
Proof-Search and the Logic of Interaction

Alexis Saurin

ASL annual meeting
Special Session on Structural Proof-Theory

02/04/2011, Madison, Wisconsin

Aim of the Presentation

What this talk is about:

Proof-theoretical foundations of programming languages;

The central role the cut rule plays in the dynamics of proofs;

Di�erences and similarities between the logical foundations of
functional programming and logic programming;

Game-theoretic approach to proofs and computation: proofs as
dialogical argumentations;

Interactive Proof-search: Proof-Search by Cut-Elimination;

The aim of the presentation is:

to demonstrate the fruitfulness of the proof-theoretical and
game-theoretical approaches;

to challenge the di�erence between proof-search and
proof-normalization;

Organization of the Talk

Outline of the presentation

Sequent calculus, proof theory and computation;

Background on linear logic;

Interactive proof search in MALLz;

Abtracting away from sequent proofs: from MALLz to Ludics;

A uniform framework for computation-as-proof-search.

Proofs and Programs

Poof-Theory and Programming (1)
The cut rule: the corner-stone of mathematical reasoning

In order to establish theorem T , a typical pattern is:

�rst, to �nd an appropriate lemma L;
second, to prove T under the assumption that L holds;

then, to establish the lemma L;
�nally, to deduce theorem T .

This is re�ected in Gentzen's sequent calculi by the cut inference

rule:

D1

` L
D2

L ` T
` T cut

Proof theory and Programming (2)
The cut rule: the corner-stone of the computational interpretation of proofs.

D1

` L
D2

L ` T
` T cut

Gentzen's Fundamental Theorem (Hauptsatz):

Cut admissibility: One can prove the same statements with or
without cuts.

Cut elimination: One can transform a proof with cuts into a proof
without cuts by an algorithmics process;

⇒ Connects Programming languages & Proof theory:

Functional Programming / Logic Programming

Proof Normalization (PN) Proof Search (PS)
λ-calculus Prolog

Proof Theory and Functional Programming

The well-known Curry-Howard correspondence:

Typed λ-calculus ←→ NJ

Data Types ←→ Formulas
Typing Judgements ←→ NJ Sequents

Typed λ-terms ←→ NJ Deductions
Redex ←→ Cut

β-reduction ←→ Cut Reduction
Normal Forms ←→ Cut-free Proofs

Extends to sequent calculus (Curien-Herbelin)

Proof Theory and Logic Programming

The program is encoded as a sequent, typically P ` G ;

The operational meaning of this search lies in constraints
that are imposed to the search strategy, for instance a
goal-directed search. Example:

P,A ` G

P ` A⇒ G
load/⇒

Logic Programming ←→ Sequent calculus

Program ←→ Sequent
Program Clause ←→ Formula

Computation ←→ Proof Search
Successful computation ←→ Cut-free Proofs

Background on linear logic

Background on Linear Logic

Linear Logic [Girard, 1987]:

results from a careful analysis of structural rules in sequent

calculus;

more connectives than LK (2 conjunctions, 2 disjunctions plus

modalities), but the new inference rules are actually derived in

a simple way from the usual rules for LK;

built on strong duality principles ⇒ one-sided sequents.

LL and programming:

PN: more re�ned datatypes, �ner-grained cut-elimination;

PS: more expressive program clauses.

MA

LL Sequent Calculus

F ::= a | F ⊗ F | F ⊕ F | 1 | 0 | !F

positive

a⊥ | F O F | F N F | ⊥ | > | ?F

negative

` a, a⊥
[ini] ` Γ,A ` ∆,A⊥

` Γ,∆
[cut]

` 1
[1]

` Γ,A ` ∆,B

` Γ,∆,A ⊗ B
[⊗]

` Γ,A,B

` Γ,A O B
[O] ` Γ

` Γ,⊥ [⊥]

` Γ,Ai

` Γ,A1 ⊕ A2

[⊕i] i ∈ {1, 2} ` Γ,A ` Γ,B

` Γ,A N B
[N] ` Γ,> [>]

` ? Γ,B

` ? Γ, !B
[!]

` Γ,B

` Γ, ?B
[? d] ` Γ

` Γ, ?B
[?w]

` Γ, ?B, ?B

` Γ, ?B
[? c]

MALL Sequent Calculus

F ::= a | F ⊗ F | F ⊕ F | 1 | 0

| !F

positive

a⊥ | F O F | F N F | ⊥ | >

| ?F

negative

` a, a⊥
[ini] ` Γ,A ` ∆,A⊥

` Γ,∆
[cut]

` 1
[1]

` Γ,A ` ∆,B

` Γ,∆,A ⊗ B
[⊗]

` Γ,A,B

` Γ,A O B
[O] ` Γ

` Γ,⊥ [⊥]

` Γ,Ai

` Γ,A1 ⊕ A2

[⊕i] i ∈ {1, 2} ` Γ,A ` Γ,B

` Γ,A N B
[N] ` Γ,> [>]

` ? Γ,B

` ? Γ, !B
[!]

` Γ,B

` Γ, ?B
[? d] ` Γ

` Γ, ?B
[?w]

` Γ, ?B, ?B

` Γ, ?B
[? c]

Focalization in Linear Logic

Rules for negative connectives are reversible: no choice to
make, provability of the conclusion implies provability of the
premisses.

Rules for positive connectives involve choices, resulting in
possible erroneous choices during proof-search.

Still, positive connectives satisfy focalization: in a sequent
` F0, . . . ,Fn containing no negative formulas, some formula Fi
can be chosen as a focus for the search

Γ contains a negative formula Γ contains no negative formula

choose any negative formula choose some positive formula and
(e.g. the leftmost one) and decompose it (and its subformulas)
decompose it using the only hereditarily until we reach

possible negative rule atoms or negative subformulas

Focalization in Linear Logic
Synthetic Connectives and Computation

Focalization precisely describes what clusters of connectives
form a synthetic connective: arbitrary clusters of connectives
of the same polarity: (A ⊗ B) ⊕ C can be considered as a
ternary connective: (_ ⊗ _) ⊕ _.

Hypersequentialized calculus by building maximal clusters:

Connectives: ⊕i∈I⊗j∈Ji
N

j
i and Ni∈IOj∈Ji

P
j
i

Strict alternation of polarity (cf alternation of players in games.)

One of the key ingredients of Ludics, which is built on a
hypersequentialized calculus.

Focalization and Programming:

PN: pattern matching constructions;

PS: structures the search and reduces the size of the search
space

Proof Search by Cut-Elimination:
Interactive Proof Seach

Contrasting Logic and Functional Progamming

Proof-Search: the dynamics of the computation comes from
the search for a cut-free proof;

Cut-Elimination: the dynamics of the computation lies in the
normalization of a proof into a cut-free proof;

Cut-admissibility vs. Cut-elimination (two aspects of the same

result);

In both cases, results of computations are cut-free proofs;

Complexity lies in the choice of the cut-formula;

There seems to be a dichotomy between the two approaches:
di�cult to relate functional programming and logic
programming in a logically satisfying way.

Logic and Logic Programming: a Mismatch?
A fundamental problem: The very objects of proof search are
un�nished/uncompleted proofs which are not objects of the
theory of sequent calculus. For instance, pruning operators prune
the �search space� . (search space 6= space of proofs)

For instance:

How to use a failed search for future computations?

How to use the past computations in order to improve the
next computations?

We look for a setting which would be both:

more uniform
⇒ the di�erent components of computation as proof search

should be grouped in objects of the same sort

more �exible
⇒ it should allow to describe in a more declarative way operations

on the search space

Comparing Proof Search and Cut-Elimination

Cut (lemma)

Γ ` A,∆ Γ,A ` ∆

Γ ` ∆

Improper Axiom (joker) Γ ` ∆

Paradigm Functional Logic

Program
Proof without im-
proper axiom but
with cuts

Proof without cuts but
with improper axioms

Computation Cut Elimination
Improper Axioms
Elimination

Result Proof without cuts and without improper axiom

Comparing Proof Search and Cut-Elimination

Cut (lemma)

Γ ` A,∆ Γ,A ` ∆

Γ ` ∆

Improper Axiom (joker) Γ ` ∆

Paradigm Functional Logic

Program
Proof without im-
proper axiom but
with cuts

Proof without cuts but
with improper axioms

Computation Cut Elimination
Improper Axioms
Elimination

Result Proof without cuts and without improper axiom

Comparing Proof Search and Cut-Elimination

Cut (lemma)

Γ ` A,∆ Γ,A ` ∆

Γ ` ∆

Improper Axiom (joker) Γ ` ∆

Paradigm Functional Logic

Program
Proof without im-
proper axiom but
with cuts

Proof without cuts but
with improper axioms

Computation Cut Elimination
Improper Axioms
Elimination

Result Proof without cuts and without improper axiom

Dialogical Games for Proofs and Programs

Games to provide a semantics to proofs and programs:

Early interactive interpretations of proofs: Gentzen's
consistency proof (1936), Gödel Dialectica interpretation
(1958), Lorenzen's Dialogue games for intuitionistic provability
(1960);

Modern game-theoretical semantics to give meaning to proofs
of LL: Blass games (1992), Hyland and Ong (1993), Abramsky
et al's (1994), Girard's Geometry of interaction and lots of
recent developments;

Game semantics for function programming: starting with
Hyland-Ond, Abramsky et al's results on fully abstract model
for PCF. Many developments capturing other programming
constructions. Basic principle of those games: the play
describes the interaction between program's strategy and the
strategy of its environment.

Games and Logic Programming

Games to model logic programs:

A very natural approach, �rst introduced by Van Emden in
1986;

Yet, much less investigated than the game-semantical
approaches to functional programming;

Basic idea: given a program P and a goal q, the player
believes the goal is a consequence of the program while the
opponent doubts it.

Loddo & di Cosmo were the �rst to develop van Emden's idea
providing a game-semantics for logic programs (Horn clauses)
which is sound and complete with respect to SLD-resolutions.

Later, Pym & Ritter, Miller,Saurin& Delande,
Galanaki,Rondogiannis& Wadge, Tsouanas provided various
game semantics for logic programming and proof-search.

Game-theoretical interpretation of logic programs

Given a logic program P and a goal q = a1, . . . , an;

The player P aims at justifying that q can be deduced from P
while the Opponent O doubts that the goal can be inferred
from the program.

O begins by selecting one of the conjuncts of the goal q, say
ai , challenging P to justify ai .

P shall thus select a program clause (c ∈ P) to support his
assertion, such that the head of the clause matches ai : his
argumentation rely on the body of the clause.
There are three possible situations:

at some point, P picks a clause that is a fact: a←. O is left
with an empty conjunct and cannot play. The game is over, P
wins.
at some point, O picks a body formula that no clause's head
matches. P is therefore unable to justify the formula. The
game is over, O wins.
otherwise, the play goes on forever, in such a case, O wins.

Interactive Proof-Search, in principle

Test Environment I Interactive Search Space

N

E1 T

E2 E

↖↗

R

↑ ↑

E3 A

↖↑↗

C

D

E4 E5 T

I

E6 O

N

Duality test environment/interactive search space.

Proof Construction by Consensus: D must satisfy all tests Ei :
Either D has an argumentation to oppose to

(interact with) any Ei or it shall quit (ie use his joker).

Interactive Proof-Search, in principle

Test Environment I Interactive Search Space

N

E1 T

E2 E ↖↗
R ↑ ↑

E3 A ↖↑↗
C D

E4 E5 T

I

E6 O

N

Duality test environment/interactive search space.

Proof Construction by Consensus: D must satisfy all tests Ei :
Either D has an argumentation to oppose to

(interact with) any Ei or it shall quit (ie use his joker).

MALL

z and IPS in MALLz

MALL formulas will be given adresses to distinguish occurrences:
10 N〈〉 (⊥10 ⊕1 ⊥11)

ξ ::= 〈〉 | ξ0 | ξ1 (locations)
Fξ ::= Fξ0 ⊗ξ Fξ1 | Fξ0 ⊕ξ Fξ1 | 1ξ | 0ξ (pos)

| Fξ0 Oξ Fξ1 | Fξ0 Nξ Fξ1 | ⊥ξ | >ξ (neg)

` Aξ,A
⊥
ζ

ini
` Γ,Aξ ` ∆,A⊥ξ

` Γ,∆
cut

` Γ
z

` 1ξ
1

` Γ,Aξ0 ` ∆,Bξ1

` Γ,∆,Aξ0 ⊗ξ Bξ1
⊗ ` Γ,Aξi

` Γ,Aξ0 ⊕ξ Aξ1
⊕i , i ∈ {0, 1}

` Γ,>ξ
> ` Γ

` Γ,⊥ξ
⊥

` Γ,Aξ0,Bξ1

` Γ,Aξ0 Oξ Bξ1
O ` Γ,Aξ0 ` Γ,Bξ1

` Γ,Aξ0 Nξ Bξ1
N

In z, Γ contains no negative formula.

MALLz and IPS in MALLz
MALL formulas will be given adresses to distinguish occurrences:
10 N〈〉 (⊥10 ⊕1 ⊥11)

ξ ::= 〈〉 | ξ0 | ξ1 (locations)
Fξ ::= Fξ0 ⊗ξ Fξ1 | Fξ0 ⊕ξ Fξ1 | 1ξ | 0ξ (pos)

| Fξ0 Oξ Fξ1 | Fξ0 Nξ Fξ1 | ⊥ξ | >ξ (neg)

` Aξ,A
⊥
ζ

ini
` Γ,Aξ ` ∆,A⊥ξ

` Γ,∆
cut ` Γ

z

` 1ξ
1

` Γ,Aξ0 ` ∆,Bξ1

` Γ,∆,Aξ0 ⊗ξ Bξ1
⊗ ` Γ,Aξi

` Γ,Aξ0 ⊕ξ Aξ1
⊕i , i ∈ {0, 1}

` Γ,>ξ
> ` Γ

` Γ,⊥ξ
⊥

` Γ,Aξ0,Bξ1

` Γ,Aξ0 Oξ Bξ1
O ` Γ,Aξ0 ` Γ,Bξ1

` Γ,Aξ0 Nξ Bξ1
N

In z, Γ contains no negative formula.

IPS in MALLz

D0 =

` 10
1

` z
` ⊥10

⊥
` ⊥10 ⊕1 ⊥11

⊕0

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D1 =

` 10
1

` z
` ⊥11

⊥
` ⊥10 ⊕1 ⊥11

⊕1

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

Used to build D by interaction (i ∈ {0, 1}):
Di

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
D

` ⊥0 ⊕〈〉 (110 N1 111)

` cut

↓cut−elim
` z

IPS in MALLz

D0 =

` 10
1

` z
` ⊥10

⊥
` ⊥10 ⊕1 ⊥11

⊕0

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D1 =

` 10
1

` z
` ⊥11

⊥
` ⊥10 ⊕1 ⊥11

⊕1

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

Used to build D by interaction (i ∈ {0, 1}):
Di

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
D

` ⊥0 ⊕〈〉 (110 N1 111)

` cut

↓cut−elim
` z

IPS in MALLz

D0 =

` 10
1

` z
` ⊥10

⊥
` ⊥10 ⊕1 ⊥11

⊕0

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D1 =

` 10
1

` z
` ⊥11

⊥
` ⊥10 ⊕1 ⊥11

⊕1

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D =

` 110
1 ` 111

1

` 110 N1 111
N

` ⊥0 ⊕〈〉 (110 N1 111)
⊕1

N=N0 ∪ N1

IPS in MALLz

D0 =

` 10
1

` z
` ⊥10

⊥
` ⊥10 ⊕1 ⊥11

⊕0

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D1 =

` 10
1

` z
` ⊥11

⊥
` ⊥10 ⊕1 ⊥11

⊕1

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D =

` 110
1 ` 111

1

` 110 N1 111
N

` ⊥0 ⊕〈〉 (110 N1 111)
⊕1

N=N0 ∪ N1

IPS in MALLz

D0 =

` 10
1

` z
` ⊥10

⊥
` ⊥10 ⊕1 ⊥11

⊕0

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D1 =

` 10
1

` z
` ⊥11

⊥
` ⊥10 ⊕1 ⊥11

⊕1

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D =

` 110
1 ` 111

1

` 110 N1 111
N

` ⊥0 ⊕〈〉 (110 N1 111)
⊕1

N=N0 ∪ N1

IPS in MALLz

D0 =

` 10
1

` z
` ⊥10

⊥
` ⊥10 ⊕1 ⊥11

⊕0

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D1 =

` 10
1

` z
` ⊥11

⊥
` ⊥10 ⊕1 ⊥11

⊕1

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D =

` 110
1 ` 111

1

` 110 N1 111
N

` ⊥0 ⊕〈〉 (110 N1 111)
⊕1

N=N0 ∪ N1

IPS in MALLz

D0 =

` 10
1

` z
` ⊥10

⊥
` ⊥10 ⊕1 ⊥11

⊕0

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D1 =

` 10
1

` z
` ⊥11

⊥
` ⊥10 ⊕1 ⊥11

⊕1

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D =

` 110
1 ` 111

1

` 110 N1 111
N

` ⊥0 ⊕〈〉 (110 N1 111)
⊕1

N=N0 ∪ N1

IPS in MALLz

D0 =

` 10
1

` z
` ⊥10

⊥
` ⊥10 ⊕1 ⊥11

⊕0

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D1 =

` 10
1

` z
` ⊥11

⊥
` ⊥10 ⊕1 ⊥11

⊕1

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D =

` 110
1 ` 111

1

` 110 N1 111
N

` ⊥0 ⊕〈〉 (110 N1 111)
⊕1

N=N0 ∪ N1

IPS in MALLz

D0 =

` 10
1

` z
` ⊥10

⊥
` ⊥10 ⊕1 ⊥11

⊕0

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D1 =

` 10
1

` z
` ⊥11

⊥
` ⊥10 ⊕1 ⊥11

⊕1

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

D =

` 110
1 ` 111

1

` 110 N1 111
N

` ⊥0 ⊕〈〉 (110 N1 111)
⊕1

N=N0 ∪ N1

IPS in MALLz
Interacting with

Di =

` 10
1

` z
` ⊥1i

⊥
` ⊥10 ⊕1 ⊥11

⊕i

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N
, i ∈ {0, 1}

one can get

or

D =

` 110
1 ` 111

1

` 110 N1 111
N

` ⊥0 ⊕〈〉 (110 N1 111)
⊕1

D′ =

` z
` ⊥0

⊥
` ⊥0 ⊕〈〉 (110 N1 111)

⊕0

But D′ uses z: it is a failure.
How to avoid this second interaction for D′?

IPS in MALLz
Interacting with

Di =

` 10
1

` z
` ⊥1i

⊥
` ⊥10 ⊕1 ⊥11

⊕i

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N
, i ∈ {0, 1}

one can get or

D =

` 110
1 ` 111

1

` 110 N1 111
N

` ⊥0 ⊕〈〉 (110 N1 111)
⊕1

D′ =

` z
` ⊥0

⊥
` ⊥0 ⊕〈〉 (110 N1 111)

⊕0

But D′ uses z: it is a failure.
How to avoid this second interaction for D′?

MALLz and IPS in MALLz

Ludics contains appropriate ingredients to represent MALLz proofs.

One could add new tests to the environment:

D2 =

` ⊥10 ⊕1 ⊥11

z

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N|1

Adding D2 would have forbidden the search that leads to a failure
by forcing the selection of ⊕1.

This can be summarized in (〈〉, 1)−:

Slice of the N rule.

z
(〈〉, 1)−

From MALLz to designs

Ludics contains appropriate ingredients to represent MALLz proofs.

One could add new tests to the environment:

D2 =

` ⊥10 ⊕1 ⊥11

z

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N|1

The partial inference rule N|1 is a negative rule with active
formula indexed by 〈〉 producing one subformula located in 1.

This can be summarized in (〈〉, 1)−:

Slice of the N rule.

z
(〈〉, 1)−

From MALLz to designs
To obtain designs, several steps away from MALLz:

Retain only the locations, not the formulas

Only the essence of proof remains: proof rules not the
sequents. They are actions: (ξ, I)−, (τ i , {1, 2, 3})+, (ξ2, ∅)−
The actions correspond to maximal clusters of rules of a single
polarity to ensure alternation of polarity.

Daimon remains: special action z
Work by slices: negative rules are collections of unary rules.

Designs: correspond to proofs (or strategies). Polarized
according to their last rule. May have logical mistakes to be
detected interactively (a design can be losing or winning).

Successful interactions (ie. cut-eliminations) give rise to an
orthogonality relation between designs of opposite polarity.

A Behaviour is a set of design which is closed by
biorthogonality.

From MALLz to Designs

Di =
⊢ 10

1

⊢ z
⊢ ⊥1i

⊥
⊢ ⊥10 ⊕1 ⊥11

⊕i

⊢ 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

, i ∈ {0, 1} −→ 〈〉,{0}

0 ∅

〈〉,{1}

1 {i}

1i,{∅}

z

1

D =

⊢ 110
1 ⊢ 111

1

⊢ 110 N1 111
N

⊢ ⊥0 ⊕〈〉 (110 N1 111)
⊕1 −→ 〈〉 {1}

1,{0}

10 ∅

1,{1}

11 ∅

1

Scheme of IPS on an Example

E =
ξ,{0,1,2}

ξ0 {1}

ξ01,I01

ξ1 {1}

ξ11,I11

z

1

D0 = ∅ D1 = ξ {0,1,2}

D2 = ξ {0,1,2}

ξ0,{1}
D3 = ξ {0,1,2}

ξ0,{1}

ξ01 I01

D4 = ξ {0,1,2}

ξ0,{1}

ξ01 I01

ξ1,{1}
D5 = ξ {0,1,2}

ξ0,{1}

ξ01 I01

ξ1,{1}

ξ11 I11

1

Scheme of IPS on an Example

E =
ξ,{0,1,2}

ξ0 {1}

ξ01,I01

ξ1 {1}

ξ11,I11

z

1

D0 = ∅ D1 = ξ {0,1,2}

D2 = ξ {0,1,2}

ξ0,{1}
D3 = ξ {0,1,2}

ξ0,{1}

ξ01 I01

D4 = ξ {0,1,2}

ξ0,{1}

ξ01 I01

ξ1,{1}
D5 = ξ {0,1,2}

ξ0,{1}

ξ01 I01

ξ1,{1}

ξ11 I11

1

Updating the test environment

The environment is a set of tests isomorphic to the objects we
search for;

We develop the searched design depending on those tests;

By symmetry, we might also consider the possibility to modify
the test environment depending on the tests;

⇒ We may for instance add new elements to the test
environment.

A dynamical change of the �program� to be compared to the
(⇒ R) which implemented the loading of a module.
Changes the search behaviour (both in the intuitive and formal
sense):

if E ⊆ E′ then E′⊥ ⊆ E⊥.

The behaviour in which the search is taking place gets more and
more precise... there are more tests to constrain the search.

Backtracking

The backtracking behaviour corresponds to undoing the last choice
and going for an alternative.

When an interactive search has �nished and the searched
design uses a z, one may wish to search again.

We shall allow enlarging the test environment EENV with new
designs that will contribute to guide the search. Those designs
shall be such that the previously computed design is not
orthogonal to these designs: add restricted negative daimons
which forbid exploring the branches that previously led to
failures.

Backtracking, Interactively

Test Environment Interactive Search Space

I

N

E1 T

E2 E ↖↗
R ↑z ↑

E3 A ↖↑↗
C D

E4 E5 T

I

E6

Backtrack(D)

O

N

Using the interaction paths for D

Backtracking, Interactively

Test Environment Interactive Search Space

I

N

E1 T

E2 E ↖↗
R 6 ↑z ↑

E3 A ↖↑↗
C D

E4 E5 T

I

E6 Backtrack(D) O

N

Using the interaction paths for D

Conclusions

Relate cut-elimination and proof-search: proof-search by
cut-elimination. A test environment guiding the search of an
unspeci�ed proof D;

Possible to enrich the search environment by adding new tests;

Uniform approach to proof-search: the test environment
gather usual logical search instructions as well as constraints
to the search strategy;

Investigate a general framework where FP and LP could be
related? D could be partially speci�ed, interact with the test
environment E and then be extended as a proof under
construction (for instance, add new slices to D, or change z
to proper positive actions (ξ, I)+...)

Backtracking, Interactively

De�nition (Test(p))

Test(ε) = ∅;
Test(κ) = {κ+};
Test(s · κ · κ′) = {ps · κ · κ′q+, ps · κq−} ∪ Test(s).

De�nition (Backtrack(p))

Backtrack(p) is the smallest design such that:

Backtrack(p) contains all positive chronicles of Test(p) except
ppq+;

if χ ∈ Backtrack(p) is a positive chronicle ending with a proper
action (ξ, I)+, then for any i ∈ I and J ∈ Pf (ω) such that
χ · (ξi , J)− 6∈ Test(p), then χ · (ξi , J)− ·z ∈ Backtrack(p).

Control Operators in Logic Programming

Two important uses of control in logic programming:

Speed up the search, save ressources (e�ciency)

pruning a �nite part of the search space

Find new solutions, unreachable in �nite time (expressiveness)

pruning an in�nite part of the search space

Control Operators in Logic Programming

Two important uses of control in logic programming:

Speed up the search, save ressources (e�ciency)

pruning a �nite part of the search space

Find new solutions, unreachable in �nite time (expressiveness)

pruning an in�nite part of the search space

Interactive Control
Control treated interactively by updating the test environment E
thanks to φ: Given a test environment E, a design D and an
interaction path pD, φ outputs a set of designs {Eφ,D,pD

i , i ∈ I}
used to enlarge E:

E 7−→ E ∪ {Eφ,D,pD
i , i ∈ I}

Given E = {Ei , i ∈ I} and successive answers 〈D0,D1, . . . ,Dn, . . .〉
Applying φ after obtaining D0, one may consider the set

J = {i > 0,Di ∈ (E ∪ {Eφ,D0,pD0

i , i ∈ I})⊥}

if J is in�nite, one skipped some of the searched results

if J is �nite, that will possibly allow to �nd new solutions (that
were not reachable at �rst).

Use behavioural theory to analyze those control mechanisms

Interactive Control

Consider other usual pruning mechanisms in Prolog and and see
how �interactive� they can be made:

!/0;

a :- b, c, !, d.

a :- e, !, f.

a :- g.

soft cut;

once;

other backtracking modi�ers

intelligent backtracking

...

