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Welcome to mass problems

A mass problem is a set A ⊆ 2ω.

Think of the mass problem A as representing the problem of
finding a member of A.

The mass problem A is closed if it is closed in the usual (product)
topology on 2ω. Equivalently, A is closed if A = [T ] for some tree
T ⊆ 2<ω.

The mass problem A is effectively closed if A = [T ] for some
computable tree T ⊆ 2<ω. Equivalently, A is effectively closed if it
is a Π0

1 class.
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Welcome to the Medvedev degrees

Definition

• A ≤s B iff there is a Turing functional Φ such that Φ(B) ⊆ A.

• A ≡s B iff A ≤s B and B ≤s A.

• degs(A) = {B | B ≡s A}.
• Ds = {degs(A) | A ⊆ 2ω}.
• Ds,cl = {degs(A) | A is closed in 2ω}.
• Es = {degs(A) | A is effectively closed in 2ω} \ {degs(∅)}.

B ⊆ A ⇒ A ≤s B (by the identity functional).

Ds and Ds,cl have 0 = degs(2ω) and 1 = degs(∅).

Es has 0 = degs(2ω) and
1 = degs(complete consistent extensions of PA).
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Ds, Ds,cl, and Es are distributive lattices

For mass problems A and B, let

• A+ B = {f ⊕ g | f ∈ A ∧ g ∈ B};

• A× B = 0aA ∪ 1aB.

Then

• degs(A) + degs(B) = degs(A+ B);

• degs(A)× degs(B) = degs(A× B).

Ds is a Brouwer algebra (for every a and b there is a least c with
a + c ≥ b).

Neither Ds,cl (Lewis, Shore, Sorbi) nor Es (Higuchi) is a Brouwer
algebra.
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Complexity in Ds, Ds,cl, and Es

The Medvedev degrees and its substructures are as complicated as
possible.

Theorem (S)

• Th(Ds) ≡1 Th3(N ) (independently by Lewis, Nies, & Sorbi).

• Th(Ds,cl) ≡1 Th2(N ).

• Th(Es) ≡1 Th(N ).

Today’s theorem:

Theorem (S)

The degree of Es is 0′′′. That is, 0′′′ computes a presentation of Es,
and every presentation of Es computes 0′′′.
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Presentations of Es

Definition

A presentation of Es is a pair of functions +,× : ω × ω → ω such
that the structure (ω; +,×) is isomorphic to Es. The degree of a
presentation is degT(+⊕×).

That 0′′′ computes a presentation follows from the fact that the
relation [Ti ] ≤s [Tj ] (where Ti and Tj are primitive recursive
subtrees of 2<ω with indices i and j) is a Σ0

3 property of 〈i , j〉:

[Ti ] ≤s [Tj ]⇔ ∃e∀n∃s(∀σ ∈ 2s)(σ ∈ Tj → Φe(σ) � n ∈ Ti )

So we need to prove that every presentation of Es computes 0′′′.
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A few definitions

In a lattice, x meets to w iff (∃y > w)(w = x × y).

A sequence of functions {fn}n∈ω ⊆ 2ω is strongly independent iff
∀m(fm �T

⊕
n 6=m fn).

A sequence of Π0
1 classes {Sn}n∈ω is strongly independent iff

{fn}n∈ω is strongly independent whenever ∀n(fn ∈ Sn).

An r.e. separating class is a mass problem of the form

S(A,B) = {C ∈ 2ω | A ⊆ C ⊆ Bc}

for disjoint r.e. sets A and B. An r.e. separating degree is the
Medvedev degree of an r.e. separating class.
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Spines

Definition

Let Q be a Π0
1 class with no recursive member. Let {σn}n∈ω be a

recursive sequence of pairwise incomparable strings such that⋃
n∈ω I (σn) = 2ω \ Q. Let {Sn}n∈ω be a recursive sequence of Π0

1

classes. Then define

spine(Q, {Sn}n∈ω) = Q∪
⋃
n∈ω

σn
aSn.

Lemma

Let {Q} ∪ {Sn}n∈ω be a recursive sequence of r.e. separating
classes that is an ≤s-antichain, and let

w = degs(spine(Q, {Sn}n∈ω)).

If x meets to w, then x ≤s degs(Sn) for some n.
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Coding parameters

Let Q, {S0,i}i∈ω, and {S1,i}i∈ω be such that
Q∪ {S0,i}i∈ω ∪ {S1,i}i∈ω is a strongly independent recursive
sequence of r.e. separating classes. Then let

w0 = degs(W0) for W0 = spine(Q, {S0,n}n∈ω);

w1 = degs(W1) for W1 = spine(Q, {S1,n}n∈ω);

m = degs(M) for M = spine(Q, {S0,n + S1,n}n∈ω);

p = degs(P) for P = spine(Q, {S0,n + S1,n+1}n∈ω);

v = degs(V) for V =
∑
n∈ω

S0,n;

r = degs(R) for R = spine(Q, {Rn}n∈ω),

where Rn =
∑
m 6=n

S0,m.
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Encoding 0′′′

Fix a Σ0
3-complete set C ⊆ ω. Let {Ze}e∈ω be a recursive

sequence containing all Π0
1 classes. Let D ⊆ ω be the set

D = {e | ∃n(n ∈ C ∧ Ze ≤s S0,n ∧ V ≤s Ze +Rn)}.

The set D is Σ0
3: D = {e | ∃m∀k∃`ϕ(e,m, k, `)}.

Lemma

Let Q be an r.e. separating class, and let ϕ(e,m, k , `) be a
recursive predicate. Then there is a recursive sequence of Π0

1

classes {X〈e,m〉}〈e,m〉∈ω such that for all 〈e,m〉 ∈ ω

degs(X〈e,m〉) =

{
0 if ∀k∃`ϕ(e,m, k , `)

degs(Q) if ∃k∀`¬ϕ(e,m, k, `).
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degs(X〈e,m〉) =

{
0 if ∀k∃`ϕ(e,m, k , `)

degs(Q) if ∃k∀`¬ϕ(e,m, k, `).
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x marks the 0′′′

Have

D = {e | ∃n(n ∈ C ∧ Ze ≤s S0,n ∧ V ≤s Ze +Rn)}
= {e | ∃m∀k∃`ϕ(e,m, k , `)}, and

degs(X〈e,m〉) =

{
0 if ∀k∃`ϕ(e,m, k , `)

degs(Q) if ∃k∀`¬ϕ(e,m, k , `).

Let x = degs(X ) for X = spine(Q, {Ze + X〈e,m〉}〈e,m〉∈ω).

Key property: If Ze ≤s S0,n and V ≤s Ze +Rn, then Ze ≥s X iff
n ∈ C .
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Decoding step 1: walk up to degs(S0,n)

To determine if n ∈ C , we first identify a degree z0,n that is
“close” to degs(S0,n):

Let z0,0 = degs(S0,0), and search for zi ,j for i < 2 and 1 ≤ j ≤ n
and for y such that

(i) each zi ,j meets to wi ;

(ii) each z0,j + z1,j ≥s m;

(iii) each z0,j−1 + z1,j ≥s p;

(iv) y meets to r;

(v) z0,n + y ≥s v.

The witnesses will eventually be found because zi ,j = degs(Si ,j)
and y = degs(Rn) satisfy (i)-(v).
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Decoding step 2: check if z0,n ≥s x

Output “yes” if z0,n ≥s x, and output “no” otherwise.

Claim

For all i < 2 and all 1 ≤ j ≤ n, we have zi ,j ≤s degs(Si ,j). Also,
y ≤s degs(Rn).

The proof is by induction, using the facts that the Si ,j are strongly
independent, that any z that meets to wi is ≤s degs(Si ,j) for some
j , and that any y that meets to r is ≤s degs(Rm) for some m.

Therefore z0,n = degs(Ze) where Ze ≤s S0,n and V ≤s Ze +Rn.

Now recall the key property of X : If Ze ≤s S0,n and
V ≤s Ze +Rn, then Ze ≥s X iff n ∈ C .
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Thank you!

Thanks for coming to my talk!
Do you have any questions about it?
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