Proof-Search and the Logic of Interaction

ASL annual meeting Special Session on Structural Proof-Theory 02/04/2011, Madison, Wisconsin

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Aim of the Presentation

What this talk is about:

- Proof-theoretical foundations of programming languages;
- The central role the *cut rule* plays in the dynamics of proofs;
- Differences and similarities between the logical foundations of *functional programming* and *logic programming*;
- Game-theoretic approach to proofs and computation: proofs as dialogical argumentations;
- Interactive Proof-search: Proof-Search by Cut-Elimination;

The aim of the presentation is:

 to demonstrate the fruitfulness of the proof-theoretical and game-theoretical approaches;

(ロ) (型) (E) (E) (E) (O)

 to challenge the difference between proof-search and proof-normalization;

Organization of the Talk

Outline of the presentation

- Sequent calculus, proof theory and computation;
- Background on linear logic;
- Interactive proof search in MALL♣;
- Abtracting away from sequent proofs: from MALL to Ludics;

• A uniform framework for computation-as-proof-search.

Proofs and Programs

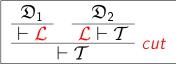
▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Poof-Theory and Programming (1) The *cut rule*: the corner-stone of mathematical reasoning

In order to establish theorem \mathcal{T} , a typical pattern is:

- first, to find an appropriate lemma \mathcal{L} ;
- ullet second, to prove $\mathcal T$ under the assumption that $\mathcal L$ holds;
- then, to establish the lemma *L*;
- ullet finally, to deduce theorem $\mathcal{T}.$

This is reflected in Gentzen's sequent calculi by the cut inference rule:



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Proof theory and Programming (2)

The cut rule: the corner-stone of the computational interpretation of proofs.

$$\frac{ \underbrace{\mathfrak{D}_1}_{\vdash \mathcal{L}} \underbrace{\mathfrak{D}_2}_{\mathcal{L} \vdash \mathcal{T}} }_{\vdash \mathcal{T}} \mathsf{cut}$$

Gentzen's Fundamental Theorem (Hauptsatz):

- *Cut admissibility:* One can prove the same statements with or without cuts.
- *Cut elimination:* One can transform a proof with cuts into a proof without cuts by an algorithmics process;
- ⇒ Connects Programming languages & Proof theory:

Functional Programming	/	Logic Programming
Proof Normalization (PN)		Proof Search (PS)
λ -calculus		Prolog

Proof Theory and Functional Programming

The well-known Curry-Howard correspondence:

Typed λ -calculus	\longleftrightarrow	NJ
Data Types	\longleftrightarrow	Formulas
Typing Judgements	\longleftrightarrow	NJ Sequents
Typed λ -terms	\longleftrightarrow	NJ Deductions
Redex	\longleftrightarrow	Cut
eta-reduction	\longleftrightarrow	Cut Reduction
Normal Forms	\longleftrightarrow	Cut-free Proofs

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Extends to sequent calculus (Curien-Herbelin)

Proof Theory and Logic Programming

- The program is encoded as a sequent, typically $\mathcal{P} \vdash G$;
- The *operational meaning* of this search lies in constraints that are imposed to the search strategy, for instance a *goal-directed search*. Example:

$$rac{\mathcal{P}, \mathsf{A} \vdash \mathsf{G}}{\mathcal{P} \vdash \mathsf{A} \Rightarrow \mathsf{G}} |\mathsf{load}/ \Rightarrow$$

Logic Programming	\longleftrightarrow	Sequent calculus
Program	\longleftrightarrow	Sequent
Program Clause	\longleftrightarrow	Formula
Computation	\longleftrightarrow	Proof Search
Successful computation	\longleftrightarrow	Cut-free Proofs

Background on linear logic

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Background on Linear Logic

Linear Logic [Girard, 1987]:

- results from a careful analysis of structural rules in sequent calculus;
- more connectives than LK (2 conjunctions, 2 disjunctions plus modalities), but the new inference rules are actually derived in a simple way from the usual rules for LK;
- built on strong duality principles \Rightarrow one-sided sequents.

LL and programming:

• PN: more refined datatypes, finer-grained cut-elimination;

ション ふゆ く 山 マ チャット しょうくしゃ

• PS: more expressive program clauses.

LL Sequent Calculus

$$F ::= a \mid F \otimes F \mid F \oplus F \mid \mathbf{1} \mid \mathbf{0} \mid !F$$
$$a^{\perp} \mid F \otimes F \mid F \otimes F \mid L \mid \top \mid ?F$$

$$\frac{1}{\vdash a, a^{\perp}} [ini] \qquad \frac{\vdash \Gamma, A \vdash \Delta, A^{\perp}}{\vdash \Gamma, \Delta} [cut]$$

 $\begin{array}{c|c} \hline & \Gamma, A & \vdash \Delta, B \\ \hline & \Gamma, A, A \otimes B \end{array} [\otimes] \quad \begin{array}{c} & \vdash \Gamma, A, B \\ & \vdash \Gamma, A \otimes B \end{array} [\otimes] \quad \begin{array}{c} & \vdash \Gamma \\ & \vdash \Gamma, L \end{array} [\bot] \end{array} \\ \\ \hline & \begin{array}{c} & \vdash \Gamma, A_i \\ & \vdash \Gamma, A_1 \oplus A_2 \end{array} [\oplus_i] \quad i \in \{1, 2\} \quad \begin{array}{c} & \vdash \Gamma, A & \vdash \Gamma, B \\ & \vdash \Gamma, A \otimes B \end{array} [\otimes] \quad \begin{array}{c} & \vdash \Gamma, \top \end{array} [\top] \end{array}$

 $\frac{\vdash ? \Gamma, B}{\vdash ? \Gamma, ! B} [!] \quad \frac{\vdash \Gamma, B}{\vdash \Gamma, ? B} [? d] \quad \frac{\vdash \Gamma}{\vdash \Gamma, ? B} [? w] \quad \frac{\vdash \Gamma, ? B, ? B}{\vdash \Gamma, ? B} [? c]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

MALL Sequent Calculus

$$F ::= a | F \otimes F | F \oplus F | 1 | 0 \qquad \text{positive} \\ a^{\perp} | F \otimes F | F \otimes F | \perp | \top \qquad \text{negative}$$

$$\frac{}{\vdash a, a^{\perp}} [ini] \qquad \frac{\vdash \Gamma, A \vdash \Delta, A^{\perp}}{\vdash \Gamma, \Delta} [cut]$$

 $\frac{1}{\vdash \mathbf{1}} \begin{bmatrix} \mathbf{1} \end{bmatrix} \quad \frac{\vdash \Gamma, A \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B} \begin{bmatrix} \otimes \end{bmatrix} \quad \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \otimes B} \begin{bmatrix} \otimes \end{bmatrix} \quad \frac{\vdash \Gamma}{\vdash \Gamma, \bot} \begin{bmatrix} \bot \end{bmatrix}$ $\frac{\vdash \Gamma, A_i}{\vdash \Gamma, A_1 \oplus A_2} \begin{bmatrix} \oplus_i \end{bmatrix} \quad i \in \{1, 2\} \quad \frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \otimes B} \begin{bmatrix} \otimes \end{bmatrix} \quad \frac{\vdash \Gamma, \top}{\vdash \Gamma, \top} \begin{bmatrix} \top \end{bmatrix}$

ション ふゆ く 山 マ チャット しょうくしゃ

Focalization in Linear Logic

- Rules for negative connectives are *reversible*: no choice to make, provability of the conclusion implies provability of the premisses.
- Rules for positive connectives *involve choices*, resulting in possible erroneous choices during proof-search.
- Still, positive connectives satisfy focalization: in a sequent
 ⊢ F₀,..., F_n containing no negative formulas, some formula F_i can be chosen as a focus for the search

Γ contains a negative formula	Γ contains no negative formula
choose any negative formula	choose some positive formula and
(e.g. the leftmost one) and	decompose it (and its subformulas)
decompose it using the only	hereditarily until we reach
possible negative rule	atoms or negative subformulas

Focalization in Linear Logic Synthetic Connectives and Computation

- Focalization precisely describes what clusters of connectives form a *synthetic connective*: arbitrary clusters of connectives of the same polarity: $(A \otimes B) \oplus C$ can be considered as a *ternary connective*: $(_ \otimes _) \oplus _$.
- *Hypersequentialized calculus* by building maximal clusters:
 - Connectives: $\bigoplus_{i \in I} \otimes_{j \in J_i} N_i^j$ and $\bigotimes_{i \in I} \otimes_{j \in J_i} P_i^j$
 - Strict alternation of polarity (cf alternation of players in games.)
 - One of the key ingredients of Ludics, which is built on a *hypersequentialized calculus*.

Focalization and Programming:

- PN: pattern matching constructions;
- PS: structures the search and reduces the size of the search space

うして ふゆう ふほう ふほう うらつ

Proof Search by Cut-Elimination: Interactive Proof Seach

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Contrasting Logic and Functional Progamming

- *Proof-Search:* the dynamics of the computation comes from the search for a cut-free proof;
- *Cut-Elimination:* the dynamics of the computation lies in the normalization of a proof into a cut-free proof;
- Cut-admissibility vs. Cut-elimination (two aspects of the same result);
- In both cases, results of computations are cut-free proofs;
- Complexity lies in the choice of the cut-formula;
- There seems to be a dichotomy between the two approaches: difficult to relate functional programming and logic programming in a logically satisfying way.

Logic and Logic Programming: a Mismatch? A fundamental problem: The very objects of proof search are unfinished/uncompleted proofs which are not objects of the theory of sequent calculus. For instance, pruning operators prune the "search space". (search space \neq space of proofs)

For instance:

- How to use a *failed search* for future computations?
- How to use the *past computations* in order to improve the next computations?

We look for a setting which would be both:

- more uniform
 - ⇒ the different components of computation as proof search should be grouped in objects of the same sort
- more flexible
 - \Rightarrow it should allow to describe in a more declarative way operations on the search space

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Comparing Proof Search and Cut-Elimination

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Cut(lemma) $\Gamma \vdash \Delta$ Improper Axiom(joker) $\Gamma \vdash \Delta$

Comparing Proof Search and Cut-Elimination

		$\Gamma \vdash A, \Delta \Gamma, A \vdash \Delta$
Cut	(lemma)	$\Gamma \vdash \Delta$
Improper Axiom	(joker)	$\Gamma \vdash \Delta$

Paradigm	Functional	Logic
Program	Proof without im- proper axiom but with cuts	Proof without cuts but with improper axioms
Computation	Cut Elimination	Improper Axioms Elimination
Result	Proof <u>without</u> cuts and <u>without</u> improper axiom	

Comparing Proof Search and Cut-Elimination

		$\Gamma \vdash A, \Delta \Gamma, A \vdash \Delta$
Cut	(lemma)	$\Gamma \vdash \Delta$
Improper Axiom	(joker)	$\Gamma \vdash \Delta$

Paradigm	Functional	Logic
Program	Proof without im- proper axiom but with cuts	Proof without cuts but with improper axioms
Computation	Cut Elimination	Improper Axioms Elimination
Result	Proof <u>without</u> cuts and <u>without</u> improper axiom	

Dialogical Games for Proofs and Programs

Games to provide a semantics to proofs and programs:

- Early interactive interpretations of proofs: Gentzen's consistency proof (1936), Gödel Dialectica interpretation (1958), Lorenzen's Dialogue games for intuitionistic provability (1960);
- Modern game-theoretical semantics to give meaning to proofs of LL: Blass games (1992), Hyland and Ong (1993), Abramsky et al's (1994), Girard's Geometry of interaction and lots of recent developments;
- Game semantics for function programming: starting with Hyland-Ond, Abramsky et al's results on fully abstract model for PCF. Many developments capturing other programming constructions. Basic principle of those games: the play describes the interaction between program's strategy and the strategy of its environment.

Games and Logic Programming

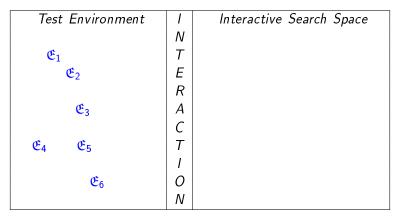
Games to model logic programs:

- A very natural approach, first introduced by Van Emden in 1986;
- Yet, much less investigated than the game-semantical approaches to functional programming;
- Basic idea: given a program \mathcal{P} and a goal q, the player believes the goal is a consequence of the program while the opponent doubts it.
- Loddo & di Cosmo were the first to develop van Emden's idea providing a game-semantics for logic programs (Horn clauses) which is sound and complete with respect to SLD-resolutions.
- Later, Pym & Ritter, Miller, Saurin& Delande, Galanaki, Rondogiannis& Wadge, Tsouanas provided various game semantics for logic programming and proof-search.

Game-theoretical interpretation of logic programs

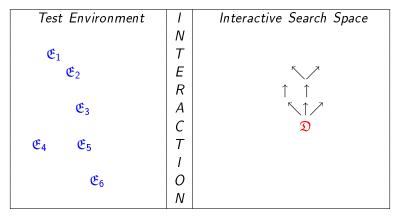
- Given a logic program P and a goal q = a₁,..., a_n;
- The player *P* aims at justifying that q can be deduced from *P* while the Opponent *O* doubts that the goal can be inferred from the program.
- O begins by selecting one of the conjuncts of the goal q, say a_i, challenging P to justify a_i.
- P shall thus select a program clause $(c \in P)$ to support his assertion, such that the head of the clause matches a_i : his argumentation rely on the body of the clause.
- There are three possible situations:
 - at some point, P picks a clause that is a fact: a ←. O is left with an empty conjunct and cannot play. The game is over, P wins.
 - at some point, *O* picks a body formula that no clause's head matches. *P* is therefore unable to justify the formula. The game is over, *O* wins.
 - otherwise, the play goes on forever, in such a case, O wins.

Interactive Proof-Search, in principle



Duality test environment/interactive search space.

Interactive Proof-Search, in principle



Duality test environment/interactive search space.

Proof Construction by Consensus: \mathfrak{D} must satisfy all tests \mathfrak{E}_i : Either \mathfrak{D} has an argumentation to oppose to (interact with) any \mathfrak{E}_i or it shall quit (ie use his joker).

MALL

MALL formulas will be given adresses to distinguish occurrences: 10 &() ($\perp_{10} \oplus_1 \perp_{11}$)

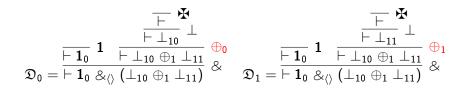
In 🛧, Γ contains no negative formula.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - 釣�?

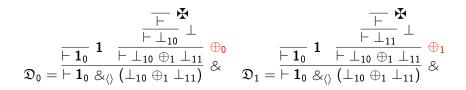
MALL★ and IPS in MALL★

MALL formulas will be given adresses to distinguish occurrences: 10 & _() ($\perp_{10} \oplus_1 \perp_{11}$)

In 🛧, Γ contains no negative formula.

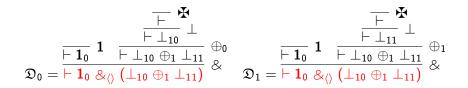


・ロト ・ 四ト ・ 日ト ・ 日 ・



Used to build \mathfrak{D} by interaction $(i \in \{0, 1\})$:

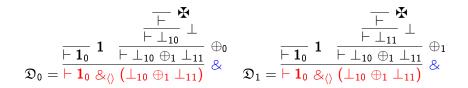
ション ふゆ く 山 マ ふ し マ うくの



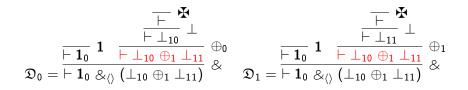
$$\mathfrak{D} = \overline{dash ot_0 \oplus_{\langle
angle} (\mathbf{1}_{10} \otimes_1 \mathbf{1}_{11})}$$

・ロト ・ 四ト ・ モト ・ モト

э.

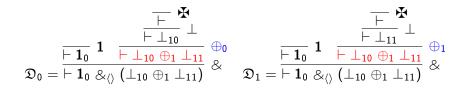


$$\mathfrak{D} = \overline{dash ot_0 \oplus_{\langle
angle} (\mathbf{1}_{10} \ \&_1 \ \mathbf{1}_{11})} \ \oplus_1$$



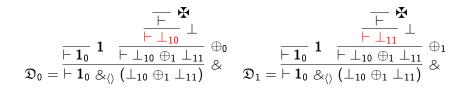
$$\boxed{ \begin{array}{c} \overbrace{\mathcal{D}} = \overbrace{\vdash \bot_0 \ \oplus_{\langle \rangle} \ (\mathbf{1}_{10} \ \&_1 \ \mathbf{1}_{11}) \\ \vdash \bot_0 \ \oplus_{\langle \rangle} \ (\mathbf{1}_{10} \ \&_1 \ \mathbf{1}_{11}) \end{array} \oplus_1 }$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ●



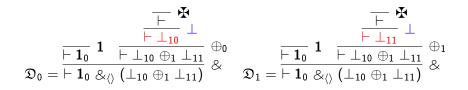
 $\&=\&_0 \cup \&_1$

- 4 ロ 2 4 週 2 4 週 2 4 週 2 9 9 9 9 9



$$\mathfrak{D} = \frac{ \overbrace{\vdash \mathbf{1}_{10}}^{\overbrace{\vdash \mathbf{1}_{10}}} \overbrace{\vdash \mathbf{1}_{10} \&_{1} \mathbf{1}_{11}}^{\overbrace{\vdash \mathbf{1}_{10}}} \underset{\mathrel{\leftarrow}_{10} \&_{1} \mathbf{1}_{11}}{\overbrace{\vdash} \bot_{0} \oplus_{\langle\rangle} (\mathbf{1}_{10} \&_{1} \mathbf{1}_{11})} \oplus_{1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



$$\mathfrak{D} = \frac{ \begin{array}{c|c} \hline \mathbf{1}_{10} & \overline{\mathbf{1}}_{11} \\ \hline \mathbf{1}_{10} & \&_1 \\ \hline \end{array}} \oplus_1$$

イロト 不得下 イヨト イヨト

Ξ.

$$\mathfrak{D}_{0} = \frac{\overbrace{\vdash \mathbf{1}_{0}}^{-} \mathbf{1} \quad \frac{\overbrace{\vdash \mathbf{1}_{0}}^{-} \stackrel{\perp}{\vdash}}{\vdash \mathbf{1}_{10} \oplus \mathbf{1} \perp \mathbf{1}_{11}} \oplus_{0}}{\models \mathbf{1}_{0} \otimes_{\langle\rangle} (\mathbf{1}_{10} \oplus \mathbf{1} \perp \mathbf{1}_{11})} \otimes \mathfrak{D}_{1} = \frac{\overbrace{\vdash \mathbf{1}_{0}}^{-} \mathbf{1} \quad \frac{\overbrace{\vdash \mathbf{1}_{11}}^{-} \stackrel{\perp}{\vdash}}{\vdash \mathbf{1}_{10} \oplus \mathbf{1} \perp \mathbf{1}_{11}} \oplus_{1} \oplus_{1} \otimes_{\langle\rangle} \oplus_{1} \otimes_{1} \otimes_{$$

$$\mathfrak{D} = \frac{ \begin{array}{c|c} \hline \mathbf{1}_{10} & \mathbf{1} & \hline \mathbf{1}_{11} \\ \hline \mathbf{1}_{10} & \&_1 & \mathbf{1}_{11} \\ \hline \mathbf{1}_{10} & \&_1 & \mathbf{1}_{11} \\ \hline \mathbf{1}_{10} \oplus_{\langle\rangle} & (\mathbf{1}_{10} & \&_1 & \mathbf{1}_{11}) \end{array} \oplus_1$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

IPS in MALLX

Interacting with

$$\mathfrak{D}_{i} = \frac{\overrightarrow{\vdash \mathbf{1}_{0}} \mathbf{1} \qquad \overrightarrow{\vdash \underline{\perp}_{10}} \stackrel{\clubsuit}{\vdash \underline{\perp}_{1i}} \stackrel{\clubsuit}{\vdash}_{i}}{\vdash \underline{\perp}_{10} \oplus \underline{1} \perp_{11}} \oplus_{i}}{\otimes_{\langle \rangle} (\underline{\perp}_{10} \oplus \underline{1} \perp_{11})} \otimes_{i}, i \in \{0, 1\}$$

one can get

$$\mathfrak{D} = \frac{ \overbrace{\vdash \mathbf{1}_{10}}^{\vdash \mathbf{1}_{10}} \frac{\mathbf{1}}{\vdash \mathbf{1}_{11}} \frac{\mathbf{1}}{\mathbb{A}}}{\vdash \mathbf{1}_{10} \otimes_{1} \mathbf{1}_{11}} \otimes_{\mathbb{A}}} \oplus_{\langle \rangle} (\mathbf{1}_{10} \otimes_{1} \mathbf{1}_{11})} \oplus_{\mathbb{A}}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

IPS in MALL

Interacting with

$$\mathfrak{D}_{i} = \frac{\overbrace{\vdash \mathbf{1}_{0}}^{\vdash \mathbf{1}} \mathbf{1}}{\vdash \mathbf{1}_{0} \oplus_{1} \bot_{11}} \bigoplus_{i}^{\vdash \underbrace{\vdash \mathbf{1}_{i}}_{\vdash \bot_{10}} \oplus_{1}} \bigoplus_{i} \bigoplus_{i \in \{0, 1\}} \bigotimes_{i \in \{1, 1\}} \bigotimes_{i \in \{1,$$

one can get

or

$$\mathfrak{D} = \frac{\begin{array}{c|c} \hline \vdash \mathbf{1}_{10} & \mathbf{1} & \hline \vdash \mathbf{1}_{11} \\ \hline \vdash \mathbf{1}_{10} & \&_1 & \mathbf{1}_{11} \\ \hline \vdash \bot_0 & \oplus_{\langle\rangle} & (\mathbf{1}_{10} & \&_1 & \mathbf{1}_{11}) \end{array} \oplus_1 \qquad \mathfrak{D}' = \begin{array}{c} \hline \hline \vdash \bot_0 & \bigoplus_{\langle\rangle} & (\mathbf{1}_{10} & \&_1 & \mathbf{1}_{11}) \\ \hline \vdash \bot_0 & \oplus_{\langle\rangle} & (\mathbf{1}_{10} & \&_1 & \mathbf{1}_{11}) \end{array} \oplus_0$$

But \mathfrak{D}' uses \bigstar : it is a failure.

How to avoid this second interaction for \mathfrak{D}' ?

MALL and IPS in MALL

One could add new tests to the environment:

$$\mathfrak{D}_{2} = \frac{\vdash \bot_{10} \oplus_{1} \bot_{11}}{\vdash 1_{0} \otimes_{\langle \rangle} (\bot_{10} \oplus_{1} \bot_{11})} \bigotimes|_{1}$$

Adding \mathfrak{D}_2 would have **forbidden** the search that leads to a failure by forcing the selection of \oplus_1 .

Slice of the & rule.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

From MALL to designs

Ludics contains appropriate ingredients to represent MALL proofs.

$$\mathfrak{D}_{2} = \frac{\overrightarrow{\vdash \bot_{10} \oplus_{1} \bot_{11}} \, \bigstar}{\vdash \mathbf{1}_{0} \, \bigotimes_{\langle \rangle} \, (\bot_{10} \oplus_{1} \bot_{11})} \, \bigotimes_{|1|}$$

The partial inference rule $\&|_1$ is a *negative* rule with *active formula* indexed by $\langle \rangle$ producing one *subformula* located in 1.

This can be summarized in $(\langle \rangle, 1)^-$:

$$rac{\mathbf{k}}{(\langle
angle,1)^{-}}$$

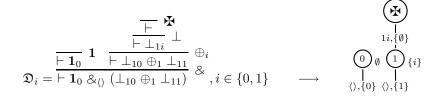
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

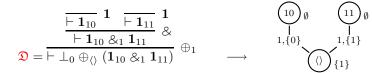
From MALL to designs

To obtain designs, several steps away from MALL \bigstar :

- Retain only the locations, not the formulas
- Only the essence of proof remains: proof rules not the sequents. They are *actions*: (ξ, I)⁻, (τi, {1,2,3})⁺, (ξ2, ∅)⁻
- The actions correspond to maximal clusters of rules of a single polarity to ensure *alternation of polarity*.
- Daimon remains: special action $oldsymbol{\Re}$
- Work by *slices*: negative rules are collections of *unary rules*.
- **Designs**: correspond to proofs (or strategies). Polarized according to their last rule. May have logical mistakes to be detected interactively (a design can be losing or winning).
- Successful interactions (ie. cut-eliminations) give rise to an orthogonality relation between designs of opposite polarity.
- A *Behaviour* is a set of design which is closed by biorthogonality.

From MALL^{*} to Designs



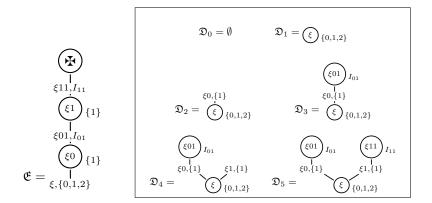


▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Scheme of IPS on an Example

$$\mathfrak{E} = \frac{\begin{bmatrix} \mathbf{F} \\ \mathbf{F} \\ \xi^{11}, I_{11} \\ \xi^{11}, I_{11} \\ \xi^{11} \\ \xi^{11$$

Scheme of IPS on an Example



Updating the test environment

- The environment is a set of tests isomorphic to the objects we search for;
- We develop the searched design depending on those tests;
- By symmetry, we might also consider the possibility to modify the test environment depending on the tests;
- ⇒ We may for instance add new elements to the test environment.

A dynamical change of the "program" to be compared to the $(\Rightarrow R)$ which implemented the loading of a module. Changes the search behaviour (both in the intuitive and formal sense):

if $\mathbf{E} \subseteq \mathbf{E}'$ then $\mathbf{E}'^{\perp} \subseteq \mathbf{E}^{\perp}$.

The behaviour in which the search is taking place gets more and more precise... there are more tests to constrain the search.

Backtracking

The backtracking behaviour corresponds to undoing the last choice and going for an alternative.

- When an interactive search has finished and the searched design uses a \u03c4, one may wish to search again.
- We shall allow enlarging the test environment E_{ENV} with new designs that will contribute to guide the search. Those designs shall be such that the previously computed design is not orthogonal to these designs: add restricted *negative daimons* which forbid exploring the branches that previously led to failures.

(日) (伊) (日) (日) (日) (0) (0)

Backtracking, Interactively

Test Environment		Interactive Search Space
	1	
	N	
\mathfrak{E}_1	T	
\mathfrak{E}_1 \mathfrak{E}_2	E	\sim
	R	↑♥ ↑
E ₃	A	
	C	\mathfrak{D}
€ ₄ € ₅	T	
	1	
\mathfrak{E}_6	0	
	N	

Backtracking, Interactively

Test	Environment		Interactive Search Space
		1	
		N	
\mathfrak{E}_1		T	
\mathfrak{E}_1	\mathfrak{E}_2	E	\sim
		R	1/☆ ↑
	E ₃	A	\checkmark
		C	\mathfrak{D}
E4	\mathfrak{E}_5	T	
		1	
	\mathfrak{E}_6 Backtrack (\mathfrak{D})	0	
		N	

Using the interaction paths for ${\mathfrak D}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Conclusions

- Relate cut-elimination and proof-search: proof-search by cut-elimination. A test environment guiding the search of an unspecified proof D;
- Possible to enrich the search environment by adding new tests;
- Uniform approach to proof-search: the test environment gather usual logical search instructions as well as constraints to the search strategy;
- Investigate a general framework where FP and LP could be related? D could be partially specified, interact with the test environment E and then be extended as a proof under construction (for instance, add new slices to D, or change H to proper positive actions (ξ, I)⁺...)

◆□▶ ◆圖▶ ◆言▶ ◆言▶ 言 → ��や

Backtracking, Interactively

Definition $(\mathfrak{Test}(p))$

- $\mathfrak{Test}(\epsilon) = \emptyset;$
- $\mathfrak{Test}(\kappa) = \{\kappa^+\};$
- $\mathfrak{Test}(s \cdot \kappa \cdot \kappa') = \{ \ulcorners \cdot \kappa \cdot \kappa' \urcorner^+, \ulcorners \cdot \kappa \urcorner^- \} \cup \mathfrak{Test}(s).$

Definition $(\mathfrak{Backtrack}(p))$

 $\mathfrak{Backtrack}(p)$ is the smallest design such that:

- $\mathfrak{Backtrack}(p)$ contains all positive chronicles of $\mathfrak{Test}(p)$ except $\lceil p \rceil^+;$
- if χ ∈ 𝔅acℓtracℓ(p) is a positive chronicle ending with a proper action (ξ, I)⁺, then for any i ∈ I and J ∈ 𝒫_f(ω) such that χ · (ξi, J)⁻ ∉ 𝔅est(p), then χ · (ξi, J)⁻ · 𝔄 ∈ 𝔅acℓtracℓ(p).

Control Operators in Logic Programming

Two important uses of control in logic programming:

Speed up the search, save ressources

```
(efficiency)
```

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

• Find new solutions, unreachable in finite time (expressiveness)

Control Operators in Logic Programming

Two important uses of control in logic programming:

Speed up the search, save ressources (efficiency) pruning a finite part of the search space
 Find new solutions, unreachable in finite time (expressiveness) pruning an infinite part of the search space

ション ふゆ アメリア メリア しょうめん

Interactive Control

Control treated interactively by updating the test environment **E** thanks to ϕ : Given a test environment **E**, a design \mathfrak{D} and an interaction path $p_{\mathfrak{D}}$, ϕ outputs a set of designs $\{\mathfrak{E}_{i}^{\phi,\mathfrak{D},p_{\mathfrak{D}}}, i \in I\}$ used to enlarge **E**:

$$\mathsf{E}\longmapsto\mathsf{E}\cup\{\mathfrak{E}_{i}^{\phi,\mathfrak{D},p_{\mathfrak{D}}},i\in I\}$$

Given $\mathbf{E} = \{\mathfrak{E}_i, i \in I\}$ and successive answers $\langle \mathfrak{D}_0, \mathfrak{D}_1, \dots, \mathfrak{D}_n, \dots \rangle$ Applying ϕ after obtaining \mathfrak{D}_0 , one may consider the set

$$J = \{i > 0, \mathfrak{D}_i \in (\mathbf{E} \cup \{\mathfrak{E}_i^{\phi, \mathfrak{D}_0, p_{\mathfrak{D}_0}}, i \in I\})^{\perp}\}$$

- if J is infinite, one skipped some of the searched results
- if J is finite, that will possibly allow to find new solutions (that were not reachable at first).

Use behavioural theory to analyze those control mechanisms

Interactive Control

Consider other usual pruning mechanisms in Prolog and and see how "interactive" they can be made:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• !/0; a :- b, c, !, d. a :- e, !, f.

soft cut;

once;

- other backtracking modifiers
- intelligent backtracking

o ...

◆□▶ ◆圖▶ ◆言▶ ◆言▶ 言 → ��や