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Introduction NSA and Constructive Analysis Philosophical implications

Motivation

From the scope of CCA 2012: (http://cca-net.de/cca2012/)

The conference is concerned with the theory of computability and
complexity over real-valued data. [BECAUSE] Most mathematical

models in physics and engineering [...] are based on the real
number concept.

The following is more true:

Most mathematical models in physics and engineering [...] are
based on the real number concept, and an intuitive calculus with

infinitesimals, i.e. informal Nonstandard Analysis.

We present a notion of constructive computability directly based
on Nonstandard Analysis.
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Constructive Analysis

Errett Bishop’s Constructive Analysis is a redevelopment of Mathematics,

consistent with CLASS, RUSS and INT.

Definition (Logical connectives in BISH: BHK)

1 P ∨ Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧ Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).
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From BISH to NSA

In BISH, proof and algorithm are central.

We will define a system of Nonstandard Analyis NSA where
transfer and Ω-invariant procedure play the same role.

NSA is similar to ∗RCA0, a nonstandard extension of RCA0.

Three important features:

1 No transfer principle / elementary extension (except for ∆0).

2 No ∆1-CA, but Ω-CA.

3 Levels of infinity (Stratified NSA).
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Feature 3: Stratified Nonstandard Analysis

The usual picture of ∗N:

∗N, the hypernatural numbers︷ ︸︸ ︷
. . . ω2 . . . ωk . . .

-
ω10 1 . . .

︸ ︷︷ ︸
N, the finite numbers

︸ ︷︷ ︸
Ω = ∗N \ N, the infinite numbers

In NSA, ∗N has extra structure:

countably many levels of infinity N ⊂ N1 ⊂ . . .Nk ⊂ Nk+1 ⊂ · · · ⊂ ∗N
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Feature 2: Ω-invariance

Ω-invariance ≈ algorithm ≈ finite procedure ≈ explicit computation.

Definition (Ω-invariance)

A set A ⊂ N is Ω-invariant if there is a quantifier-free formula ψ
such that for all ω ∈ Ω,

A = {k ∈ N : ψ(k , ω)}.

Note that A depends on ω ∈ Ω, but not on the choice of ω ∈ Ω.
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Feature 2: Ω-invariance

Theorem (Finiteness)

For every Ω-invariant A ⊂ N and k ∈ N, there is M ∈ N, such that

k ∈ A⇐⇒ ψ(k, ω)⇐⇒ ψ(k,M).

Thus, to verify whether k ∈ A, we only need to perform finitely many

operations (i.e. determine if ψ(k,M)).

NSA has Ω-CA instead of ∆1-CA.

Principle (Ω-CA)

All Ω-invariant sets exist.
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Lost in translation

BISH (based on IL) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and transfer (T)

AVB:
[A ∨ B] ∧ [A→ A ∈ T] ∧ [B → B ∈ T]

A→ B: an algo converts a proof of A
to a proof of B

A V B: A ∧ [A ∈ T]→ B ∧ [B ∈ T]

¬A: A→ (0 = 1) ∼A: A V (0 = 1)

≈ “an algo decides if A or if B” ≈ “an Ω-inv.proc. decides if A or if B”

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE the non-algorithmic/non-constructive principles behave the same!
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l
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non-Ω-invariant
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MCT: monotone convergence thm
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(limit computed by algo) (limit computed by Ω-inv. proc.)

l
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(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)
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non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

l
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

l
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

l
WLPR: (∀x ∈ R)

[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P

l
WLPR: (∀x ∈ R)

[
∼∼(x > 0)V∼(x > 0)

]
l

DISC:

A discontinuous 2
∗N → ∗N-function exists.
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Future research: Bounded Arithmetic

Is Ω-invariance useful for Bounded Arithmetic?

1 P := PRA with bound |f (n, x)| ≤ p(|x |, |n|) (polynomial p).

2 P = B := PRA without a bound, but with two sorts of
variables (~x ,~a) with recursion limited to ~x .

3 ~x are normal numbers, already constructed;
~a are safe numbers, ideal elements without a construction.

4 The same (intuitive) picture applies:

_? _? BA
0 1 . . . D N

normal ≈ constructed safe ≈ non-constructed

a0 = 2x0x0P is a polytime operation
55

P X

P
?
≈ Safe-invariance: (∀~x ∈ D)(∀~a,~b 6∈ D)

[
f (~x ;~a) = f (~x ;~b)

]
.
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Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:
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•PPPPP•��
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•⇓ ONE basic step

...
ω basic steps

...

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .
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Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

•

•

continuous transformation ht of f to g (t ∈ [0, 1]).

ht1(x)

ht2(x)

ht3(x)

...

...

...

•

•h1(x) =

h0(x) =

•
�
�

•
�
��

•
��

���

•
PPPPP

@
@
@
@
@

mω(x) ≈

kω(x) ≈

•@@
•

Q
QQ

•
PPPPP

•
PPPPP�

�
�
�
�

•PPPPP•��
���

•⇓ ONE basic step

...
ω basic steps

...

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Introduction NSA and Constructive Analysis Philosophical implications

Future work: Type Theory
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In the right framework, Ω-invariance captures Bishop’s notion
algorithm indirectly and from the outside.

An analogy:

Brains in vats
VERSUS

Intuitionists/constructivists in NSA.

How does X know he is not actually sitting in Y?
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Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, in Physics, calculations are explicit and existence
statements come with a construction (symbolically or numerically).

The answer: in Physics, an informal version of NSA is used to date.
(The notorious ‘epsilon-delta’ method was never adopted).

Also, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

An end result with physical meaning will not depend on the infinite
number/infinitesimal used, i.e. it is Ω-invariant. (Connes)
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On Robustness

Robustness = invariance under variation of parameters.

Parts of Reverse Mathematics and Computability are robust.

Robustness is a mixture of syntax and semantics.(Ontology of mathematics?)

Robustness (for scientific models) is a no-false-positives guarantee.

A distant dream: To provide a framework for building scientific
models that come with a proof of robustness, in the same way as
Type Theory provides a framework of building computer programs
that come with a proof of correctness.
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Final Thoughts

And what are these [infinitesimals]? [. . . ] They are neither finite

Quantities nor Quantities infinitely small, nor yet nothing. May we

not call them the ghosts of departed quantities?

George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

We thank the John Templeton Foundation for its generous support!

Thank you for your attention!
Any questions?
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