Well quasi-ordering Aronszajn lines.

Carlos Martinez-Ranero

Centro de Ciencias Matematicas

March 31, 2012

Carlos Martinez-Ranero (2012)

Well quasi-ordering A-lines.

March 31, 2012 1 / 17

3

4 E b

By rough classification we mean any classification that is done modulo a similarity type which is coarser than isomorphism type.

- By rough classification we mean any classification that is done modulo a similarity type which is coarser than isomorphism type.

- By rough classification we mean any classification that is done modulo a similarity type which is coarser than isomorphism type.
- The strength of a rough classification result depends essentially on two things:

- By rough classification we mean any classification that is done modulo a similarity type which is coarser than isomorphism type.
- The strength of a rough classification result depends essentially on two things:
- ④ (*K*, ≤)

A B M A B M

- By rough classification we mean any classification that is done modulo a similarity type which is coarser than isomorphism type.
- The strength of a rough classification result depends essentially on two things:
- ④ (*K*, <u>≺</u>)
- **③** and how fine is the equivalence relation \equiv (where *A* \equiv *B* if and only if *A* \leq *B* and *B* \leq *A*).

イロト 不得下 イヨト イヨト

- By rough classification we mean any classification that is done modulo a similarity type which is coarser than isomorphism type.
- The strength of a rough classification result depends essentially on two things:
- ④ (*K*, <u>≺</u>)
- **③** and how fine is the equivalence relation \equiv (where *A* \equiv *B* if and only if *A* \leq *B* and *B* \leq *A*).

イロト 不得下 イヨト イヨト

Definition

 (\mathcal{K}, \preceq) is well quasi-ordered if it is well-founded and every antichain is finite.

3

• • = • • = •

Definition

 (\mathcal{K}, \preceq) is well quasi-ordered if it is well-founded and every antichain is finite.

The sense of strength of such a classification result comes from the fact that whenever (K, ≤) is well quasi-ordered then the complete invariants of the equivalence relation are only slightly more complicated than the ordinals.

 Our goal is to obtain a rough classification result for a class of linear orders.

3

- - E

Image: A match a ma

- Our goal is to obtain a rough classification result for a class of linear orders.
- 2 In this context the quasi-order \leq is given by isomorphic embedding.

- Our goal is to obtain a rough classification result for a class of linear orders.
- 2 In this context the quasi-order \leq is given by isomorphic embedding.

Theorem (Laver 1971)

The class of σ -scattered linear orders is well quasi-ordered by embeddability.

Theorem (Dushnik-Miller 1940)

There exists an infinite family of pairwise incomparable suborders of ${\mathbb R}$ of cardinality ${\mathfrak c}.$

3

4 E b

Theorem (Dushnik-Miller 1940)

There exists an infinite family of pairwise incomparable suborders of $\mathbb R$ of cardinality $\mathfrak c.$

• Under *CH* it is not possible to extend Laver's result to the class of uncountable separable linear orders.

Theorem (Dushnik-Miller 1940)

There exists an infinite family of pairwise incomparable suborders of \mathbb{R} of cardinality c.

Under CH it is not possible to extend Laver's result to the class of uncountable separable linear orders.

Definition

A linear order L is \aleph_1 -dense if whenever a < b are in $L \cup \{-\infty, \infty\}$, the set of all x in L with a < x < b has cardinality \aleph_1 .

通 ト イヨ ト イヨト

Theorem (Dushnik-Miller 1940)

There exists an infinite family of pairwise incomparable suborders of $\mathbb R$ of cardinality $\mathfrak c.$

Under CH it is not possible to extend Laver's result to the class of uncountable separable linear orders.

Definition

A linear order *L* is \aleph_1 -dense if whenever a < b are in $L \cup \{-\infty, \infty\}$, the set of all *x* in *L* with a < x < b has cardinality \aleph_1 .

Theorem (Baumgartner 1981)

(PFA) Any two \aleph_1 -dense suborders of the reals are isomorphic.

Carlos Martinez-Ranero (2012)

Well quasi-ordering A-lines.

불 ▶ ◀ 불 ▶ 불 · ୍ ੨ < March 31, 2012 5 / 17

・ロン ・四 ・ ・ ヨン ・ ヨン

Theorem (Dushnik-Miller 1940)

There exists an infinite family of pairwise incomparable suborders of $\mathbb R$ of cardinality $\mathfrak c.$

Under CH it is not possible to extend Laver's result to the class of uncountable separable linear orders.

Definition

A linear order *L* is \aleph_1 -dense if whenever a < b are in $L \cup \{-\infty, \infty\}$, the set of all *x* in *L* with a < x < b has cardinality \aleph_1 .

Theorem (Baumgartner 1981)

(PFA) Any two \aleph_1 -dense suborders of the reals are isomorphic.

Carlos Martinez-Ranero (2012)

Well quasi-ordering A-lines.

불 ▶ ◀ 불 ▶ 불 · ୍ ੨ < March 31, 2012 5 / 17

・ロン ・四 ・ ・ ヨン ・ ヨン

Definition

An Aronszajn line A (A-line, in short) is an uncountable linear order such that:

3

Definition

An Aronszajn line A (A-line, in short) is an uncountable linear order such that:

3

Definition

An Aronszajn line A (A-line, in short) is an uncountable linear order such that:

2 $X \not\leq A$ for any uncountable separable linear order X.

3

A B A A B A

Definition

An Aronszajn line A (A-line, in short) is an uncountable linear order such that:

2 $X \not\leq A$ for any uncountable separable linear order X.

They are classical objects considered long ago by Aronszajn and Kurepa who first prove their existence.

A B A A B A

Definition

An Aronszajn line A (A-line, in short) is an uncountable linear order such that:

2 $X \not\leq A$ for any uncountable separable linear order X.

- They are classical objects considered long ago by Aronszajn and Kurepa who first prove their existence.
- Some time later Countryman made a brief but important contribution to the subject by asking whether there is an uncountable linear order *C* whose square is the union of countably many chains.

(人間) システン イラン

Definition

An Aronszajn line A (A-line, in short) is an uncountable linear order such that:

2 $X \not\leq A$ for any uncountable separable linear order X.

- They are classical objects considered long ago by Aronszajn and Kurepa who first prove their existence.
- Some time later Countryman made a brief but important contribution to the subject by asking whether there is an uncountable linear order *C* whose square is the union of countably many chains.
- **③** Here chain refers to the coordinate-wise partial order on C^2 .

(日) (同) (日) (日) (日)

Definition

An Aronszajn line A (A-line, in short) is an uncountable linear order such that:

2 $X \not\leq A$ for any uncountable separable linear order X.

- They are classical objects considered long ago by Aronszajn and Kurepa who first prove their existence.
- Some time later Countryman made a brief but important contribution to the subject by asking whether there is an uncountable linear order *C* whose square is the union of countably many chains.
- **③** Here chain refers to the coordinate-wise partial order on C^2 .

(日) (同) (日) (日) (日)

Aronszajn Orderings

Theorem (Shelah 1976)

Exists a Countryman line in ZFC.

3

Theorem (Shelah 1976)

Exists a Countryman line in ZFC.

Remark

A further important observation is that if C is Countryman and C^* is its reverse, then no uncountable linear order can embed into both C and C^* .

A B M A B M

Theorem (Shelah 1976)

Exists a Countryman line in ZFC.

Remark

A further important observation is that if C is Countryman and C^* is its reverse, then no uncountable linear order can embed into both C and C^* .

It was known for some time that, assuming MA_{ω_1} , the Countryman lines have a two-element basis.

Theorem (Shelah 1976)

Exists a Countryman line in ZFC.

Remark

A further important observation is that if C is Countryman and C^* is its reverse, then no uncountable linear order can embed into both C and C^* .

It was known for some time that, assuming MA_{ω_1} , the Countryman lines have a two-element basis.

Theorem (Moore 2006)

(PFA) The uncountable linear orderings have a five element basis consisting of X, ω_1 , ω_1^* , C, and C* whenever X is a set of reals of cardinality \aleph_1 and C is a Countryman line.

イロト 不得下 イヨト イヨト 二日

Theorem (Shelah 1976)

Exists a Countryman line in ZFC.

Remark

A further important observation is that if C is Countryman and C^* is its reverse, then no uncountable linear order can embed into both C and C^* .

It was known for some time that, assuming MA_{ω_1} , the Countryman lines have a two-element basis.

Theorem (Moore 2006)

(PFA) The uncountable linear orderings have a five element basis consisting of X, ω_1 , ω_1^* , C, and C* whenever X is a set of reals of cardinality \aleph_1 and C is a Countryman line.

イロト 不得下 イヨト イヨト 二日

Theorem (Moore 2008)

(PFA) Exists a universal Aronszajn line, denoted by η_C . Moreover, η_C can be described as the subset of the lexicographical power $(\zeta_C)^{\omega}$ consisting of those elements which are eventually zero where ζ_C is the direct sum $C^* \oplus 1 \oplus C$.

Theorem (Moore 2008)

(PFA) Exists a universal Aronszajn line, denoted by η_C . Moreover, η_C can be described as the subset of the lexicographical power $(\zeta_C)^{\omega}$ consisting of those elements which are eventually zero where ζ_C is the direct sum $C^* \oplus 1 \oplus C$.

Theorem (M-R)

(PFA) The class of Aronszajn lines is well quasi-ordered by embeddability.

- 4 週 ト - 4 三 ト - 4 三 ト

Fragmented A-lines and its ranks

Definition

An Aronszajn line A is *fragmented* if $\eta_C \not\leq A$.

3

Fragmented A-lines and its ranks

Definition

An Aronszajn line A is *fragmented* if $\eta_C \not\leq A$.

1 Let A_F denote the class of fragmented Aronszajn lines.

3

→ 3 → 4 3

Fragmented A-lines and its ranks

Definition

An Aronszajn line A is *fragmented* if $\eta_C \not\preceq A$.

() Let A_F denote the class of fragmented Aronszajn lines.

Definition

Let \mathcal{A}_0 denote the class of Countryman lines. For each $\alpha < \omega_2$, let \mathcal{A}_α denote the class of all elements of the form

$$\sum_{x\in I}A_x$$

such that $I \leq C$ or $I \leq C^*$ and $\forall x \in I \ A_x \in A_{\xi}$ for some $\xi < \alpha$.

Fragmented A-lines and its ranks

Theorem (M-R) (PFA) $\mathcal{A}_F = \bigcup_{\alpha \in \omega_2} \mathcal{A}_{\alpha}$ is equal to the class of fragmented Aronszajn lines.

| ▲ @ ▶ | ★ @ ▶ | → @ |

Fragmented A-lines and its ranks

Theorem (M-R) (PFA) $\mathcal{A}_F = \bigcup_{\alpha \in \omega_2} \mathcal{A}_{\alpha}$ is equal to the class of fragmented Aronszajn lines.

Definition

Exists a natural rank associated to each fragmented A-line, given by $rank(A) = min\{\alpha : A \in A_{\alpha}\}.$

The results suggest a strong analogy between the class of Aronszajn lines and the class of countable linear orders.

The results suggest a strong analogy between the class of Aronszajn lines and the class of countable linear orders.

The results suggest a strong analogy between the class of Aronszajn lines and the class of countable linear orders.

(i) C and C^{*} play the role of ω and ω^* ,

The results suggest a strong analogy between the class of Aronszajn lines and the class of countable linear orders.

- (i) C and C^{*} play the role of ω and ω^* ,
- (ii) η_C plays the role of the rationals

The results suggest a strong analogy between the class of Aronszajn lines and the class of countable linear orders.

- (i) C and C^{*} play the role of ω and ω^* ,
- (ii) η_C plays the role of the rationals
- (iii) and being fragmented is analogous to being scattered in this context.

Lemma (Main Lemma)

 (MA_{ω_1}) For each $\alpha < \omega_2$, there exists two incomparable Aronszajn lines D_{α}^+ , and D_{α}^- of rank α such that:

3

Lemma (Main Lemma)

 (MA_{ω_1}) For each $\alpha < \omega_2$, there exists two incomparable Aronszajn lines D_{α}^+ , and D_{α}^- of rank α such that:

3) 3

Lemma (Main Lemma)

 (MA_{ω_1}) For each $\alpha < \omega_2$, there exists two incomparable Aronszajn lines D_{α}^+ , and D_{α}^- of rank α such that:

3

- ∢ ∃ →

A 🖓

Lemma (Main Lemma)

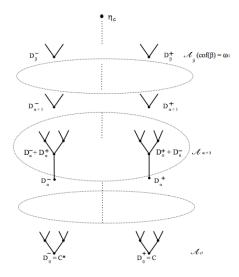
 (MA_{ω_1}) For each $\alpha < \omega_2$, there exists two incomparable Aronszajn lines D_{α}^+ , and D_{α}^- of rank α such that:

• For each $A \in \mathcal{A}_{\alpha}$ the following holds $A \equiv D_{\alpha}^+$ or $A \equiv D_{\alpha}^-$ or both $A \preceq D_{\alpha}^+$ and $A \preceq D_{\alpha}^-$.

・聞き くほき くほき 二日

Linear Orders

Sketch of the proof



Carlos Martinez-Ranero (2012)

Well quasi-ordering A-lines.

March 31, 2012 13 / 17

æ

・ 同下 ・ ヨト ・ ヨト

Definition

An Aronszajn tree is an uncountable tree in which all levels and chains are countable.

Definition

An Aronszajn tree is an uncountable tree in which all levels and chains are countable.

We say that for any two Aronszajn trees $T \preceq S$ if there exists an strictly increasing map $f : T \rightarrow S$.

• • = • • = •

Definition

An Aronszajn tree is an uncountable tree in which all levels and chains are countable.

We say that for any two Aronszajn trees $T \leq S$ if there exists an strictly increasing map $f : T \rightarrow S$.

Theorem (Todorcevic 2006)

The class \mathcal{A} contains infinite strictly decreasing sequences as well as uncountable antichains. Thus, it fails to be well quasi-ordered.

Definition

An Aronszajn tree is an uncountable tree in which all levels and chains are countable.

We say that for any two Aronszajn trees $T \preceq S$ if there exists an strictly increasing map $f : T \rightarrow S$.

Theorem (Todorcevic 2006)

The class ${\cal A}$ contains infinite strictly decreasing sequences as well as uncountable antichains. Thus, it fails to be well quasi-ordered.

This implies that the class $\ensuremath{\mathcal{A}}$ is too big to have a meaningful classification theorem.

We are looking for a subclass C where we can obtain a rough classification result. What properties for the class C we should ask for?

3

프 에 에 프 어

We are looking for a subclass C where we can obtain a rough classification result. What properties for the class C we should ask for?

(i) C is cofinal and coinitial,

3

프 에 에 프 어

We are looking for a subclass C where we can obtain a rough classification result. What properties for the class C we should ask for?

- (i) C is cofinal and coinitial,
- (ii) C is linearly ordered.

- 34

(B)

We are looking for a subclass C where we can obtain a rough classification result. What properties for the class C we should ask for?

- (i) $\ensuremath{\mathcal{C}}$ is cofinal and coinitial,
- (ii) C is linearly ordered.

Definition

A tree T is *coherent* if it can be represented as a downward closed subtree of $\omega^{<\omega_1}$ with the property that for any two nodes $t, s \in T$ $\{\xi \in dom(t) \cap dom(s) : t(\xi) \neq s(\xi)\}$ is finite.

周 と く ヨ と く ヨ と 二 ヨ

We are looking for a subclass C where we can obtain a rough classification result. What properties for the class C we should ask for?

- (i) $\ensuremath{\mathcal{C}}$ is cofinal and coinitial,
- (ii) C is linearly ordered.

Definition

A tree T is *coherent* if it can be represented as a downward closed subtree of $\omega^{<\omega_1}$ with the property that for any two nodes $t, s \in T$ $\{\xi \in dom(t) \cap dom(s) : t(\xi) \neq s(\xi)\}$ is finite.

Theorem (Todorcevic 2006)

 $(MA_{\omega_1}$ The class C of coherent Aronszajn trees is cofinal and coinitial in (\mathcal{A}, \preceq) and C is totally ordered.

We are looking for a subclass C where we can obtain a rough classification result. What properties for the class C we should ask for?

- (i) $\ensuremath{\mathcal{C}}$ is cofinal and coinitial,
- (ii) C is linearly ordered.

Definition

A tree T is *coherent* if it can be represented as a downward closed subtree of $\omega^{<\omega_1}$ with the property that for any two nodes $t, s \in T$ $\{\xi \in dom(t) \cap dom(s) : t(\xi) \neq s(\xi)\}$ is finite.

Theorem (Todorcevic 2006)

 $(MA_{\omega_1}$ The class C of coherent Aronszajn trees is cofinal and coinitial in (\mathcal{A}, \preceq) and C is totally ordered.

(iii) Moreover, assuming PFA, any coherent Aronszajn tree *T* is comparable with any Aronszajn tree.

Carlos Martinez-Ranero (2012)

Well quasi-ordering A-lines.

March 31, 2012 15 / 17

Since the chain $\ensuremath{\mathcal{C}}$ is not well quasi-ordered we need to understand its gap structure.

3

∃ ► < ∃</p>

< 4 ∰ > <

Since the chain $\ensuremath{\mathcal{C}}$ is not well quasi-ordered we need to understand its gap structure.

Definition

A gap in a linearly ordered set L, is a pair (A, B) of subsets of L with the property that any element of B is greater than any element of A. We say that the gap (A, B) is separated if there is x such that A < x < B.

通 ト イヨ ト イヨト

Since the chain $\ensuremath{\mathcal{C}}$ is not well quasi-ordered we need to understand its gap structure.

Definition

A gap in a linearly ordered set L, is a pair (A, B) of subsets of L with the property that any element of B is greater than any element of A. We say that the gap (A, B) is separated if there is x such that A < x < B.

Is there a non separated gap in C?

通 ト イヨ ト イヨト

Since the chain $\ensuremath{\mathcal{C}}$ is not well quasi-ordered we need to understand its gap structure.

Definition

A gap in a linearly ordered set L, is a pair (A, B) of subsets of L with the property that any element of B is greater than any element of A. We say that the gap (A, B) is separated if there is x such that A < x < B.

Is there a non separated gap in \mathcal{C} ?

Theorem

(PFA) Every coherent Aronszajn tree has an immediate successor in A.

- 4 目 ト - 4 日 ト - 4 日 ト

Since the chain $\ensuremath{\mathcal{C}}$ is not well quasi-ordered we need to understand its gap structure.

Definition

A gap in a linearly ordered set L, is a pair (A, B) of subsets of L with the property that any element of B is greater than any element of A. We say that the gap (A, B) is separated if there is x such that A < x < B.

Is there a non separated gap in $\ensuremath{\mathcal{C}}\xspace?$

Theorem

(PFA) Every coherent Aronszajn tree has an immediate successor in \mathcal{A} .

Definition

We say that two Aronszajn trees T and S are equivalent $T \sim S$ if either T is the *n*-th successor of S or S is the *n*-th successor of T for some positive integer *n*.

Theorem (M-R, Todorcevic)

(PFA) The class C/\sim of coherent Aronszajn trees module \sim is the unique ω_2 -saturated linear order of cardinality ω_2 .

Theorem (M-R, Todorcevic)

(PFA) The class C/\sim of coherent Aronszajn trees module \sim is the unique ω_2 -saturated linear order of cardinality ω_2 .

Corollary (M-R, Todorcevic)

(PFA) The class of Aronszajn trees is universal for linear orders of cardinality at most ω_2 .

超す イヨト イヨト ニヨ