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Privacy in Statistical Data Analysis 

Finding correlations 
E.g. medical: genotype/phenotype correlations 

Providing better services 
 Improve web search results 

Publishing Official Statistics 
Census data 

Datamining 
 

However: data contains confidential information 

WHAT ABOUT PRIVACY? 



The Basic Scenario   

• Database with rows x1..xn 

• Each row corresponds to an individual in the database 

• Columns correspond to fields, such as “name”, “zip 
code”; some fields contain sensitive information. 

Goal: Compute and release information about a sensitive 
database without revealing information about any 
individual 

Sanitizer 

Output Data 



Typical Suggestions 

• Remove from the database any information which obviously 
identities an individual.  

 i.e. remove “name” and “social security number” 

  -ad hoc; propose-and-break cycle 

• Only allow “large” set queries.  

 i.e.  “How many females with initials TP are in theory?”) 

  - ad hoc; often not private 

• Add random noise to true answer 

  - if question is asked many times, privacy is lost 

• Cryptography-inspired definition: Learn nothing about an 
individual that you didn`t know otherwise 

      - Limits utility  



William Weld’s Medical Record [S02] 

ZIP 

birth 
date 

sex 

name 

address 

date reg. 

party 
affiliation 

last voted 

ethnicity 

visit date 

diagnosis 

procedure 

medication 
total charge 

voter registration 
data  

HMO data 



Subsequent 
challenge 

abandoned 



Name: Thelma Arnold 
Age: 62 
Widow 
Residence: Lilburn, GA 

AOL Search History Release (2006) 

Heads 
Rolled 



 

 

Differential Privacy  
[Dwork,McSherry,Nissim,Smith 2006]   

    Y  

Pr [response] 

ratio bounded 

Q = space of queries; Y = output space; X = row space 
 
Mechanism M: Xn x Q  Y is -differentially private if: 
  for all q in Q, for all adjacent x, x’ in Xn,  the  distributions  
  M(x,q),  M(x’,q) are similar:  ∀ y in Y, q in Q:  

   e -𝜀  ≤  Pr[M(x,q) =y]     ≤ eε  
             Pr[M(x’,q)=y] 
 
Note: Randomness is crucial 



Three Key Results 

• Add Laplacian noise to answer  

  Works for numeric queries of low sensitivity 

• Exponential mechanism 
 Extends Laplacian noise to work for non-numeric 
 queries 

• Handling many queries without compromising 
error too much 



Achieving DP: Add Noise proportional to  
Sensitivity of the Query 

Sensitivity captures how much one person’s data 
can affect the output 

Counting queries have sensitivity 1. 

Δq = maxadj x,x’  |q(x) – q(x’)| 
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Why Does it Work ?  

q  = maxD,D’   |q(x) – q(x’)| 

0 b 2b 3b 4b 5b -b -2b -3b -4b 

Theorem: To achieve -differential privacy, add 
scaled symmetric noise [Lap(b)] with b = q/. 
P(y) ∽ exp(-|y - q(x)|/b) 
 

= 
exp( - | y – q(x’)|  / q ) 

Pr [M(x, q) = y] 

Pr [(M(x’, q) = y] 

exp( - | y – q(x)| / q ) 
∈ [exp(-), exp(𝜀)] 



Dealing with General Discrete-Valued 
Functions 

• 𝑓 𝑥 ∈ 𝑆 = {𝑦1, 𝑦2, … , 𝑦𝑘} 

– Strings, experts, small databases, … 

– Each 𝑦 ∈ 𝑆 has a utility for 𝑥, denoted 𝑢(𝑥, 𝑦) 

• Exponential Mechanism [McSherry-Talwar’07] 

              Output 𝑦 with probability ∝ 𝑒𝑢 𝑥, 𝑦 𝜖/Δu 

  

exp 𝑢 𝑥, 𝑦

exp 𝑢 𝑥′, 𝑦

𝜖 Δ 𝑢

= 𝑒𝑢 𝑥,𝑦 −𝑢 𝑥′,𝑦
𝜖 Δ𝑢 

 ≤  𝑒𝜖 



Composition 

• Simple k-fold composition of  𝛆-differentially 
private mechanisms is k𝛆-differentially 
private 

• Advanced:  √k 𝛆, rather than k𝛆 

• This is tight if we want very small error 

    For counting queries, can’t achieve o(sqrt n)  
 additive error with O(n) queries. 

• For larger error, much better results exist. 



Hugely Many Queries 

Blum,Ligett,Roth 
• Proof of Concept: approach the problem within a learning 

framework.  
• Handle exponentially many queries with low error, but infeasible 
• Associate Q with a concept class C. For each x, output a 

probability distribution over synthetic databases. 
 
Dwork, Rothblum, Vadhan 
• Apply Boosting (continually re-weight the queries). Base learner 

using Laplacian mechanism. 
• More efficient,  better error. 
 
Hardt-Rothblum 
• Multiplicative Weight update method to handle the online 

setting.   



Counting Queries Arbitrary Low-Sensitivity 
Queries 

Offline 

Online 

 Omitting polylog(various things, some of them big, 
like |𝑄|) terms 

 

Error 𝑛 
[Hardt-Rothblum] 
Runtime Exp(|U|) 

 

Hugely Many Queries 



Differential Privacy: Summary  

• Resilience to All Auxiliary Information 

– Past, present, future data sources and algorithms 

 

• Low-error high-privacy DP techniques exist for many problems 

– datamining tasks (association rules, decision trees, 
clustering, …), contingency tables, histograms, synthetic data 
sets for query logs, machine learning (boosting, statistical 
queries learning model, SVMs, logistic regression), various 
statistical estimators, network trace analysis, 
recommendation systems, … 

 

• Programming Platforms 

– http://research.microsoft.com/en-us/projects/PINQ/ 

– http://userweb.cs.utexas.edu/~shmat/shmat_nsdi10.pdf 
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 [Dwork, Naor, Pitassi, Rothblum, Yekhanin] 



How Can We Compute Without Storing 
Data? 

 

 Pan Privacy: 
   - Input arrives continuously (a stream).  

    -  A users data has many appearances, arbitrarily       

         interleaved 

    - Queries need to be answered repeatedly 

   - Private “inside and out” : 

  query answers as well as the entire state of the  

 computation should be differentially private!  

   - Protects against mission creep, subpoenas, intrusions 

 

 



Pan-Private Streaming Model 
[DNPRY] 

• Data is a stream of items; each item belongs to a user. 
Sanitizer sees each item and updates internal state. 
Generates output at end of the stream (single pass). 

   state 

Pan-Privacy:  For every two adjacent streams, at any 
single point in time, the internal state (and final 
output) are differentially private.  



What statistics have pan-private 
algorithms? 

We give pan-private streaming algorithms for: 

• Stream density / number of distinct elements 

• t-cropped mean: mean, over users, of min(t, 
#appearances) 

• Fraction of users appearing exactly k times  

• Fraction of users appearing exactly 0 times 
modulo k  

• Fraction of heavy-hitters, users appearing at 
least k times 



What statistics do not have  
pan-private algorithms? 

• How to prove negative results? 

• By analogy to streaming, a nice approach  uses 
communication complexity. 

• This motivates the development of differentially 
private communication complexity: 

  - Interesting in its own right. 

  - Surprising connections to standard cc  
  concepts 

  -New lower bounds for pan-privacy 
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Privacy in New Settings 

 

• Pan Privacy 

 

• Privacy in Multiparty Settings  

 

• Fairness 

[McGregor, Mironov, Pitassi, Reingold, Talwar, Vadhan] 



Differentially Private Communication 
Complexity: A Distributed View  

    

Goal: compute a joint function while maintaining privacy for 
any individual, with respect to both the outside world and 
the other database owners.  

Multiple databases, each with private data. 

D1 D2 

D3 

D4 D5 

F(D1,D2,..,D5) 



2-Party Communication Complexity 

2-party communication: each party has a dataset.  

Goal is to compute a function  f(DA,DB) 

m1 

m2 

m3 

mk-1 

mk 

DA 

x1 

x2 

 

xn 

DB 

y1 

y2 

 

ym 

f(DA,DB) f(DA,DB) 

Communication complexity of a protocol for f is the 
number of bits exchanged between A and B. 

 

In this talk, all protocols are assumed to be randomized. 



2-Party Differentially Private CC 

2-party (& multiparty) DP privacy: each party has a 
dataset; want to compute a joint function f(DA,DB) 

m1 

m2 

m3 

mk-1 

mk 

DA 

x1 

x2 

 

xn 

DB 

y1 

y2 

 

ym 

ZA  f(DA,DB) ZB f(DA,DB) 

A’s view should be a differentially private function of 
DB (even if A deviates from protocol), and vice-versa 



Two-Party Differential Privacy 
 

Let P(x,y) be a 2-party protocol. P is ε-DP if: 

  

(1) for all y,  for every pair x, x’ that are neighbors, 
and for every transcript π,  

   Pr[P(x,y) = π ] ≤ exp(ε) Pr[P(x’,y) = π ] 

(2) symmetrically, for all x, for every pair of 
neighbors y,y’ and for every transcript π 

 Pr[P(x,y)=π ] ≤ exp(ε) Pr[P(x,y’) = π] 



Examples 
1. Ones(x,y) = the number of ones in xy  
       Ones(00001111,10101010) = 8. 
         
   CC(Ones) = logn.  
   There is a low error DP protocol. 
 
2. Hamming Distance HD(x,y) = the number of 

positions i where xi  ≠ yi. 
         HD(00001111, 10101010) = 4 
   
  CC(HD)=n.  
  No low error DP protocol 
 
Is this a coincidence?  Is there a connection between 

low cc and low-error DP protocols? 



DP Protocols for Hamming Distance 
must have large error 

  

Theorem.  Let P be a 2-party ε-DP protocol, δ > 0. Then 
with very high  probability, P’s output differs from 
IP(x,y) by at least Ω(√n/eε logn) 

 

Notes:  

• This lower bound is  close to tight. 

  (There is an O(√n) error 𝛆-dp protocol) 

• Our result reveals strong connections between: DP 
protocols, low information cost protocols, and low 
complexity (short)  protocols. 

 



Implications of Lower bound for 
Hamming Distance 

 

[MPRV] defined computational ε-DP protocols. 
 
• Now the probability distribution over the transcripts 

for neighboring x,x’ is eε- indistinguishable to a polytime 
algorithm. 

 
• Via fully homomorphic encryption, any low sensitivity 

f(x,y) has a O(1) error computational ε-DP protocol, 
including Hamming distance. 

 
• Thus our lower bound shows that in the context of 

distributed protocols, there can be a huge gain by 
relaxing DP to computational DP. 



Applications to Pan Privacy 

• Lower Bounds for ε-DP communication 
protocols imply pan privacy lower bounds for 
density estimation (via Hamming distance 
lower bound). 

• Lower bounds also hold for multi-pass pan-
private models 
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[Dwork, Hardt, Pitassi, Rothblum, Zemel] 



Fairness in classification 

Advertising 
Health 
Care 

Financial  
aid 



Credit Application (WSJ 8/4/10) 

User visits capitalone.com 

Capital One uses tracking information provided by the 
tracking network [x+1] to personalize offers 

Concern: Steering minorities into higher rates (illegal) 
* 



 

• Versatile framework for obtaining and 
understanding fairness 

• An individual-based notion of fairness-fairness 
through awareness 

• Lots of open problems/directions 

– Can Fairness Imply Privacy (beyond DB setting)? 

Here: A CS Perspective 



First attempt: Group Fairness 
(Statistical Parity) 

• Running Example: Pick DCS all-star departmental hockey 
team. (20 players out of  200), using machine learning 

• Fairness: don’t discriminate against your foreign 
American colleagues  (50 people) 

• Statistical Parity: Pr[outcome |S] = Pr[outcome |T]  

 equivalently: Pr[S|outcome]=Pr[S} 

  

T = all 200  
      Colleagues 

S = 50 American 
      colleagues 



Statistical Parity may not be sufficient  

• Self-fulfilling prophecy: Pick  5 of the worst 
American  players. Then pick 15 best of the remaining. 

• Subset targeting: Pick  5 from those who are      fans 
to satisfy the quota; Pick remaining 15 from rest. 

• Multiculturalism: Best Americans are good at football; 
best non-Americans are good at soccer 

  

200 Colleagues 
       



• Fairness requires an understanding of the 
classification task  

• In addition to statistical parity,  we require 
that  similar individuals are treated similarly   

Similar for the 
purpose of 
classification task 

Similar  
distribution 
over outcomes 

Lesson: Fairness is Task Specific 



Similarity of individuals 
given by d 

V: Individuals O: outcomes 

  

M(x) 

y 

M(y) 

x 

Close individuals mapped 
to similar distributions 

f : O  A 

A: Actions 

Our Approach: Define a randomized mapping 
that “blends people with the crowd” 



V: Individuals 
O: outcomes 

x 

M(x) 

A: actions 

EXAMPLE: DCS All-Star Hockey Team 

M: V  𝞓(O) 

f: O  A 



• Fairness is a measure of privacy: The 
mapping M is a differentially private 
mechanism (where databases are people).  

• Privacy does not imply fairness.  

 

Fairness versus  Privacy 



Efficient  
Procedure 

Metric  
d: V  V  R  

V: Individuals O: outcomes 

x M(x) 

d-fair mapping M 

utility  
function 
U: V  O  R  

LP maximizing vendor’s expected utility  
subject to fairness condition 

An Algorithm for Fair Classification 



Suppose we enforce individual fairness 
w.r.t. similarity metric d. 
Question: Which pairs of groups of 
individuals receive (approximately) equal 
outcomes? 

Theorem: Answer is given by the 
Earthmover distance  
(w.r.t. d) between the two groups. 

Analysis: Is the distance metric 
compatible with statistical parity? 



Open Problems 

• Is differential privacy the right definition? 
  Not many competing definitions at present (PAR) 

• Axiomatic basis for differential privacy? 
• Develop a large-scale application 
• Privacy for other types of data  
  handwritten notes, images, etc. 

• Fairness 
  Just the beginning... 
  What can be done without a metric? 
  Case study (health care?)   



Thanks! 


