Ramsey classes of finite trees and SOP_2

Lynn Scow

University of Illinois at Chicago

ASL 2012 North American Annual Meeting

Outline

dividing lines

- Classification theory seeks to isolate properties that act as good dividing lines between more-complicated and less-complicated theories.
- Often such a property is described by the presence of a formula encoding certain information.
- In our discussion of trees T, nodes $\eta, \nu \in T$ will be written $\eta \perp \nu$ to signify that they are incomparable with respect to the partial tree order.
- Typically T will be $\omega^{<\omega}, 2^{<\omega}$.
- In general a, x stand for finite tuples $\overline{a}, \overline{x}$ of parameters/variables.

• Here is such a dividing-line property.

Definition

A theory T has tree property-1 (TP_1) if there is a model $M \vDash T$, a formula $\varphi(x; y)$ and parameters $a_\eta \in |M|$ such that:

 $\label{eq:phi} \begin{tabular}{l} \begin{tabular}{ll} \end{tabular} \left\{ \varphi(x;a_{\sigma\restriction n}):\sigma\in\omega^{\omega} \right\} \mbox{ is consistent ("branches are consistent"), and } \end{tabular}$

2 { $\varphi(x; a_{\eta}) \land \varphi(x; a_{\nu})$ } is inconsistent, for $\eta, \nu \in \omega^{<\omega}, \eta \perp \nu$ ("incomparable nodes are inconsistent")

- A theory with TP₁ is on the more-complicated side of the dividing line provided by the property, TP₁.
- Naming a set $\omega^{<\omega}$ implies facts about this set that can be expressed in a first-order way. Can we isolate the relevant parts of the "theory" of this set?

TP_1 and SOP_2

 $\bullet\,$ Here we name a second property, ${\rm SOP}_2$ which is equivalent to ${\rm TP}_1$ for theories:

Definition

A theory T has strong order property-2 (SOP₂) if there is a model $M \vDash T$, a formula $\varphi(x; y)$ and parameters $a_{\eta} \in |M|$ such that:

 $\P \ \{\varphi(x;a_{\sigma\restriction n}):\sigma\in 2^{\omega}\} \text{ is consistent ("branches are consistent"), and }$

2 { $\varphi(x; a_{\eta}) \land \varphi(x; a_{\nu})$ } is inconsistent, for $\eta, \nu \in 2^{<\omega}, \eta \perp \nu$ ("incomparable nodes are inconsistent")

- There are many relations we could suggest to be basic relations on our tree: \leq (partial order), \land (meet function), $<_{lex}$ (linear order extending \leq).
- We need only look at ≤-embeddings to transfer SOP₂ to TP₁; to obtain *trees* with the right partition properties, we may be required to take on more of the language.

what structure on $2^{<\omega}$ is relevant to SOP₂?

- We might feel we had isolated the relevant part of the "theory" of $2^{<\omega}$ if somehow $M = (2^{<\omega}, \trianglelefteq)$ and $\varphi(x; y) = (x \trianglelefteq y)$ gave the most canonical example of SOP₂. (This is not so.)
- The *strict order property (sOP)* is another dividing-line property that is known to be strictly stronger than SOP₂.
- A theory T has the strict order property if there is a formula $\varphi(x; y)$ and parameters in some $M \models T$, $(a_i : i < \omega)$ such that the following implication holds strictly:

$$\varphi(x, a_i) \Rightarrow \varphi(x; a_{i+1})$$

• $x \trianglelefteq y$ witnesses the sOP in $2^{<\omega},$ so this can't be our best example of ${\rm SOP}_2$

indiscernibles

- An early effort to better understand the witnesses $(a_{\eta} : \eta \in 2^{<\omega})$ to SOP₂ in a theory was to find an assumption of *indiscernibility* we could make, without loss of generality.
- This approach was first pursued in [DS04] for SOP₂; the following notion of *I*-indexed indiscernible is from [She90]:

Definition

Fix structures I, M. An I-indexed indiscernible is a set of parameters from M, $(b_i : i \in I)$ such that for all $n < \omega$ and $i_1, \ldots, i_n; j_1, \ldots, j_n$ from I:

 $qftp(i_1,\ldots,i_n;I) = qftp(j_1,\ldots,j_n;I) \Rightarrow tp(b_{i_1},\ldots,b_{i_n}) = tp(b_{j_1},\ldots,b_{j_n})$

• We say "quantifier-free type" in order to get a stronger notion of homogeneity.

the uniform data in a set of parameters

• We would like to assume parameters "in a certain configuration" are indiscernible, without loss of generality.

Definition

Fix a structure I and parameters $\mathbf{I} := (a_i : i \in I)$ from some structure M. Define the *EM-type of* \mathbf{I} to be:

$$\mathrm{EMtp}(\mathbf{I})(\{x_i: i \in I\}) := \{\psi(x_{i_1}, \dots, x_{i_n}) : n < \omega, \psi(x_1, \dots, x_n) \in \mathcal{L}(M)\}$$

for all j_1, \ldots, j_n from I such that $qftp(\overline{j}) = qftp(\overline{i})$,

$$\vDash \psi(a_{j_1},\ldots,a_{j_n})\}$$

The I = (ω, <) case of the above is referred to as EM(I) in [TZ11]. We are careful not to confuse our terminology with EM(I,Φ) ([Bal09, She90]), which is a term that denotes a certain type of model. Note that EMtp(I) derives a kind of profile/pattern/template from an *I*-indexed set of parameters, whether or not this set is indiscernible.

age and Ramsey class

- We want some terminology for the next development. Fix a structure I (with some intended language.)
- The age, age(I), of a structure I is the class of all finitely-generated substructures of I, closed under isomorphism.
- Let $\binom{C}{A}$ be the substructures of C isomorphic to A (the "A-substructures of C.")
- Say that a class \mathcal{K} of finite structures is a *Ramsey class* if for all $A, B \in \mathcal{K}$ there is a $C \in \mathcal{K}$ such that given any 2-coloring $c: \binom{C}{A} \to \{0,1\}$ there is a $B' \subseteq C, B' \cong B$, such that $c: \binom{B'}{A} \to \{i_0\}$, for some choice of $i_0 \in \{0,1\}$.
- It is equivalent to state the property for k-colorings, where $k < \omega$ is arbitrary ≥ 2 .

modeling the uniform data

- Consider the property: for any *I*-indexed parameters $\mathbf{I} = (a_i : i \in I)$ from sufficiently-saturated M we may find *I*-indexed indiscernible $\mathbf{J} = (b_s : s \in I) \vDash \mathrm{EMtp}(\mathbf{I}).$
- We may call the latter the *modeling property* for *I*-indexed indiscernibles.

Theorem ([Sco12])

For I a structure in a finite relational language, where one basic relation < linearly orders I, I-indexed indiscernibles have the modeling property just in case age(I) is a Ramsey class.

functions in the index structure

• The following generalization helps us deal with the case of $I = (2^{<\omega}, \leq, \wedge, <_{\text{lex}}).$

Theorem

For uniformly locally finite I in a finite language, where one basic relation < linearly orders I, I-indexed indiscernibles have the modeling property just in case age(I) is a Ramsey class.

- A similar argument to one in [Sco12] shows that the modeling property implies the Ramsey class property for age(I).
- This argument requires that we isolate the quantifier-free types by way of formulas, and we can still do this.

$RC \Rightarrow modeling property$

- This direction is a little harder because there isn't as obvious a correspondence between realizations of a quantifier-free type and substructures of I.
- For $\overline{i} \vDash \eta(v_1, \ldots, v_n)$, a complete quantifier-free type (consistent with $v_1 < \ldots < v_n$), and $A = \langle \overline{i} \rangle$ the substructure generated by \overline{i} , let $\operatorname{cl}(\overline{i})(x_1, \ldots, x_N)$ be the isomorphism-type of A in <-increasing enumeration.
- Let x_{i_1}, \ldots, x_{i_n} be the indices at which \overline{i} occurs in the increasing enumeration of A. Every copy of A determines a unique copy of \overline{i} , and every copy of \overline{i} in a structure B occurs within a copy of A in B.
- Homogeneity for copies of A implies homogeneity for $\overline{j} \vDash \eta$, as we shall see from the nature of a *type-coloring*:

type-colorings

• For a finite structure B of size m, let $p_B(x_1, \ldots, x_m)$ be the complete quantifier-free type of B listed in <-increasing order.

Definition

Let I be any structure. By a type-coloring of tuples from I we mean a χ -coloring (χ a cardinal)

 $c: I^{<\omega} \to \chi$

with the property that for length- $m \ \bar{b}, \bar{b}' \in I$ such that $c(\bar{b}) = c(\bar{b}')$, for any $n \le m$

$$c(\langle b_{i_1},\ldots,b_{i_n}\rangle)=c(\langle b'_{i_1},\ldots,b'_{i_n}\rangle)$$

• If we let $\Delta(x_1, \ldots, x_n)$ be a finite set of formulas from M, then an I-indexed set in M, $(a_i : i \in I)$ comes equipped with a (finite) type-coloring by way of $c(\langle i_1, \ldots, i_n \rangle) = \operatorname{tp}_{\Delta}(a_{i_1}, \ldots, a_{i_n}; M)$.

in sum

- Given an *I*-indexed set of parameters $\mathbf{I} = (a_i : i \in I)$, we have a type-coloring of tuples from *I*.
- Here is the "type of our indiscernible": $\Gamma(x_i : i \in I) = \{ \psi(x_{i_1}, \dots, x_{i_m}) \to \psi(x_{j_1}, \dots, x_{j_m}) :$

 $\psi(x_1,\ldots,x_m) \in \mathcal{L}(M); \text{ qftp}(\overline{i}) = \text{qftp}(\overline{j}); \overline{i},\overline{j} \text{ from } I\}$

- To find our *I*-indexed indiscernible \vDash EMtp(**I**), it suffices to satisfy a finite portion of the "type of our indiscernible" in $(a_i : i \in I)$, a portion indexed by a finite set $I_0 \subseteq I$ and mentioning a finite set of $\mathcal{L}(M)$ -formulas Δ .
- This amounts to, for given structures A, B = ⟨I₀⟩, finding a homogeneous B' ≅ B in I for the type-coloring above, as it applies to A-substructures of I.
- In general we must perform an induction on the A_1, \ldots, A_n that are generated by tuples from I_0 .

restrictions

- It would be good to develop a technology for countable languages.
- The non-locally finite case does not seem practicable, because partition properties often fail when we are searching for an infinite substructure *B*.
- For example, $\mathbb{Q} \not\rightarrow (\mathbb{Q})_2^{\{a_1 < a_2\}}$.
- Similarly for the random graph $\mathcal{R}: \mathcal{R} \nrightarrow (\mathcal{R})_2^{\{a_1 R a_2\}}$.

Thanks for your attention!

John T. Baldwin.

Categoricity, volume 50 of University Lecture Series. American Mathematical Society, Providence, RI, 2009.

M. Džamonja and S. Shelah. On ⊲*-maximality.

Annals of Pure and Applied Logic, 125(1-3):119-158, 2004.

L. Scow.

Characterization of NIP theories by ordered graph-indiscernibles, 2012.

10.1016/j.apal.2011.12.013.

S. Shelah.

Classification Theory and the number of non-isomorphic models (revised edition). North-Holland, Amsterdam-New York, 1990.

K. Tent and M. Ziegler.

A Course in Model Theory, 2011.

to appear in Cambridge University Press, ASL Lecture Notes in Logic.