}_{nd} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

In order to simplify the analysis of the Hechler extension, Baumgartner and Dordal (in "Adjoining dominating functions") used a slight variation which we denote \mathbb{D}_{nd} . The forcing is just like \mathbb{D} except the stems $s \in \omega^{<\omega}$ are taken to be nondecreasing.

(日本) (日本) (日本)

 \mathbb{D}_{nd} admits a rank analysis.

イロン イヨン イヨン イヨン

 \mathbb{D}_{nd} admits a *rank analysis*. Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\operatorname{rk}_A(s) \in \operatorname{ON} \cup \{\infty\}$ by recursion:

(日本) (日本) (日本)

Rank analysis

 \mathbb{D}_{nd} admits a *rank analysis*. Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\operatorname{rk}_A(s) \in \operatorname{ON} \cup \{\infty\}$ by recursion:

• $\operatorname{rk}_A(s) = 0$ if $s \in A$.

Rank analysis

 \mathbb{D}_{nd} admits a *rank analysis*. Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\operatorname{rk}_A(s) \in \operatorname{ON} \cup \{\infty\}$ by recursion:

$$I \mathbf{k}_A(s) = 0 \text{ if } s \in A.$$

2 $\operatorname{rk}_A(s) \leq \alpha + 1$ if there is $m \in \omega$ and a sequence $\{t_l : l \in \omega\} \subseteq \omega^m$ with $\lim t_l(0) = \infty$ and $\operatorname{rk}_A(s \frown t_l) \leq \alpha$.

 \mathbb{D}_{nd} admits a *rank analysis*. Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\operatorname{rk}_A(s) \in ON \cup \{\infty\}$ by recursion:

$$I \mathbf{k}_A(s) = 0 \text{ if } s \in A.$$

2
$$\operatorname{rk}_A(s) \leq \alpha + 1$$
 if there is $m \in \omega$ and a sequence $\{t_l : l \in \omega\} \subseteq \omega^m$ with $\lim t_l(0) = \infty$ and $\operatorname{rk}_A(s \frown t_l) \leq \alpha$.

The point of this definition is that A is a dense set exactly when every nondecreasing s gets a rank.

 \mathbb{D}_{nd} admits a *rank analysis*. Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\operatorname{rk}_A(s) \in ON \cup \{\infty\}$ by recursion:

$$I \mathbf{k}_A(s) = 0 \text{ if } s \in A.$$

②
$$\operatorname{rk}_A(s) \leq \alpha + 1$$
 if there is $m \in \omega$ and a sequence
{ $t_l : l \in \omega$ } ⊆ ω^m with $\lim t_l(0) = \infty$ and $\operatorname{rk}_A(s \frown t_l) \leq \alpha$.

The point of this definition is that A is a dense set exactly when every nondecreasing s gets a rank. Using the rank analysis Baumgartner and Dordal proved:

 \mathbb{D}_{nd} admits a *rank analysis*. Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\operatorname{rk}_A(s) \in \operatorname{ON} \cup \{\infty\}$ by recursion:

$$I \mathbf{k}_A(s) = 0 \text{ if } s \in A.$$

② $\operatorname{rk}_A(s) \leq \alpha + 1$ if there is $m \in \omega$ and a sequence { $t_l : l \in \omega$ } ⊆ ω^m with $\lim t_l(0) = \infty$ and $\operatorname{rk}_A(s \frown t_l) \leq \alpha$.

The point of this definition is that A is a dense set exactly when every nondecreasing s gets a rank. Using the rank analysis Baumgartner and Dordal proved:

Theorem (Baumgartner, Dordal, 1985)

Say $V \vDash CH$. Let G be generic for the finite support iteration of \mathbb{D}_{nd} . Then $V[G] \vDash \mathfrak{s} = \omega_1 \land \mathfrak{b} = 2^{\omega}$. In particular $\mathfrak{s} < \mathfrak{b}$ is consistent.

Theorem (Brendle, Judah and Shelah, 1992)

Forcing with \mathbb{D}_{nd} adds a MAD family of size ω_1 and a Luzin set of size 2^{ω} .

Theorem (Brendle, Judah and Shelah, 1992)

Forcing with \mathbb{D}_{nd} adds a MAD family of size ω_1 and a Luzin set of size 2^{ω} .

The existence of a Luzin set of size 2^{ω} completely determines Cichoń's diagram of cardinal characteristics; it sets the left half equal to ω_1 and the right half equal to the continuum.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Brendle, Judah and Shelah, 1992)

Forcing with \mathbb{D}_{nd} adds a MAD family of size ω_1 and a Luzin set of size 2^{ω} .

The existence of a Luzin set of size 2^{ω} completely determines Cichoń's diagram of cardinal characteristics; it sets the left half equal to ω_1 and the right half equal to the continuum.

They also introduced a rank analysis for $\mathbb D$ and showed that their theorem holds for the usual Hechler extension.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Brendle, Judah and Shelah, 1992)

Forcing with \mathbb{D}_{nd} adds a MAD family of size ω_1 and a Luzin set of size 2^{ω} .

The existence of a Luzin set of size 2^{ω} completely determines Cichoń's diagram of cardinal characteristics; it sets the left half equal to ω_1 and the right half equal to the continuum.

They also introduced a rank analysis for $\mathbb D$ and showed that their theorem holds for the usual Hechler extension. It was an open question whether $\mathbb D$ and $\mathbb D_{nd}$ are equivalent as forcing notions.

Brendle and Löwe (in *"Eventually different functions and inaccessible cardinals"*) used a further variant of Hechler forcing.

・ロン ・聞と ・ヨン ・ヨン

Brendle and Löwe (in *"Eventually different functions and inaccessible cardinals"*) used a further variant of Hechler forcing. (They used the notation \mathbb{D} ; in other recent literature it has been referred to as $\mathbb{L}(Fin)$.)

Conditions in \mathbb{D}_{tree} are trees $T\subseteq \omega^{<\omega}$ with a distinguished stem $s=\operatorname{stem}(T)$ so that:

Conditions in \mathbb{D}_{tree} are trees $T\subseteq \omega^{<\omega}$ with a distinguished stem $s=\operatorname{stem}(T)$ so that:

$$(\forall t \in T) s \subseteq t \text{ or } t \subseteq s.$$

Conditions in \mathbb{D}_{tree} are trees $T\subseteq \omega^{<\omega}$ with a distinguished stem $s=\operatorname{stem}(T)$ so that:

$$(\forall t \in T) s \subseteq t \text{ or } t \subseteq s.$$

2 $t \in T$ with $s \subseteq t$ implies that $(\forall^{\infty} n)t \frown n \in T$.

Conditions in \mathbb{D}_{tree} are trees $T\subseteq \omega^{<\omega}$ with a distinguished stem $s=\operatorname{stem}(T)$ so that:

$$(\forall t \in T) s \subseteq t \text{ or } t \subseteq s.$$

2 $t \in T$ with $s \subseteq t$ implies that $(\forall^{\infty} n)t \frown n \in T$.

The ordering is inclusion: $T' \leq T$ whenever $T' \subseteq T$.

Conditions in \mathbb{D}_{tree} are trees $T\subseteq \omega^{<\omega}$ with a distinguished stem $s=\operatorname{stem}(T)$ so that:

$$(\forall t \in T) s \subseteq t \text{ or } t \subseteq s.$$

2 $t \in T$ with $s \subseteq t$ implies that $(\forall^{\infty} n)t \frown n \in T$.

The ordering is inclusion: $T' \leq T$ whenever $T' \subseteq T$.

Brendle and Löwe wanted a model where $\Delta_2^1(\mathbb{D})$ holds but $\Delta_2^1(\mathbb{E})$ fails. They introduced \mathbb{D}_{tree} because it admits a rank analysis even simpler than that of \mathbb{D}_{nd} :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\operatorname{rk}_A(s) \in \operatorname{ON} \cup \{\infty\}$ by recursion:

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\operatorname{rk}_A(s) \in \operatorname{ON} \cup \{\infty\}$ by recursion:

 $I rk_A(s) = 0 if s \in A.$

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\mathrm{rk}_A(s) \in \mathrm{ON} \cup \{\infty\}$ by recursion:

- $I rk_A(s) = 0 if s \in A.$
- 2 $\operatorname{rk}_A(s) \leq \alpha + 1$ if $(\exists^{\infty} n) \operatorname{rk}_A(s \frown n) \leq \alpha$.

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\operatorname{rk}_A(s) \in \operatorname{ON} \cup \{\infty\}$ by recursion:

•
$$\operatorname{rk}_A(s) = 0$$
 if $s \in A$.

2
$$\operatorname{rk}_A(s) \leq \alpha + 1$$
 if $(\exists^{\infty} n) \operatorname{rk}_A(s \frown n) \leq \alpha$.

Both the Baumgartner-Dordal and the Brendle-Judah-Shelah theorems go through for $\mathbb{D}_{\rm tree};$

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\operatorname{rk}_A(s) \in \operatorname{ON} \cup \{\infty\}$ by recursion:

•
$$\operatorname{rk}_A(s) = 0$$
 if $s \in A$.

2
$$\operatorname{rk}_A(s) \leq \alpha + 1$$
 if $(\exists^{\infty} n) \operatorname{rk}_A(s \frown n) \leq \alpha$.

Both the Baumgartner-Dordal and the Brendle-Judah-Shelah theorems go through for \mathbb{D}_{tree} ; the proofs are the same, but easier.

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\operatorname{rk}_A(s) \in \operatorname{ON} \cup \{\infty\}$ by recursion:

$$I \mathbf{k}_A(s) = 0 \text{ if } s \in A.$$

2
$$\operatorname{rk}_A(s) \leq \alpha + 1$$
 if $(\exists^{\infty} n) \operatorname{rk}_A(s \frown n) \leq \alpha$.

Both the Baumgartner-Dordal and the Brendle-Judah-Shelah theorems go through for \mathbb{D}_{tree} ; the proofs are the same, but easier.

Since \mathbb{D} , \mathbb{D}_{nd} , and \mathbb{D}_{tree} all admit a rank analysis and all have the same effect on the common cardinal characteristics, it is natural to ask:

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\operatorname{rk}_A(s) \in \operatorname{ON} \cup \{\infty\}$ by recursion:

$$I \mathbf{k}_A(s) = 0 \text{ if } s \in A.$$

2
$$\operatorname{rk}_A(s) \leq \alpha + 1$$
 if $(\exists^{\infty} n) \operatorname{rk}_A(s \frown n) \leq \alpha$.

Both the Baumgartner-Dordal and the Brendle-Judah-Shelah theorems go through for \mathbb{D}_{tree} ; the proofs are the same, but easier.

Since \mathbb{D} , \mathbb{D}_{nd} , and \mathbb{D}_{tree} all admit a rank analysis and all have the same effect on the common cardinal characteristics, it is natural to ask: how do these forcings relate to each other?

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\operatorname{rk}_A(s) \in \operatorname{ON} \cup \{\infty\}$ by recursion:

$$I \mathbf{k}_A(s) = 0 \text{ if } s \in A.$$

2
$$\operatorname{rk}_A(s) \leq \alpha + 1$$
 if $(\exists^{\infty} n) \operatorname{rk}_A(s \frown n) \leq \alpha$.

Both the Baumgartner-Dordal and the Brendle-Judah-Shelah theorems go through for \mathbb{D}_{tree} ; the proofs are the same, but easier.

Since \mathbb{D} , \mathbb{D}_{nd} , and \mathbb{D}_{tree} all admit a rank analysis and all have the same effect on the common cardinal characteristics, it is natural to ask: how do these forcings relate to each other? Are they actually distinct as forcing notions?

(日)(4月)(4日)(4日)(日)

Theorem (Neeman, P.)

 $\mathbb D$ and $\mathbb D_{\rm nd}$ are equivalent as forcing notions.

イロト イヨト イヨト イヨト 三日

Theorem (Neeman, P.)

 $\mathbb D$ and $\mathbb D_{\rm nd}$ are equivalent as forcing notions.

The strategy of the proof is to first show that $\mathbb{D}_{nd}\ast\mathbb{C}$ and \mathbb{D} are equivalent

(ロ) (同) (E) (E) (E)

Theorem (Neeman, P.)

 $\mathbb D$ and $\mathbb D_{nd}$ are equivalent as forcing notions.

The strategy of the proof is to first show that $\mathbb{D}_{nd} * \mathbb{C}$ and \mathbb{D} are equivalent and then show that $\mathbb{D}_{nd} * \mathbb{C}$ and \mathbb{D}_{nd} are equivalent.

 $\mathbb D$ and $\mathbb D_{\rm tree}$ are not equivalent.

◆□> ◆□> ◆臣> ◆臣> 「臣」 のへで

 $\mathbb D$ and $\mathbb D_{\rm tree}$ are not equivalent.

Proving this is complicated by the fact that each poset is a subforcing of the other:

 $\mathbb D$ and $\mathbb D_{\rm tree}$ are not equivalent.

Proving this is complicated by the fact that each poset is a subforcing of the other: forcing with $\mathbb D$ adds a $\mathbb D_{\rm tree}\text{-generic real}$ and vice versa.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ●

 $\mathbb D$ and $\mathbb D_{\rm tree}$ are not equivalent.

Proving this is complicated by the fact that each poset is a subforcing of the other: forcing with $\mathbb D$ adds a $\mathbb D_{\rm tree}\text{-generic real}$ and vice versa.

Thus $\mathbb D$ and $\mathbb D_{tree}$ provide a counterexample to the natural Cantor-Bernstein theorem in the category of forcing notions.

(日)(4月)(4日)(4日)(日)

Theorem (P.)

Let G be \mathbb{D} -generic over V. There is an unbounded real x in V[G] so that $x \leq^* y$ for every dominating real $y \in V[G]$.

Theorem (P.)

Let G be \mathbb{D} -generic over V. There is an unbounded real x in V[G] so that $x \leq^* y$ for every dominating real $y \in V[G]$.

Theorem (P.)

Let G be \mathbb{D}_{tree} -generic over V. Let x be an unbounded real in V[G]. Then there is a dominating real $y \in V[G]$ so that $(\exists^{\infty} n)y(n) < x(n)$.

Theorem (P.)

Let G be \mathbb{D} -generic over V. There is an unbounded real x in V[G] so that $x \leq^* y$ for every dominating real $y \in V[G]$.

Theorem (P.)

Let G be \mathbb{D}_{tree} -generic over V. Let x be an unbounded real in V[G]. Then there is a dominating real $y \in V[G]$ so that $(\exists^{\infty} n)y(n) < x(n)$. (That is, $x \not\leq^* y$).

Brendle and Löwe proved a dichotomy theorem for the possible reals in the extension by $\mathbb{D}_{\rm tree}$:

イロト イヨト イヨト イヨト 三日

Brendle and Löwe proved a dichotomy theorem for the possible reals in the extension by $\mathbb{D}_{\rm tree}$:

Theorem (Brendle and Löwe, 2009)

Every real added by \mathbb{D}_{tree} is either dominating or infinitely equal to some ground model real.

Brendle and Löwe proved a dichotomy theorem for the possible reals in the extension by $\mathbb{D}_{\rm tree}$:

Theorem (Brendle and Löwe, 2009)

Every real added by \mathbb{D}_{tree} is either dominating or infinitely equal to some ground model real.

Motivated by this, they made an analogous dichotomy-style conjecture on the possible subforcings of $\mathbb{D}_{\rm tree}$:

Brendle and Löwe proved a dichotomy theorem for the possible reals in the extension by $\mathbb{D}_{\rm tree}$:

Theorem (Brendle and Löwe, 2009)

Every real added by \mathbb{D}_{tree} is either dominating or infinitely equal to some ground model real.

Motivated by this, they made an analogous dichotomy-style conjecture on the possible subforcings of $\mathbb{D}_{\rm tree}$:

Conjecture (Brendle and Löwe)

The only nontrivial subforcings of \mathbb{D}_{tree} are Cohen forcing \mathbb{C} and \mathbb{D}_{tree} itself.

소리가 소문가 소문가 소문가

Brendle and Löwe proved a dichotomy theorem for the possible reals in the extension by $\mathbb{D}_{\rm tree}$:

Theorem (Brendle and Löwe, 2009)

Every real added by \mathbb{D}_{tree} is either dominating or infinitely equal to some ground model real.

Motivated by this, they made an analogous dichotomy-style conjecture on the possible subforcings of $\mathbb{D}_{\rm tree}$:

Conjecture (Brendle and Löwe)

The only nontrivial subforcings of \mathbb{D}_{tree} are Cohen forcing \mathbb{C} and \mathbb{D}_{tree} itself.

We can see now that this conjecture is false.

イロト イポト イヨト イヨト

Brendle and Löwe proved a dichotomy theorem for the possible reals in the extension by $\mathbb{D}_{\rm tree}$:

Theorem (Brendle and Löwe, 2009)

Every real added by \mathbb{D}_{tree} is either dominating or infinitely equal to some ground model real.

Motivated by this, they made an analogous dichotomy-style conjecture on the possible subforcings of $\mathbb{D}_{\rm tree}$:

Conjecture (Brendle and Löwe)

The only nontrivial subforcings of \mathbb{D}_{tree} are Cohen forcing \mathbb{C} and \mathbb{D}_{tree} itself.

We can see now that this conjecture is false. Forcing with $\mathbb{D}_{\rm tree}$ adds a $\mathbb{D}\text{-generic real},$

소리가 소문가 소문가 소문가

Brendle and Löwe proved a dichotomy theorem for the possible reals in the extension by $\mathbb{D}_{\rm tree}$:

Theorem (Brendle and Löwe, 2009)

Every real added by \mathbb{D}_{tree} is either dominating or infinitely equal to some ground model real.

Motivated by this, they made an analogous dichotomy-style conjecture on the possible subforcings of $\mathbb{D}_{\rm tree}$:

Conjecture (Brendle and Löwe)

The only nontrivial subforcings of \mathbb{D}_{tree} are Cohen forcing \mathbb{C} and \mathbb{D}_{tree} itself.

We can see now that this conjecture is false. Forcing with \mathbb{D}_{tree} adds a \mathbb{D} -generic real, which is neither equivalent to \mathbb{D}_{tree} nor to \mathbb{C} .

Constructing an unbounded real in $V^{\mathbb{D}}$ dominated by every dominating real requires a precise analysis of the dominating reals in that extension.

・ 同 ト ・ ヨ ト ・ ヨ ト

Constructing an unbounded real in $V^{\mathbb{D}}$ dominated by every dominating real requires a precise analysis of the dominating reals in that extension. Let ω^{\nearrow} denote the set of functions in ω^{ω} which converge monotonically to infinity.

▲撮♪ ★ 注♪ ★ 注♪

Constructing an unbounded real in $V^{\mathbb{D}}$ dominated by every dominating real requires a precise analysis of the dominating reals in that extension. Let $\omega^{\nearrow \omega}$ denote the set of functions in ω^{ω} which converge monotonically to infinity. Notice that if d is a dominating real, and $z \in V \cap \omega^{\nearrow \omega}$ then both $d \circ z$ and $z \circ d$ are dominating.

(日本) (日本) (日本)

Constructing an unbounded real in $V^{\mathbb{D}}$ dominated by every dominating real requires a precise analysis of the dominating reals in that extension. Let $\omega^{\nearrow \omega}$ denote the set of functions in ω^{ω} which converge monotonically to infinity. Notice that if d is a dominating real, and $z \in V \cap \omega^{\nearrow \omega}$ then both $d \circ z$ and $z \circ d$ are dominating.

Theorem (P.)

Let d be a \mathbb{D}_{nd} -generic real, and suppose $y \in V[d]$ is dominating. Then there are $z_0, z_1 \in V \cap \omega^{\nearrow \omega}$ so that $z_0 \circ d \circ z_1 \leq^* y$.

Constructing an unbounded real in $V^{\mathbb{D}}$ dominated by every dominating real requires a precise analysis of the dominating reals in that extension. Let $\omega^{\nearrow \omega}$ denote the set of functions in ω^{ω} which converge monotonically to infinity. Notice that if d is a dominating real, and $z \in V \cap \omega^{\nearrow \omega}$ then both $d \circ z$ and $z \circ d$ are dominating.

Theorem (P.)

Let d be a \mathbb{D}_{nd} -generic real, and suppose $y \in V[d]$ is dominating. Then there are $z_0, z_1 \in V \cap \omega^{\nearrow \omega}$ so that $z_0 \circ d \circ z_1 \leq^* y$.

We can view this theorem as saying that d generates all the dominating reals in ${\cal V}[d].$

Corollary

The structures $(V \cap \omega^{\omega}, \leq^*)$ and $(\mathcal{D}, *\geq)$ are cofinally isomorphic.

(4月) イヨト イヨト

Corollary

The structures $(V \cap \omega^{\omega}, \leq^*)$ and $(\mathcal{D}, *\geq)$ are cofinally isomorphic.

Using this fact, one can extend work of Laflamme ("Bounding and dominating numbers of families of functions on \mathbb{N} ", 1993), and give new consistently achievable values of the following three cardinal characteristics for bounded $\mathcal{F} \subseteq \omega^{\omega}$:

- イボト イラト - ラ

Corollary

The structures $(V \cap \omega^{\omega}, \leq^*)$ and $(\mathcal{D}, *\geq)$ are cofinally isomorphic.

Using this fact, one can extend work of Laflamme ("Bounding and dominating numbers of families of functions on \mathbb{N} ", 1993), and give new consistently achievable values of the following three cardinal characteristics for bounded $\mathcal{F} \subseteq \omega^{\omega}$:

Definition (Laflamme)

э.

Corollary

The structures $(V \cap \omega^{\omega}, \leq^*)$ and $(\mathcal{D}, *\geq)$ are cofinally isomorphic.

Using this fact, one can extend work of Laflamme ("Bounding and dominating numbers of families of functions on \mathbb{N} ", 1993), and give new consistently achievable values of the following three cardinal characteristics for bounded $\mathcal{F} \subseteq \omega^{\omega}$:

Definition (Laflamme)

$$\mathfrak{b}(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F} \text{ is unbounded in } \mathcal{F}\}$$

$$\mathfrak{d}(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F} \text{ is dominating in } \mathcal{F}\}$$

э.

Corollary

The structures $(V \cap \omega^{\omega}, \leq^*)$ and $(\mathcal{D}, *\geq)$ are cofinally isomorphic.

Using this fact, one can extend work of Laflamme ("Bounding and dominating numbers of families of functions on \mathbb{N} ", 1993), and give new consistently achievable values of the following three cardinal characteristics for bounded $\mathcal{F} \subseteq \omega^{\omega}$:

Definition (Laflamme)

$$\mathfrak{b}(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F} \text{ is unbounded in } \mathcal{F}\}$$

$$\mathfrak{d}(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F} \text{ is dominating in } \mathcal{F}\}$$

$$\mathfrak{b}^{\downarrow}(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F}^{\downarrow} \text{ is unbounded in } (\mathcal{F}^{\downarrow}, ^* \geq)\}$$

э.

Corollary

The structures $(V \cap \omega^{\omega}, \leq^*)$ and $(\mathcal{D}, *\geq)$ are cofinally isomorphic.

Using this fact, one can extend work of Laflamme ("Bounding and dominating numbers of families of functions on \mathbb{N} ", 1993), and give new consistently achievable values of the following three cardinal characteristics for bounded $\mathcal{F} \subseteq \omega^{\omega}$:

Definition (Laflamme)

$$\mathbf{0} \ \mathbf{\mathfrak{b}}(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F} \text{ is unbounded in } \mathcal{F}\}$$

2 $<math> \mathfrak{d}(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F} \text{ is dominating in } \mathcal{F}\}$

$$9 $\mathfrak{b}^{\downarrow}(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F}^{\downarrow} \text{ is unbounded in } (\mathcal{F}^{\downarrow}, *\geq)\}$$$

Here $\mathcal{F}^{\downarrow} \subseteq \omega^{\omega}$ is the set of functions dominating \mathcal{F} .

イロト イポト イヨト イヨト

= nan

Corollary

The structures $(V \cap \omega^{\omega}, \leq^*)$ and $(\mathcal{D}, *\geq)$ are cofinally isomorphic.

Using this fact, one can extend work of Laflamme ("Bounding and dominating numbers of families of functions on \mathbb{N} ", 1993), and give new consistently achievable values of the following three cardinal characteristics for bounded $\mathcal{F} \subseteq \omega^{\omega}$:

Definition (Laflamme)

$$\mathbf{0} \ \mathbf{\mathfrak{b}}(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F} \text{ is unbounded in } \mathcal{F}\}$$

2 $<math> \mathfrak{d}(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F} \text{ is dominating in } \mathcal{F}\}$

$$\bullet \mathfrak{b}^{\downarrow}(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F}^{\downarrow} \text{ is unbounded in } (\mathcal{F}^{\downarrow}, ^* \geq)\}$$

Here $\mathcal{F}^{\downarrow} \subseteq \omega^{\omega}$ is the set of functions dominating \mathcal{F} . (So if $\mathcal{F} = V \cap \omega^{\omega}$ then $\mathcal{F}^{\downarrow} = \mathcal{D}$.)

▲日 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ● の Q @

http://www.math.ucla.edu/~justinpa/

・ロン ・回 と ・ ヨン ・ ヨン

http://www.math.ucla.edu/~justinpa/

Justin Palumbo, "Unbounded and dominating reals in Hechler extensions." http://arxiv.org/abs/1201.2932

(1日) (1日) (1日)

http://www.math.ucla.edu/~justinpa/

Justin Palumbo, "Unbounded and dominating reals in Hechler extensions." http://arxiv.org/abs/1201.2932

Thank you.

・ 同 ト ・ ヨ ト ・ ヨ ト