Fragments of Martin's Maximum and weak square

Hiroshi Sakai Kobe University

ASL north american annual meeting March 31, 2012

1. Introduction

1.1 weak square

<u>Def.</u> (Schimmerling) For an unctble. card. λ and a card. $\mu \leq \lambda$,

$$\Box_{\lambda,\mu} \equiv \text{There exists } \langle \mathcal{C}_{\alpha} \mid \alpha < \lambda^{+} \rangle \text{ s.t.}$$

- \mathcal{C}_{α} is a family of club subsets of α of o.t. $\leq \lambda$,
- $1 \leq |\mathcal{C}_{\alpha}| \leq \mu$,
- $c \in \mathcal{C}_{\alpha} \& \beta \in \text{Lim}(c) \implies c \cap \beta \in \mathcal{C}_{\beta}.$

• $\Box_{\lambda,1} \Leftrightarrow \Box_{\lambda}$.

• $\Box_{\lambda,\lambda} \Leftrightarrow \Box_{\lambda}^* \Leftrightarrow$ "There is a special λ^+ -Aronszajn tree."

• $\lambda^{<\lambda} = \lambda \Rightarrow \Box_{\lambda,\lambda}$.

1.2 forcing axioms and weak square

Fact (Cummings-Magidor)

Assume MM. Then we have the following:

- (1) $\square_{\omega_1,\omega_1}$ fails.
- (2) If $cof(\lambda) = \omega$, then $\Box_{\lambda,\lambda}$ fails.
- (3) If $cof(\lambda) = \omega_1 < \lambda$, then $\Box_{\lambda,\mu}$ fails for all $\mu < \lambda$.
- (4) If $cof(\lambda) > \omega_1$, then $\Box_{\lambda,\mu}$ fails for all $\mu < cof(\lambda)$.

<u>Fact</u> (Cummings-Magidor) "MM + (1) + (2)" is consistent:

(1)
$$\Box_{\lambda,\lambda}$$
 holds for all λ with $cof(\lambda) = \omega_1 < \lambda$.

(2) $\Box_{\lambda, \operatorname{cof}(\lambda)}$ holds for all λ with $\operatorname{cof}(\lambda) > \omega_1$.

<u>Fact</u> (Todorčević, Magidor) PFA implies the failure of \Box_{λ,ω_1} for any λ .

<u>Fact</u> (Magidor) PFA is consistent with that \Box_{λ,ω_2} holds for all λ .

1.3 consequences of MM

 $\begin{array}{l} \mathsf{MM} \Rightarrow \mathsf{WRP} \Rightarrow (\dagger) \Rightarrow \mathsf{Chang's} \ \mathsf{Conjecture} \\ \Downarrow \\ \mathsf{PFA} \end{array}$

- WRP \equiv For any $\lambda \geq \omega_2$ and any stationary $X \subseteq [\lambda]^{\omega}$ there is $R \subseteq \lambda$ s.t. $|R| = \omega_1 \subseteq R \& X \cap [R]^{\omega}$ is stationary.
- (†) \equiv Every ω_1 -stationary preserving poset is semi-proper.
- Chang's Conjecture

 \equiv For any structure $\mathcal{M} = \langle \omega_2; \ldots \rangle$ there is $M \prec \mathcal{M}$ s.t.

 $|M| = \omega_1 \& |M \cap \omega_1| = \omega.$

We discuss how weak square is denied by (†) and Chang's Conjecture.

2. (†) and weak square

2.1 Rado's Conjecture

- Rado's Conjecture
 - \equiv Every non-special tree has a non-special subtree of size ω_1 .

Fact

Rado's Conjecture implies (†).

<u>Fact</u>(Todorčević) Rado's Conjecture is inconsistent with MM.

```
Rado's Conjecture \downarrow
MM \Longrightarrow (†)
```

Fact (Todorčević, Todorčević-Torres)

Assume Rado's Conjecture. Then we have the following:

(1) $\Box_{\omega_1,\omega}$ fails. If CH fails in addition, then \Box_{ω_1,ω_1} fails.

- (2) If $cof(\lambda) = \omega$, then $\Box_{\lambda,\lambda}$ fails.
- (3) If $cof(\lambda) = \omega_1 < \lambda$, then $\Box_{\lambda,\omega}$ fails.
- (4) If $cof(\lambda) > \omega_1$, then $\Box_{\lambda,\mu}$ fails for all $\mu < cof(\lambda)$.

<u>Fact</u>

"Rado's Conjecture +(1) + (2)" is consistent:

- (1) $\Box_{\lambda,\lambda}$ holds for all λ with $cof(\lambda) = \omega_1 < \lambda$.
- (2) $\Box_{\lambda, cof(\lambda)}$ holds for all λ with $cof(\lambda) > \omega_1$.

The situation is almost similar as MM. But the above facts are not sharp for λ with $cof(\lambda) = \omega_1 < \lambda$.

2.2 result

Thm. (Veličković-S., S.)
Assume (†). Then we have the following:

□ω₁,ω fails. If CH fails in addition, then □ω₁,ω₁ fails.
If cof(λ) = ω, then □_{λ,λ} fails.
If cof(λ) = ω₁ < λ, then □_{λ,ω} fails.
If λ is strong limit in addition, then □_{λ,μ} fails for all μ < λ.
If cof(λ) > ω₁, then □_{λ,μ} fails for all μ < cof(λ).

Fact

"(\dagger) + (1) + (2)" is consistent:

(1) $\Box_{\lambda,\lambda}$ holds for all λ with $cof(\lambda) = \omega_1 < \lambda$.

(2) $\Box_{\lambda, cof(\lambda)}$ holds for all λ with $cof(\lambda) > \omega_1$.

Conjecture

Assume (†). If $cof(\lambda) = \omega_1 < \lambda$, then $\Box_{\lambda,\mu}$ fails for all $\mu < \lambda$.

3. Chang's Conjecture and weak square

3.1 known fact and result

<u>Fact</u> (Todorčvić) Chang's Conjecture implies the failure of \Box_{ω_1} .

<u>Thm.</u> (S.) Chang's Conjecture is consistent with $\Box_{\omega_{1,2}}$.

3.2 Outline of Proof of Thm.

Let κ be a measurable cardinal. We prove

 $\Vdash_{\operatorname{Col}(\omega_1,<\kappa)*\dot{\mathbb{P}}}$ "Chang's Conjecture + $\Box_{\omega_1,2}$ ",

where \mathbb{P} is the poset adding a $\Box_{\omega_1,2}$ -seq. by initial segments:

- \mathbb{P} consists of all $p = \langle C_{\alpha} \mid \alpha \leq \delta \rangle$ ($\delta < \omega_2$) which is an initial segment of a $\Box_{\omega_1,2}$ -seq.
- $p \leq q$ iff $p \supseteq q$.

(\mathbb{P} is $< \omega_2$ -Baire and forces $\Box_{\omega_1,2}$.)

We must prove $Col(\omega_1, <\kappa) * \dot{\mathbb{P}}$ forces Chang's Conjecture.

In $V^{\mathsf{Col}(\omega_1, <\kappa)}$ suppose

$$p \in \mathbb{P}$$
,
 $\dot{\mathcal{M}}$ is a \mathbb{P} -name for a structure on ω_2 ,
 $\mathcal{N} := \langle \mathcal{H}_{\theta}, \in, p, \dot{\mathcal{M}} \rangle$.

It suffices to prove that in $V^{\mathsf{Col}(\omega_1,<\kappa)}$ there is $p^*\leq p$ and $N^*\prec\mathcal{N}$ s.t

-
$$p^*$$
 is N^* -generic,

- $|N^* \cap \omega_2| = \omega_1 \& |N^* \cap \omega_1| = \omega.$

 $(p^* \text{ forces that } N^* \cap \omega_2 \text{ witnesses Chang's Conjecture for } \dot{\mathcal{M}}.)$

We construct a \subseteq -increasing seq. $\langle N_{\xi} | \xi < \omega_1 \rangle$ of ctble. elem. submodels of \mathcal{N} and a descending seq. $\langle p_{\xi} | \xi < \omega_1 \rangle$ in \mathbb{P} below p s.t.

-
$$N_0 \cap \omega_1 = N_1 \cap \omega_1 = \cdots = N_{\xi} \cap \omega_1 = \cdots$$
,

-
$$p_{\xi}$$
 is N_{ξ} -generic, and $p_{\xi} \in N_{\xi+1}$,

-
$$\{p_{\xi} \mid \xi < \omega_1\}$$
 has a lower bound,

using some modification of the Strong Chang's Conjecture.

Then $N^* := \bigcup_{\xi < \omega_1} N_{\xi}$ and a lower bound p^* of $\{p_{\xi} \mid \xi < \omega_1\}$ are as desired.

Modification of the Strong Chang's Conjecture:

Lem. (In $V^{\text{Col}(\omega_1, <\kappa)}$) If $N \prec \mathcal{N}$ is ctble. and $\langle q_n \mid n < \omega \rangle$ is an (N, \mathbb{P}) -generic seq., then $\forall c \subseteq \sup(N \cap \omega_2)$: club, threads $\bigcup_{n < \omega} q_n$ $\exists d \subseteq \sup(N \cap \omega_2)$: club, threads $\bigcup_{n < \omega} q_n$ $\exists q^* \leq \bigcup_{n < \omega} q_n \land \langle \{c, d\} \rangle$ s.t. $\mathsf{sk}^{\mathcal{N}}(N \cup \{p'\}) \cap \omega_1 = N \cap \omega_1$.

3.3 Question

We used a measurable cardinal to construct a model of Chang's Conjecture and $\Box_{\omega_1,2}$. On the other hand, recall:

<u>Fact</u> (Silver, Donder) Con (ZFC + Chang's Conjecture) \Leftrightarrow Con (ZFC + ∃ ω_1 -Erdös cardinal).

Question

What is the consistency strength of "Chang's Conjecture + $\Box_{\omega_1,2}$ "?