Presenting the effectively closed Medvedev degrees requires $0^{\prime\prime\prime}$

Paul Shafer Appalachian State University <shaferpe@appstate.edu> <http://www.appstate.edu/~shaferpe/>

ASL 2012 North American Annual Meeting Madison, WI March 31, 2012

Welcome to mass problems

A mass problem is a set $\mathcal{A} \subseteq 2^\omega$.

Think of the mass problem $\mathcal A$ as representing the problem of finding a member of \mathcal{A} .

Welcome to mass problems

A mass problem is a set $\mathcal{A} \subseteq 2^\omega$.

Think of the mass problem $\mathcal A$ as representing the problem of finding a member of \mathcal{A} .

The mass problem $\mathcal A$ is closed if it is closed in the usual (product) topology on 2^ω . Equivalently, ${\cal A}$ is closed if ${\cal A} = [\mathcal{T}]$ for some tree $T \subseteq 2^{<\omega}$.

Welcome to mass problems

A mass problem is a set $\mathcal{A} \subseteq 2^\omega$.

Think of the mass problem $\mathcal A$ as representing the problem of finding a member of \mathcal{A} .

The mass problem $\mathcal A$ is closed if it is closed in the usual (product) topology on 2^ω . Equivalently, ${\cal A}$ is closed if ${\cal A} = [\mathcal{T}]$ for some tree $T \subseteq 2^{<\omega}$.

The mass problem A is effectively closed if $A = [T]$ for some computable tree $T \subseteq 2^{<\omega}$. Equivalently, ${\mathcal{A}}$ is effectively closed if it is a Π^0_1 class.

[The end!](#page-46-0)

Welcome to the Medvedev degrees

Definition

• $A \leq_{s} B$ iff there is a Turing functional Φ such that $\Phi(B) \subseteq A$.

- $A \leq_{s} B$ iff there is a Turing functional Φ such that $\Phi(B) \subseteq A$.
- $A \equiv_S B$ iff $A \leq_S B$ and $B \leq_S A$.

- $A \leq_{s} B$ iff there is a Turing functional Φ such that $\Phi(B) \subseteq A$.
- $A \equiv_S B$ iff $A \leq_S B$ and $B \leq_S A$.
- deg_s $(A) = \{ B \mid B \equiv S \}$.

- $A \leq_{s} B$ iff there is a Turing functional Φ such that $\Phi(B) \subseteq A$.
- $A \equiv_S B$ iff $A \leq_S B$ and $B \leq_S A$.
- deg_s $(A) = \{ B \mid B \equiv_{s} A \}.$

$$
\bullet \ \mathcal{D}_s = \{ \mathsf{deg}_s(\mathcal{A}) \mid \mathcal{A} \subseteq 2^\omega \}.
$$

- $A \leq_{s} B$ iff there is a Turing functional Φ such that $\Phi(B) \subseteq A$.
- $A \equiv_S B$ iff $A \leq_S B$ and $B \leq_S A$.
- deg_s $(A) = \{ B \mid B \equiv_{s} A \}.$

$$
\bullet \ \mathcal{D}_s = \{ \mathsf{deg}_s(\mathcal{A}) \mid \mathcal{A} \subseteq 2^\omega \}.
$$

•
$$
\mathcal{D}_{s,cl} = \{ \deg_s(\mathcal{A}) \mid \mathcal{A} \text{ is closed in } 2^{\omega} \}.
$$

- $A \leq_{s} B$ iff there is a Turing functional Φ such that $\Phi(B) \subseteq A$.
- $A \equiv_S B$ iff $A \leq_S B$ and $B \leq_S A$.
- deg_s $(A) = \{ B \mid B \equiv S \}$.

•
$$
\mathcal{D}_s = \{deg_s(\mathcal{A}) \mid \mathcal{A} \subseteq 2^{\omega}\}.
$$

- $\mathcal{D}_{s,cl} = \{ \deg_s(\mathcal{A}) \mid \mathcal{A} \text{ is closed in } 2^{\omega} \}.$
- $\mathcal{E}_s = \{ \text{deg}_s(\mathcal{A}) \mid \mathcal{A} \text{ is effectively closed in } 2^{\omega} \} \setminus \{ \text{deg}_s(\emptyset) \}.$

Definition

- $A \leq_{s} B$ iff there is a Turing functional Φ such that $\Phi(B) \subseteq A$.
- $A \equiv_{\epsilon} B$ iff $A \leq_{\epsilon} B$ and $B \leq_{\epsilon} A$.
- deg_s $(A) = \{ B | B \equiv_{s} A \}.$

$$
\bullet \ \mathcal{D}_s = \{deg_s(\mathcal{A}) \mid \mathcal{A} \subseteq 2^{\omega}\}.
$$

- $\mathcal{D}_{\text{sd}} = \{ \text{deg}_{\text{s}}(\mathcal{A}) \mid \mathcal{A} \text{ is closed in } 2^{\omega} \}.$
- $\mathcal{E}_s = \{ \text{deg}_s(\mathcal{A}) \mid \mathcal{A} \text{ is effectively closed in } 2^{\omega} \} \setminus \{ \text{deg}_s(\emptyset) \}.$

 $\mathcal{B} \subseteq \mathcal{A} \Rightarrow \mathcal{A} \leq_{\mathsf{s}} \mathcal{B}$ (by the identity functional).

Definition

- $A \leq_{s} B$ iff there is a Turing functional Φ such that $\Phi(B) \subseteq A$.
- $A \equiv_{\epsilon} B$ iff $A \leq_{\epsilon} B$ and $B \leq_{\epsilon} A$.
- deg_s $(A) = \{ B | B \equiv_{s} A \}.$

$$
\bullet \ \mathcal{D}_s = \{deg_s(\mathcal{A}) \mid \mathcal{A} \subseteq 2^{\omega}\}.
$$

- $\mathcal{D}_{s,cl} = \{ \deg_s(\mathcal{A}) \mid \mathcal{A} \text{ is closed in } 2^{\omega} \}.$
- $\mathcal{E}_s = \{ \deg_s(\mathcal{A}) \mid \mathcal{A} \text{ is effectively closed in } 2^{\omega} \} \setminus \{ \deg_s(\emptyset) \}.$

 $\mathcal{B} \subseteq \mathcal{A} \Rightarrow \mathcal{A} \leq_{\mathsf{s}} \mathcal{B}$ (by the identity functional).

 \mathcal{D}_s and $\mathcal{D}_{\mathsf{s,cl}}$ have $\mathbf{0} = \mathsf{deg}_\mathsf{s}(2^\omega)$ and $\mathbf{1} = \mathsf{deg}_\mathsf{s}(\emptyset).$

Definition

- $A \leq_{s} B$ iff there is a Turing functional Φ such that $\Phi(B) \subseteq A$.
- $A \equiv_{\epsilon} B$ iff $A \leq_{\epsilon} B$ and $B \leq_{\epsilon} A$.
- deg_s $(A) = \{ B | B \equiv_{s} A \}.$

$$
\bullet \ \mathcal{D}_s = \{deg_s(\mathcal{A}) \mid \mathcal{A} \subseteq 2^{\omega}\}.
$$

- $\mathcal{D}_{s,cl} = \{ \text{deg}_s(\mathcal{A}) \mid \mathcal{A} \text{ is closed in } 2^{\omega} \}.$
- $\mathcal{E}_s = \{ \text{deg}_s(\mathcal{A}) \mid \mathcal{A} \text{ is effectively closed in } 2^{\omega} \} \setminus \{ \text{deg}_s(\emptyset) \}.$

 $\mathcal{B} \subseteq \mathcal{A} \Rightarrow \mathcal{A} \leq_{\mathsf{s}} \mathcal{B}$ (by the identity functional).

$$
\mathcal{D}_s \text{ and } \mathcal{D}_{s,cl} \text{ have } \mathbf{0} = \text{deg}_s(2^{\omega}) \text{ and } \mathbf{1} = \text{deg}_s(\emptyset).
$$

$$
\mathcal{E}_{s} \text{ has } \mathbf{0} = \text{deg}_{s}(2^{\omega}) \text{ and}
$$

$$
\mathbf{1} = \text{deg}_{s}(\text{complete consistent extensions of } PA).
$$

For mass problems A and B , let

• $A + B = \{f \oplus g \mid f \in A \wedge g \in B\};$

For mass problems A and B , let

•
$$
\mathcal{A} + \mathcal{B} = \{ f \oplus g \mid f \in \mathcal{A} \wedge g \in \mathcal{B} \};
$$

•
$$
\mathcal{A} \times \mathcal{B} = 0^{\circ} \mathcal{A} \cup 1^{\circ} \mathcal{B}.
$$

For mass problems A and B , let

- $A + B = \{f \oplus g \mid f \in A \wedge g \in B\};$
- $A \times B = 0$ [^] $A \cup 1$ [^] B .

Then

- deg_s $(\mathcal{A}) + deg_s(\mathcal{B}) = deg_s(\mathcal{A} + \mathcal{B});$
- deg_s $(\mathcal{A}) \times$ deg_s (\mathcal{B}) = deg_s $(\mathcal{A} \times \mathcal{B})$.

For mass problems A and B , let

- $A + B = \{f \oplus g \mid f \in A \wedge g \in B\};$
- $A \times B = 0$ [^] $A \cup 1$ [^] B .

Then

- deg_s $(\mathcal{A}) + deg_s(\mathcal{B}) = deg_s(\mathcal{A} + \mathcal{B});$
- deg_s $(\mathcal{A}) \times$ deg_s (\mathcal{B}) = deg_s $(\mathcal{A} \times \mathcal{B})$.

 \mathcal{D}_s is a Brouwer algebra (for every *a* and *b* there is a least c with $a + c > b$).

Neither $\mathcal{D}_{s,cl}$ (Lewis, Shore, Sorbi) nor \mathcal{E}_{s} (Higuchi) is a Brouwer algebra.

Complexity in $\mathcal{D}_\mathsf{s},\,\mathcal{D}_\mathsf{s,cl},$ and \mathcal{E}_s

The Medvedev degrees and its substructures are as complicated as possible.

Complexity in $\mathcal{D}_\mathsf{s},\,\mathcal{D}_\mathsf{s,cl},$ and \mathcal{E}_s

The Medvedev degrees and its substructures are as complicated as possible.

Theorem (S)

- Th $(\mathcal{D}_s) \equiv_1 \text{Th}_3(\mathcal{N})$ (independently by Lewis, Nies, & Sorbi).
- Th $(\mathcal{D}_{s,cl}) \equiv_1 Th_2(\mathcal{N}).$
- Th $(\mathcal{E}_s) \equiv_1 Th(\mathcal{N})$.

Complexity in $\mathcal{D}_\mathsf{s},\,\mathcal{D}_\mathsf{s,cl},$ and \mathcal{E}_s

The Medvedev degrees and its substructures are as complicated as possible.

Theorem (S)

- Th $(\mathcal{D}_s) \equiv_1 \text{Th}_3(\mathcal{N})$ (independently by Lewis, Nies, & Sorbi).
- Th $(\mathcal{D}_{s,cl}) \equiv_1 Th_2(\mathcal{N}).$
- Th $(\mathcal{E}_s) \equiv_1 Th(\mathcal{N})$.

Today's theorem:

Theorem (S)

The degree of \mathcal{E}_s is $0'''$. That is, $0'''$ computes a presentation of \mathcal{E}_s , and every presentation of \mathcal{E}_s computes $\mathbf{0}'''$.

Presentations of \mathcal{E}_s

Definition

A presentation of \mathcal{E}_s is a pair of functions $+,\times\colon\omega\times\omega\to\omega$ such that the structure $(\omega;+,\times)$ is isomorphic to $\mathcal{E}_\mathsf{s}.$ The degree of a presentation is deg $T(+ \oplus \times)$.

Presentations of \mathcal{E}_s

Definition

A presentation of \mathcal{E}_s is a pair of functions $+,\times\colon\omega\times\omega\to\omega$ such that the structure $(\omega;+,\times)$ is isomorphic to $\mathcal{E}_\mathsf{s}.$ The degree of a presentation is deg $T(+ \oplus \times)$.

That $0^{\prime\prime\prime}$ computes a presentation follows from the fact that the relation $\left\{ T_{i}\right\} \leq_{\mathsf{s}}\left[T_{j}\right]$ (where T_{i} and T_{j} are primitive recursive subtrees of $2^{<\omega}$ with indices i and $j)$ is a Σ^0_3 property of $\langle i, j \rangle$:

 $[T_i] \leq_{\mathsf{s}} [T_j] \Leftrightarrow \exists e \forall n \exists s (\forall \sigma \in 2^s)(\sigma \in T_j \rightarrow \Phi_e(\sigma) \restriction n \in T_i)$

Presentations of \mathcal{E}_s

Definition

A presentation of \mathcal{E}_s is a pair of functions $+,\times\colon\omega\times\omega\to\omega$ such that the structure $(\omega;+,\times)$ is isomorphic to $\mathcal{E}_\mathsf{s}.$ The degree of a presentation is deg $T(+ \oplus \times)$.

That $0^{\prime\prime\prime}$ computes a presentation follows from the fact that the relation $\left\{ T_{i}\right\} \leq_{\mathsf{s}}\left[T_{j}\right]$ (where T_{i} and T_{j} are primitive recursive subtrees of $2^{<\omega}$ with indices i and $j)$ is a Σ^0_3 property of $\langle i, j \rangle$:

$$
[T_i] \leq_{\mathsf{s}} [T_j] \Leftrightarrow \exists e \forall n \exists s (\forall \sigma \in 2^s) (\sigma \in T_j \rightarrow \Phi_e(\sigma) \upharpoonright n \in T_i)
$$

So we need to prove that every presentation of \mathcal{E}_s computes $\mathbf{0}'''$.

In a lattice, x meets to w iff $(\exists y > w)(w = x \times y)$.

In a lattice, x meets to w iff $(\exists y > w)(w = x \times y)$.

A sequence of functions $\{f_n\}_{n\in\omega}\subseteq 2^\omega$ is strongly independent iff $\forall m(f_m \nleq \top \bigoplus_{n \neq m} f_n).$

In a lattice, x meets to w iff $(\exists y > w)(w = x \times y)$.

A sequence of functions $\{f_n\}_{n\in\omega}\subseteq 2^\omega$ is strongly independent iff $\forall m(f_m \nleq \top \bigoplus_{n \neq m} f_n).$

A sequence of Π^0_1 classes $\{\mathcal{S}_n\}_{n\in\omega}$ is strongly independent iff ${f_n}_{n \in \omega}$ is strongly independent whenever $\forall n (f_n \in S_n)$.

In a lattice, x meets to w iff $(\exists y > w)(w = x \times y)$.

A sequence of functions $\{f_n\}_{n\in\omega}\subseteq 2^\omega$ is strongly independent iff $\forall m(f_m \nleq \top \bigoplus_{n \neq m} f_n).$

A sequence of Π^0_1 classes $\{\mathcal{S}_n\}_{n\in\omega}$ is strongly independent iff ${f_n}_{n\in\omega}$ is strongly independent whenever $\forall n (f_n \in S_n)$.

An r.e. separating class is a mass problem of the form

$$
\mathcal{S}(A, B) = \{C \in 2^{\omega} \mid A \subseteq C \subseteq B^{c}\}\
$$

for disjoint r.e. sets A and B. An r.e. separating degree is the Medvedev degree of an r.e. separating class.

Spines

Definition

Let $\mathcal Q$ be a Π^0_1 class with no recursive member. Let $\{\sigma_n\}_{n\in\omega}$ be a recursive sequence of pairwise incomparable strings such that $\bigcup_{n\in\omega}$ /($\sigma_n)=2^\omega\setminus\mathcal{Q}$. Let $\{\mathcal{S}_n\}_{n\in\omega}$ be a recursive sequence of Π^0_1 classes. Then define

$$
\textsf{spine}(\mathcal{Q},\{\mathcal{S}_n\}_{n\in\omega})=\mathcal{Q}\cup\bigcup_{n\in\omega}\sigma_n\widehat{}\mathcal{S}_n.
$$

Spines

Definition

Let $\mathcal Q$ be a Π^0_1 class with no recursive member. Let $\{\sigma_n\}_{n\in\omega}$ be a recursive sequence of pairwise incomparable strings such that $\bigcup_{n\in\omega}$ /($\sigma_n)=2^\omega\setminus\mathcal{Q}$. Let $\{\mathcal{S}_n\}_{n\in\omega}$ be a recursive sequence of Π^0_1 classes. Then define

$$
\textsf{spine}(\mathcal{Q},\{\mathcal{S}_n\}_{n\in\omega})=\mathcal{Q}\cup\bigcup_{n\in\omega}\sigma_n\widehat{}\mathcal{S}_n.
$$

Lemma

Let $\{Q\} \cup \{S_n\}_{n \in \omega}$ be a recursive sequence of r.e. separating classes that is an \leq -antichain, and let

 $\mathbf{w} = \text{deg}_{s}(\text{spine}(\mathcal{Q}, \{S_n\}_{n\in\omega}))$.

If **x** meets to **w**, then **x** \leq_s deg_s(S_n) for some n.

Coding parameters

Let $\mathcal{Q}, \{\mathcal{S}_{0,i}\}_{i\in\omega}$, and $\{\mathcal{S}_{1,i}\}_{i\in\omega}$ be such that $\mathcal{Q} \cup {\mathcal{S}_{0,i}}_{i\in\omega} \cup {\mathcal{S}_{1,i}}_{i\in\omega}$ is a strongly independent recursive sequence of r.e. separating classes. Then let

Coding parameters

Let $\mathcal{Q}, \{\mathcal{S}_{0,i}\}_{i\in\omega}$, and $\{\mathcal{S}_{1,i}\}_{i\in\omega}$ be such that $\mathcal{Q} \cup \{\mathcal{S}_{0,i}\}_{i\in\omega} \cup \{\mathcal{S}_{1,i}\}_{i\in\omega}$ is a strongly independent recursive sequence of r.e. separating classes. Then let

$$
\mathbf{w}_0 = \deg_s(\mathcal{W}_0) \quad \text{for} \quad \mathcal{W}_0 = \text{spine}(\mathcal{Q}, \{S_{0,n}\}_{n \in \omega});
$$
\n
$$
\mathbf{w}_1 = \deg_s(\mathcal{W}_1) \quad \text{for} \quad \mathcal{W}_1 = \text{spine}(\mathcal{Q}, \{S_{1,n}\}_{n \in \omega});
$$
\n
$$
\mathbf{m} = \deg_s(\mathcal{M}) \quad \text{for} \quad \mathcal{M} = \text{spine}(\mathcal{Q}, \{S_{0,n} + S_{1,n}\}_{n \in \omega});
$$
\n
$$
\mathbf{p} = \deg_s(\mathcal{P}) \quad \text{for} \quad \mathcal{P} = \text{spine}(\mathcal{Q}, \{S_{0,n} + S_{1,n+1}\}_{n \in \omega});
$$
\n
$$
\mathbf{v} = \deg_s(\mathcal{V}) \quad \text{for} \quad \mathcal{V} = \sum_{n \in \omega} S_{0,n};
$$
\n
$$
\mathbf{r} = \deg_s(\mathcal{R}) \quad \text{for} \quad \mathcal{R} = \text{spine}(\mathcal{Q}, \{\mathcal{R}_n\}_{n \in \omega}),
$$
\n
$$
\text{where } \mathcal{R}_n = \sum_{m \neq n} S_{0,m}.
$$

Fix a Σ $_3^0$ -complete set $C \subseteq \omega$. Let $\{\mathcal{Z}_e\}_{e \in \omega}$ be a recursive sequence containing all Π^0_1 classes. Let $D \subseteq \omega$ be the set

Fix a Σ $_3^0$ -complete set $C \subseteq \omega$. Let $\{\mathcal{Z}_e\}_{e \in \omega}$ be a recursive sequence containing all Π^0_1 classes. Let $D \subseteq \omega$ be the set

 $D = \{e \mid \exists n (n \in C \land \mathcal{Z}_e \leq_s S_{0,n} \land \mathcal{V} \leq_s \mathcal{Z}_e + \mathcal{R}_n)\}.$

Fix a Σ $_3^0$ -complete set $C \subseteq \omega$. Let $\{\mathcal{Z}_e\}_{e \in \omega}$ be a recursive sequence containing all Π^0_1 classes. Let $D \subseteq \omega$ be the set

 $D = \{e \mid \exists n (n \in C \wedge \mathcal{Z}_e \leq S_{0,n} \wedge \mathcal{V} \leq S_{e} + \mathcal{R}_n)\}.$

The set D is Σ^0_3 : $D = \{e \mid \exists m \forall k \exists \ell \varphi(e, m, k, \ell)\}.$

Fix a Σ $_3^0$ -complete set $C \subseteq \omega$. Let $\{\mathcal{Z}_e\}_{e \in \omega}$ be a recursive sequence containing all Π^0_1 classes. Let $D \subseteq \omega$ be the set

$$
D = \{e \mid \exists n (n \in C \land \mathcal{Z}_e \leq_s \mathcal{S}_{0,n} \land \mathcal{V} \leq_s \mathcal{Z}_e + \mathcal{R}_n)\}.
$$

The set D is Σ^0_3 : $D = \{e \mid \exists m \forall k \exists \ell \varphi(e, m, k, \ell)\}.$

Lemma

Let \mathcal{Q} be an r.e. separating class, and let $\varphi(e, m, k, \ell)$ be a recursive predicate. Then there is a recursive sequence of Π^0_1 classes $\{\mathcal{X}_{(e,m)}\}_{(e,m)\in\omega}$ such that for all $\langle e, m \rangle \in \omega$

$$
\deg_{s}(\mathcal{X}_{\langle e,m\rangle})=\begin{cases} \mathbf{0} & \text{if }\forall k\exists \ell \varphi(e,m,k,\ell) \\ \deg_{s}(\mathcal{Q}) & \text{if }\exists k\forall \ell \neg \varphi(e,m,k,\ell). \end{cases}
$$

\times marks the $0'''$

Have

$$
D = \{e \mid \exists n (n \in C \land \mathcal{Z}_e \leq_s \mathcal{S}_{0,n} \land \mathcal{V} \leq_s \mathcal{Z}_e + \mathcal{R}_n)\}
$$

=
$$
\{e \mid \exists m \forall k \exists \ell \varphi(e, m, k, \ell)\}, \text{ and}
$$

$$
\mathsf{deg_s}(\mathcal{X}_{\langle e, m \rangle}) = \begin{cases} \mathbf{0} & \text{if } \forall k \exists \ell \varphi(e, m, k, \ell) \\ \mathsf{deg_s}(\mathcal{Q}) & \text{if } \exists k \forall \ell \neg \varphi(e, m, k, \ell). \end{cases}
$$

\times marks the $0'''$

Have

$$
D = \{e \mid \exists n (n \in C \land \mathcal{Z}_e \leq_s \mathcal{S}_{0,n} \land \mathcal{V} \leq_s \mathcal{Z}_e + \mathcal{R}_n)\}
$$

=
$$
\{e \mid \exists m \forall k \exists \ell \varphi(e, m, k, \ell)\}, \text{ and}
$$

$$
\mathsf{deg_s}(\mathcal{X}_{\langle e, m \rangle}) = \begin{cases} \mathbf{0} & \text{if $\forall k \exists \ell \varphi(e, m, k, \ell)$} \\ \mathsf{deg_s}(\mathcal{Q}) & \text{if $\exists k \forall \ell \neg \varphi(e, m, k, \ell)$.}\end{cases}
$$

Let $\mathbf{x} = \deg_{s}(\mathcal{X})$ for $\mathcal{X} = \text{spine}(\mathcal{Q}, \{\mathcal{Z}_{e} + \mathcal{X}_{\langle e,m\rangle}\}_{\langle e,m\rangle\in\omega}).$

\times marks the $0'''$

Have

$$
D = \{e \mid \exists n (n \in C \land \mathcal{Z}_e \leq_s \mathcal{S}_{0,n} \land \mathcal{V} \leq_s \mathcal{Z}_e + \mathcal{R}_n)\}
$$

=
$$
\{e \mid \exists m \forall k \exists \ell \varphi(e, m, k, \ell)\}, \text{ and}
$$

$$
\mathsf{deg_s}(\mathcal{X}_{\langle e, m \rangle}) = \begin{cases} \mathbf{0} & \text{if $\forall k \exists \ell \varphi(e, m, k, \ell)$} \\ \mathsf{deg_s}(\mathcal{Q}) & \text{if $\exists k \forall \ell \neg \varphi(e, m, k, \ell)$.}\end{cases}
$$

Let $\mathbf{x} = \deg_s(\mathcal{X})$ for $\mathcal{X} = \text{spine}(\mathcal{Q}, \{ \mathcal{Z}_e + \mathcal{X}_{\langle e,m \rangle}\}_{\langle e,m \rangle \in \omega}).$

Key property: If $\mathcal{Z}_{e} \leq_{s} \mathcal{S}_{0,n}$ and $\mathcal{V} \leq_{s} \mathcal{Z}_{e} + \mathcal{R}_{n}$, then $\mathcal{Z}_{e} \geq_{s} \mathcal{X}$ iff $n \in \mathcal{C}$.

Decoding step 1: walk up to deg_s($S_{0,n}$)

To determine if $n \in \mathcal{C}$, we first identify a degree $\mathbf{z}_{0,n}$ that is "close" to deg_s $(\mathcal{S}_{0,n})$:

Decoding step 1: walk up to deg_s($S_{0,n}$)

To determine if $n \in \mathcal{C}$, we first identify a degree $\mathbf{z}_{0,n}$ that is "close" to deg_s $(\mathcal{S}_{0,n})$:

Let $\mathsf{z}_{0,0} = \mathsf{deg_s}(\mathcal{S}_{0,0})$, and search for $\mathsf{z}_{i,j}$ for $i < 2$ and $1 \leq j \leq n$ and for y such that

(i) each $z_{i,j}$ meets to w_i ; (ii) each $z_{0,i} + z_{1,i} \geq_{s} m$; (iii) each $z_{0,j-1} + z_{1,j} \geq s$ p; (iv) $\mathbf v$ meets to $\mathbf r$; (v) $\mathbf{z}_{0,n} + \mathbf{y} \geq_{s} \mathbf{v}$.

Decoding step 1: walk up to deg_s($S_{0,n}$)

To determine if $n \in \mathcal{C}$, we first identify a degree $\mathbf{z}_{0,n}$ that is "close" to deg_s $(\mathcal{S}_{0,n})$:

Let $\mathsf{z}_{0,0} = \mathsf{deg_s}(\mathcal{S}_{0,0})$, and search for $\mathsf{z}_{i,j}$ for $i < 2$ and $1 \leq j \leq n$ and for y such that

```
(i) each z_{i,j} meets to w_i;
 (ii) each z_{0,i} + z_{1,i} \geq_{s} m;
(iii) each z_{0,i-1} + z_{1,i} \geq_{s} p;
(iv) \mathbf v meets to \mathbf r;
(v) \mathbf{z}_{0,n} + \mathbf{y} \geq_{s} \mathbf{v}.
```
The witnesses will eventually be found because $z_{i,j} = deg_s(S_{i,j})$ and $\mathbf{y} = \text{deg}_{s}(\mathcal{R}_n)$ satisfy (i)-(v).

Decoding step 2: check if $z_{0,n} \geq s$ **x**

Output "yes" if $z_{0,n} \geq s$ x, and output "no" otherwise.

Decoding step 2: check if z_0 , \geq , x

Output "yes" if $z_{0,n} \geq s$ x, and output "no" otherwise.

Claim For all $i < 2$ and all $1 \le j \le n$, we have $z_{i,j} \le s \deg_s(S_{i,j})$. Also, $y \leq_{s} \deg_{s}(\mathcal{R}_{n}).$

Decoding step 2: check if z_0 , \geq , x

Output "yes" if $z_{0,n} \geq s$ x, and output "no" otherwise.

Claim For all $i < 2$ and all $1 \le j \le n$, we have $z_{i,j} \le s \deg_s(S_{i,j})$. Also, $y \leq_{s} deg_{s}(\mathcal{R}_{n}).$

The proof is by induction, using the facts that the $S_{i,j}$ are strongly independent, that any **z** that meets to **w**; is $\leq_{\mathsf{s}} \mathsf{deg}_{\mathsf{s}}(\mathcal{S}_{i,j})$ for some j, and that any **y** that meets to **r** is \leq deg_s(\mathcal{R}_m) for some m.

Decoding step 2: check if $z_{0,n} \geq s$ x

Output "yes" if $z_{0,n} \geq s$ x, and output "no" otherwise.

Claim For all $i < 2$ and all $1 \le j \le n$, we have $z_{i,j} \le s \deg_s(S_{i,j})$. Also, $y \leq_{s} deg_{s}(\mathcal{R}_{n}).$

The proof is by induction, using the facts that the $S_{i,j}$ are strongly independent, that any **z** that meets to **w**; is $\leq_{\mathsf{s}} \mathsf{deg}_{\mathsf{s}}(\mathcal{S}_{i,j})$ for some j, and that any **y** that meets to **r** is \leq deg_s(\mathcal{R}_m) for some m.

Therefore $z_{0,n} = deg_s(\mathcal{Z}_e)$ where $\mathcal{Z}_e \leq_s \mathcal{S}_{0,n}$ and $\mathcal{V} \leq_s \mathcal{Z}_e + \mathcal{R}_n$.

Decoding step 2: check if $z_{0,n} \geq s$ x

Output "yes" if $z_{0,n} \geq s$ x, and output "no" otherwise.

Claim For all $i < 2$ and all $1 \le j \le n$, we have $z_{i,j} \le s \deg_s(S_{i,j})$. Also, $y \leq_{s} deg_{s}(\mathcal{R}_{n}).$

The proof is by induction, using the facts that the $S_{i,j}$ are strongly independent, that any **z** that meets to **w**; is $\leq_{\mathsf{s}} \mathsf{deg}_{\mathsf{s}}(\mathcal{S}_{i,j})$ for some j, and that any **y** that meets to **r** is \leq_s deg_s(\mathcal{R}_m) for some m.

Therefore $z_{0,n} = deg_s(\mathcal{Z}_e)$ where $\mathcal{Z}_e \leq_s \mathcal{S}_{0,n}$ and $\mathcal{V} \leq_s \mathcal{Z}_e + \mathcal{R}_n$.

Now recall the key property of X: If $\mathcal{Z}_{e} \leq S_{0,n}$ and $V \leq_{\epsilon} Z_{\epsilon} + \mathcal{R}_n$, then $\mathcal{Z}_{\epsilon} >_{\epsilon} \mathcal{X}$ iff $n \in \mathcal{C}$.

Thanks for coming to my talk! Do you have any questions about it?