Presenting the effectively closed Medvedev degrees requires **0**^{'''}

Paul Shafer Appalachian State University shaferpe@appstate.edu http://www.appstate.edu/~shaferpe/

ASL 2012 North American Annual Meeting Madison, WI March 31, 2012

Welcome to mass problems

A mass problem is a set $\mathcal{A} \subseteq 2^{\omega}$.

Think of the mass problem \mathcal{A} as representing the problem of finding a member of \mathcal{A} .

Welcome to mass problems

A mass problem is a set $\mathcal{A} \subseteq 2^{\omega}$.

Think of the mass problem \mathcal{A} as representing the problem of finding a member of \mathcal{A} .

The mass problem \mathcal{A} is closed if it is closed in the usual (product) topology on 2^{ω} . Equivalently, \mathcal{A} is closed if $\mathcal{A} = [T]$ for some tree $T \subseteq 2^{<\omega}$.

Welcome to mass problems

A mass problem is a set $\mathcal{A} \subseteq 2^{\omega}$.

Think of the mass problem \mathcal{A} as representing the problem of finding a member of \mathcal{A} .

The mass problem \mathcal{A} is closed if it is closed in the usual (product) topology on 2^{ω} . Equivalently, \mathcal{A} is closed if $\mathcal{A} = [T]$ for some tree $T \subseteq 2^{<\omega}$.

The mass problem \mathcal{A} is effectively closed if $\mathcal{A} = [T]$ for some computable tree $T \subseteq 2^{<\omega}$. Equivalently, \mathcal{A} is effectively closed if it is a Π_1^0 class.

Definition

• $\mathcal{A} \leq_{s} \mathcal{B}$ iff there is a Turing functional Φ such that $\Phi(\mathcal{B}) \subseteq \mathcal{A}$.

- $\mathcal{A} \leq_{s} \mathcal{B}$ iff there is a Turing functional Φ such that $\Phi(\mathcal{B}) \subseteq \mathcal{A}$.
- $\mathcal{A} \equiv_{\varsigma} \mathcal{B}$ iff $\mathcal{A} <_{\varsigma} \mathcal{B}$ and $\mathcal{B} <_{\varsigma} \mathcal{A}$.

- $\mathcal{A} \leq_{s} \mathcal{B}$ iff there is a Turing functional Φ such that $\Phi(\mathcal{B}) \subseteq \mathcal{A}$.
- $\mathcal{A} \equiv_{\varsigma} \mathcal{B}$ iff $\mathcal{A} <_{\varsigma} \mathcal{B}$ and $\mathcal{B} <_{\varsigma} \mathcal{A}$.
- $\deg_{s}(\mathcal{A}) = \{\mathcal{B} \mid \mathcal{B} \equiv_{s} \mathcal{A}\}.$

- $\mathcal{A} \leq_{s} \mathcal{B}$ iff there is a Turing functional Φ such that $\Phi(\mathcal{B}) \subseteq \mathcal{A}$.
- $\mathcal{A} \equiv_{\varsigma} \mathcal{B}$ iff $\mathcal{A} <_{\varsigma} \mathcal{B}$ and $\mathcal{B} <_{\varsigma} \mathcal{A}$.
- $\deg_{s}(\mathcal{A}) = \{\mathcal{B} \mid \mathcal{B} \equiv_{s} \mathcal{A}\}.$

•
$$\mathcal{D}_{s} = \{ \deg_{s}(\mathcal{A}) \mid \mathcal{A} \subseteq 2^{\omega} \}.$$

- $\mathcal{A} \leq_{s} \mathcal{B}$ iff there is a Turing functional Φ such that $\Phi(\mathcal{B}) \subseteq \mathcal{A}$.
- $\mathcal{A} \equiv_{\varsigma} \mathcal{B}$ iff $\mathcal{A} <_{\varsigma} \mathcal{B}$ and $\mathcal{B} <_{\varsigma} \mathcal{A}$.
- $\deg_{s}(\mathcal{A}) = \{\mathcal{B} \mid \mathcal{B} \equiv_{s} \mathcal{A}\}.$

•
$$\mathcal{D}_{s} = \{ \deg_{s}(\mathcal{A}) \mid \mathcal{A} \subseteq 2^{\omega} \}.$$

•
$$\mathcal{D}_{s,cl} = \{ \deg_s(\mathcal{A}) \mid \mathcal{A} \text{ is closed in } 2^{\omega} \}.$$

- $\mathcal{A} \leq \mathcal{B}$ iff there is a Turing functional Φ such that $\Phi(\mathcal{B}) \subset \mathcal{A}$.
- $\mathcal{A} \equiv_{\mathfrak{s}} \mathcal{B}$ iff $\mathcal{A} \leq_{\mathfrak{s}} \mathcal{B}$ and $\mathcal{B} \leq_{\mathfrak{s}} \mathcal{A}$.
- $\deg_{\mathsf{s}}(\mathcal{A}) = \{\mathcal{B} \mid \mathcal{B} \equiv_{\mathsf{s}} \mathcal{A}\}.$

•
$$\mathcal{D}_{s} = \{ \deg_{s}(\mathcal{A}) \mid \mathcal{A} \subseteq 2^{\omega} \}.$$

- $\mathcal{D}_{s,cl} = \{ \deg_s(\mathcal{A}) \mid \mathcal{A} \text{ is closed in } 2^{\omega} \}.$
- $\mathcal{E}_{s} = \{ \deg_{s}(\mathcal{A}) \mid \mathcal{A} \text{ is effectively closed in } 2^{\omega} \} \setminus \{ \deg_{s}(\emptyset) \}.$

Definition

- $\mathcal{A} \leq \mathcal{B}$ iff there is a Turing functional Φ such that $\Phi(\mathcal{B}) \subset \mathcal{A}$.
- $\mathcal{A} \equiv_{\mathfrak{s}} \mathcal{B}$ iff $\mathcal{A} \leq_{\mathfrak{s}} \mathcal{B}$ and $\mathcal{B} \leq_{\mathfrak{s}} \mathcal{A}$.
- $\deg_{s}(\mathcal{A}) = \{\mathcal{B} \mid \mathcal{B} \equiv_{s} \mathcal{A}\}.$

•
$$\mathcal{D}_{s} = \{ \deg_{s}(\mathcal{A}) \mid \mathcal{A} \subseteq 2^{\omega} \}.$$

- $\mathcal{D}_{s,cl} = \{ \deg_s(\mathcal{A}) \mid \mathcal{A} \text{ is closed in } 2^{\omega} \}.$
- $\mathcal{E}_{s} = \{ \deg_{s}(\mathcal{A}) \mid \mathcal{A} \text{ is effectively closed in } 2^{\omega} \} \setminus \{ \deg_{s}(\emptyset) \}.$

 $\mathcal{B} \subseteq \mathcal{A} \Rightarrow \mathcal{A} \leq_{s} \mathcal{B}$ (by the identity functional).

Definition

- $\mathcal{A} \leq \mathcal{B}$ iff there is a Turing functional Φ such that $\Phi(\mathcal{B}) \subset \mathcal{A}$.
- $\mathcal{A} \equiv_{\mathfrak{s}} \mathcal{B}$ iff $\mathcal{A} \leq_{\mathfrak{s}} \mathcal{B}$ and $\mathcal{B} \leq_{\mathfrak{s}} \mathcal{A}$.
- $\deg_{s}(\mathcal{A}) = \{\mathcal{B} \mid \mathcal{B} \equiv_{s} \mathcal{A}\}.$

•
$$\mathcal{D}_{s} = \{ \deg_{s}(\mathcal{A}) \mid \mathcal{A} \subseteq 2^{\omega} \}.$$

- $\mathcal{D}_{s,cl} = \{ \deg_s(\mathcal{A}) \mid \mathcal{A} \text{ is closed in } 2^{\omega} \}.$
- $\mathcal{E}_{s} = \{ \deg_{s}(\mathcal{A}) \mid \mathcal{A} \text{ is effectively closed in } 2^{\omega} \} \setminus \{ \deg_{s}(\emptyset) \}.$

 $\mathcal{B} \subset \mathcal{A} \Rightarrow \mathcal{A} \leq_{s} \mathcal{B}$ (by the identity functional).

 \mathcal{D}_{s} and $\mathcal{D}_{s,cl}$ have $\mathbf{0} = \deg_{s}(2^{\omega})$ and $\mathbf{1} = \deg_{s}(\emptyset)$.

Definition

- $\mathcal{A} \leq \mathcal{B}$ iff there is a Turing functional Φ such that $\Phi(\mathcal{B}) \subset \mathcal{A}$.
- $\mathcal{A} \equiv_{\mathfrak{s}} \mathcal{B}$ iff $\mathcal{A} \leq_{\mathfrak{s}} \mathcal{B}$ and $\mathcal{B} \leq_{\mathfrak{s}} \mathcal{A}$.
- $\deg_{s}(\mathcal{A}) = \{\mathcal{B} \mid \mathcal{B} \equiv_{s} \mathcal{A}\}.$

•
$$\mathcal{D}_{s} = \{ \deg_{s}(\mathcal{A}) \mid \mathcal{A} \subseteq 2^{\omega} \}.$$

- $\mathcal{D}_{s,cl} = \{ \deg_s(\mathcal{A}) \mid \mathcal{A} \text{ is closed in } 2^{\omega} \}.$
- $\mathcal{E}_{s} = \{ \deg_{s}(\mathcal{A}) \mid \mathcal{A} \text{ is effectively closed in } 2^{\omega} \} \setminus \{ \deg_{s}(\emptyset) \}.$

 $\mathcal{B} \subseteq \mathcal{A} \Rightarrow \mathcal{A} \leq_{s} \mathcal{B}$ (by the identity functional).

$$\mathcal{D}_{\sf s}$$
 and $\mathcal{D}_{\sf s, \sf cl}$ have ${f 0} = {\sf deg}_{\sf s}(2^\omega)$ and ${f 1} = {\sf deg}_{\sf s}(\emptyset).$

$$\mathcal{E}_{\sf s}$$
 has ${f 0}={\sf deg}_{\sf s}(2^\omega)$ and ${f 1}={\sf deg}_{\sf s}({\sf complete \ consistent \ extensions \ of \ PA})$

Decoding 0''' The end!

$\mathcal{D}_{s}, \mathcal{D}_{s,cl}, \text{ and } \mathcal{E}_{s}$ are distributive lattices

For mass problems \mathcal{A} and \mathcal{B} , let

• $\mathcal{A} + \mathcal{B} = \{ f \oplus g \mid f \in \mathcal{A} \land g \in \mathcal{B} \};$

Decoding 0''' The end!

$\mathcal{D}_{s}, \mathcal{D}_{s,cl}$, and \mathcal{E}_{s} are distributive lattices

For mass problems \mathcal{A} and \mathcal{B} , let

•
$$\mathcal{A} + \mathcal{B} = \{ f \oplus g \mid f \in \mathcal{A} \land g \in \mathcal{B} \};$$

•
$$\mathcal{A} \times \mathcal{B} = 0^{\frown} \mathcal{A} \cup 1^{\frown} \mathcal{B}.$$

Encoding 0'''Decoding 0'''

$\mathcal{D}_{s}, \mathcal{D}_{s,cl}, \text{ and } \mathcal{E}_{s}$ are distributive lattices

For mass problems \mathcal{A} and \mathcal{B} , let

- $\mathcal{A} + \mathcal{B} = \{ f \oplus g \mid f \in \mathcal{A} \land g \in \mathcal{B} \}$;
- $A \times B = 0^{\frown} A \cup 1^{\frown} B$

Then

- $\deg_{s}(\mathcal{A}) + \deg_{s}(\mathcal{B}) = \deg_{s}(\mathcal{A} + \mathcal{B});$
- $\deg_{s}(\mathcal{A}) \times \deg_{s}(\mathcal{B}) = \deg_{s}(\mathcal{A} \times \mathcal{B}).$

Encoding 0''' Decoding 0'''

$\mathcal{D}_{s}, \mathcal{D}_{s,cl}, \text{ and } \mathcal{E}_{s}$ are distributive lattices

For mass problems \mathcal{A} and \mathcal{B} , let

- $\mathcal{A} + \mathcal{B} = \{ f \oplus g \mid f \in \mathcal{A} \land g \in \mathcal{B} \}$;
- $A \times B = 0^{\frown} A \cup 1^{\frown} B$

Then

- $\deg_{s}(\mathcal{A}) + \deg_{s}(\mathcal{B}) = \deg_{s}(\mathcal{A} + \mathcal{B});$
- $\deg_{s}(\mathcal{A}) \times \deg_{s}(\mathcal{B}) = \deg_{s}(\mathcal{A} \times \mathcal{B}).$

 \mathcal{D}_{s} is a Brouwer algebra (for every *a* and *b* there is a least *c* with a+c > b).

Neither $\mathcal{D}_{s,cl}$ (Lewis, Shore, Sorbi) nor \mathcal{E}_{s} (Higuchi) is a Brouwer algebra.

Complexity in \mathcal{D}_{s} , $\mathcal{D}_{\mathsf{s},\mathsf{cl}}$, and \mathcal{E}_{s}

The Medvedev degrees and its substructures are as complicated as possible.

<u>Complexity</u> in \mathcal{D}_{s} , $\mathcal{D}_{s,cl}$, and \mathcal{E}_{s}

The Medvedev degrees and its substructures are as complicated as possible.

Theorem (S)

- $\operatorname{Th}(\mathcal{D}_{s}) \equiv_{1} \operatorname{Th}_{3}(\mathcal{N})$ (independently by Lewis, Nies, & Sorbi).
- $\operatorname{Th}(\mathcal{D}_{s,cl}) \equiv_1 \operatorname{Th}_2(\mathcal{N}).$
- $\operatorname{Th}(\mathcal{E}_{s}) \equiv_{1} \operatorname{Th}(\mathcal{N}).$

Complexity in $\mathcal{D}_{\mathsf{s}}\text{, }\mathcal{D}_{\mathsf{s},\mathsf{cl}}\text{, and }\mathcal{E}_{\mathsf{s}}$

The Medvedev degrees and its substructures are as complicated as possible.

Theorem (S)

- $Th(\mathcal{D}_s) \equiv_1 Th_3(\mathcal{N})$ (independently by Lewis, Nies, & Sorbi).
- $\operatorname{Th}(\mathcal{D}_{s,cl}) \equiv_1 \operatorname{Th}_2(\mathcal{N}).$
- $\operatorname{Th}(\mathcal{E}_{s}) \equiv_{1} \operatorname{Th}(\mathcal{N}).$

Today's theorem:

Theorem (S)

The degree of \mathcal{E}_s is $\mathbf{0}'''$. That is, $\mathbf{0}'''$ computes a presentation of \mathcal{E}_s , and every presentation of \mathcal{E}_s computes $\mathbf{0}'''$.

Presentations of \mathcal{E}_s

Definition

A presentation of \mathcal{E}_s is a pair of functions $+, \times : \omega \times \omega \to \omega$ such that the structure $(\omega; +, \times)$ is isomorphic to \mathcal{E}_s . The degree of a presentation is deg_T $(+ \oplus \times)$.

Presentations of \mathcal{E}_s

Definition

A presentation of \mathcal{E}_s is a pair of functions $+, \times : \omega \times \omega \to \omega$ such that the structure $(\omega; +, \times)$ is isomorphic to \mathcal{E}_s . The degree of a presentation is deg_T $(+ \oplus \times)$.

That $\mathbf{0}^{\prime\prime\prime}$ computes a presentation follows from the fact that the relation $[T_i] \leq_{s} [T_j]$ (where T_i and T_j are primitive recursive subtrees of $2^{<\omega}$ with indices *i* and *j*) is a Σ_3^0 property of $\langle i, j \rangle$:

 $[T_i] \leq_{\mathsf{s}} [T_j] \Leftrightarrow \exists e \forall n \exists s (\forall \sigma \in 2^s) (\sigma \in T_j \to \Phi_e(\sigma) \upharpoonright n \in T_i)$

Presentations of \mathcal{E}_s

Definition

A presentation of \mathcal{E}_s is a pair of functions $+, \times : \omega \times \omega \to \omega$ such that the structure $(\omega; +, \times)$ is isomorphic to \mathcal{E}_s . The degree of a presentation is deg_T $(+ \oplus \times)$.

That $\mathbf{0}^{\prime\prime\prime}$ computes a presentation follows from the fact that the relation $[T_i] \leq_{s} [T_j]$ (where T_i and T_j are primitive recursive subtrees of $2^{<\omega}$ with indices *i* and *j*) is a Σ_3^0 property of $\langle i, j \rangle$:

$$[T_i] \leq_{\mathsf{s}} [T_j] \Leftrightarrow \exists e \forall n \exists s (\forall \sigma \in 2^s) (\sigma \in T_j \to \Phi_e(\sigma) \upharpoonright n \in T_i)$$

So we need to prove that every presentation of \mathcal{E}_s computes $\mathbf{0}'''$.

In a lattice, x meets to w iff $(\exists y > w)(w = x \times y)$.

In a lattice, x meets to w iff $(\exists y > w)(w = x \times y)$.

A sequence of functions $\{f_n\}_{n \in \omega} \subseteq 2^{\omega}$ is strongly independent iff $\forall m(f_m \not\leq_T \bigoplus_{n \neq m} f_n)$.

In a lattice, x meets to w iff $(\exists y > w)(w = x \times y)$.

A sequence of functions $\{f_n\}_{n \in \omega} \subseteq 2^{\omega}$ is strongly independent iff $\forall m(f_m \not\leq_T \bigoplus_{n \neq m} f_n)$.

A sequence of Π_1^0 classes $\{S_n\}_{n \in \omega}$ is strongly independent iff $\{f_n\}_{n \in \omega}$ is strongly independent whenever $\forall n(f_n \in S_n)$.

In a lattice, x meets to w iff $(\exists y > w)(w = x \times y)$.

A sequence of functions $\{f_n\}_{n \in \omega} \subseteq 2^{\omega}$ is strongly independent iff $\forall m(f_m \not\leq_T \bigoplus_{n \neq m} f_n)$.

A sequence of Π_1^0 classes $\{S_n\}_{n \in \omega}$ is strongly independent iff $\{f_n\}_{n \in \omega}$ is strongly independent whenever $\forall n(f_n \in S_n)$.

An r.e. separating class is a mass problem of the form

$$\mathcal{S}(A,B) = \{ C \in 2^{\omega} \mid A \subseteq C \subseteq B^{\mathsf{c}} \}$$

for disjoint r.e. sets A and B. An r.e. separating degree is the Medvedev degree of an r.e. separating class.

Spines

Definition

Let Q be a Π_1^0 class with no recursive member. Let $\{\sigma_n\}_{n\in\omega}$ be a recursive sequence of pairwise incomparable strings such that $\bigcup_{n\in\omega} I(\sigma_n) = 2^{\omega} \setminus Q$. Let $\{S_n\}_{n\in\omega}$ be a recursive sequence of Π_1^0 classes. Then define

$$\mathsf{spine}(\mathcal{Q}, \{\mathcal{S}_n\}_{n \in \omega}) = \mathcal{Q} \cup \bigcup_{n \in \omega} \sigma_n^{\frown} \mathcal{S}_n.$$

Spines

Definition

Let \mathcal{Q} be a Π_1^0 class with no recursive member. Let $\{\sigma_n\}_{n\in\omega}$ be a recursive sequence of pairwise incomparable strings such that $\bigcup_{n \in \omega} I(\sigma_n) = 2^{\omega} \setminus Q$. Let $\{S_n\}_{n \in \omega}$ be a recursive sequence of Π_1^0 classes. Then define

$$\mathsf{spine}(\mathcal{Q}, \{\mathcal{S}_n\}_{n \in \omega}) = \mathcal{Q} \cup \bigcup_{n \in \omega} \sigma_n^{\frown} \mathcal{S}_n.$$

Lemma

Let $\{Q\} \cup \{S_n\}_{n \in \omega}$ be a recursive sequence of r.e. separating classes that is an \leq_{s} -antichain, and let

 $\mathbf{w} = \deg_{\mathbf{s}}(\operatorname{spine}(\mathcal{Q}, \{\mathcal{S}_{p}\}_{n \in \omega})).$

If **x** meets to **w**, then $\mathbf{x} \leq_{s} \deg_{s}(\mathcal{S}_{n})$ for some *n*.

Coding parameters

Let \mathcal{Q} , $\{\mathcal{S}_{0,i}\}_{i\in\omega}$, and $\{\mathcal{S}_{1,i}\}_{i\in\omega}$ be such that $\mathcal{Q} \cup \{\mathcal{S}_{0,i}\}_{i\in\omega} \cup \{\mathcal{S}_{1,i}\}_{i\in\omega}$ is a strongly independent recursive sequence of r.e. separating classes. Then let

Coding parameters

Let \mathcal{Q} , $\{\mathcal{S}_{0,i}\}_{i\in\omega}$, and $\{\mathcal{S}_{1,i}\}_{i\in\omega}$ be such that $\mathcal{Q} \cup \{\mathcal{S}_{0,i}\}_{i\in\omega} \cup \{\mathcal{S}_{1,i}\}_{i\in\omega}$ is a strongly independent recursive sequence of r.e. separating classes. Then let

Fix a Σ_3^0 -complete set $C \subseteq \omega$. Let $\{\mathcal{Z}_e\}_{e \in \omega}$ be a recursive sequence containing all Π_1^0 classes. Let $D \subseteq \omega$ be the set

Fix a Σ_3^0 -complete set $C \subseteq \omega$. Let $\{\mathcal{Z}_e\}_{e \in \omega}$ be a recursive sequence containing all Π_1^0 classes. Let $D \subseteq \omega$ be the set

 $D = \{ e \mid \exists n (n \in C \land \mathcal{Z}_e \leq_s \mathcal{S}_{0,n} \land \mathcal{V} \leq_s \mathcal{Z}_e + \mathcal{R}_n) \}.$

Fix a Σ_3^0 -complete set $C \subseteq \omega$. Let $\{\mathcal{Z}_e\}_{e \in \omega}$ be a recursive sequence containing all Π_1^0 classes. Let $D \subseteq \omega$ be the set

$$D = \{ e \mid \exists n (n \in C \land \mathcal{Z}_e \leq_{s} \mathcal{S}_{0,n} \land \mathcal{V} \leq_{s} \mathcal{Z}_e + \mathcal{R}_n) \}.$$

The set *D* is Σ_3^0 : $D = \{e \mid \exists m \forall k \exists \ell \varphi(e, m, k, \ell)\}.$

Fix a Σ_3^0 -complete set $C \subseteq \omega$. Let $\{\mathcal{Z}_e\}_{e \in \omega}$ be a recursive sequence containing all Π_1^0 classes. Let $D \subseteq \omega$ be the set

$$D = \{ e \mid \exists n (n \in C \land \mathcal{Z}_e \leq_{s} \mathcal{S}_{0,n} \land \mathcal{V} \leq_{s} \mathcal{Z}_e + \mathcal{R}_n) \}.$$

The set *D* is Σ_3^0 : $D = \{e \mid \exists m \forall k \exists \ell \varphi(e, m, k, \ell)\}.$

Lemma

Let Q be an r.e. separating class, and let $\varphi(e, m, k, \ell)$ be a recursive predicate. Then there is a recursive sequence of Π_1^0 classes $\{\mathcal{X}_{\langle e,m \rangle}\}_{\langle e,m \rangle \in \omega}$ such that for all $\langle e,m \rangle \in \omega$

$$\deg_{\mathsf{s}}(\mathcal{X}_{\langle e,m\rangle}) = \begin{cases} \mathbf{0} & \text{if } \forall k \exists \ell \varphi(e,m,k,\ell) \\ \deg_{\mathsf{s}}(\mathcal{Q}) & \text{if } \exists k \forall \ell \neg \varphi(e,m,k,\ell). \end{cases}$$

$\mathbf x$ marks the $\mathbf 0'''$

Have

$$D = \{ e \mid \exists n (n \in C \land \mathcal{Z}_e \leq_s S_{0,n} \land \mathcal{V} \leq_s \mathcal{Z}_e + \mathcal{R}_n) \}$$

= $\{ e \mid \exists m \forall k \exists \ell \varphi(e, m, k, \ell) \}$, and

$$\mathsf{deg}_{\mathsf{s}}(\mathcal{X}_{\langle e, m \rangle}) = \begin{cases} \mathbf{0} & \text{if } \forall k \exists \ell \varphi(e, m, k, \ell) \\ \mathsf{deg}_{\mathsf{s}}(\mathcal{Q}) & \text{if } \exists k \forall \ell \neg \varphi(e, m, k, \ell). \end{cases}$$

\boldsymbol{x} marks the $\boldsymbol{0}^{\prime\prime\prime}$

Have

$$D = \{ e \mid \exists n (n \in C \land \mathcal{Z}_e \leq_s S_{0,n} \land \mathcal{V} \leq_s \mathcal{Z}_e + \mathcal{R}_n) \}$$

= $\{ e \mid \exists m \forall k \exists \ell \varphi(e, m, k, \ell) \}$, and

$$\deg_{\mathsf{s}}(\mathcal{X}_{\langle e,m \rangle}) = egin{cases} \mathbf{0} & ext{if } orall k \exists \ell arphi(e,m,k,\ell) \ \deg_{\mathsf{s}}(\mathcal{Q}) & ext{if } \exists k orall \ell
eg arphi(e,m,k,\ell). \end{cases}$$

 $\text{Let } \mathbf{x} = \text{deg}_{s}(\mathcal{X}) \text{ for } \mathcal{X} = \text{spine}(\mathcal{Q}, \{\mathcal{Z}_{e} + \mathcal{X}_{\langle e, m \rangle}\}_{\langle e, m \rangle \in \omega}).$

${f x}$ marks the ${f 0}^{\prime\prime\prime}$

Have

$$D = \{ e \mid \exists n (n \in C \land \mathcal{Z}_e \leq_s S_{0,n} \land \mathcal{V} \leq_s \mathcal{Z}_e + \mathcal{R}_n) \}$$

= $\{ e \mid \exists m \forall k \exists \ell \varphi(e, m, k, \ell) \}$, and

$$\deg_{\mathsf{s}}(\mathcal{X}_{\langle e,m
angle}) = egin{cases} \mathbf{0} & ext{if } orall k \exists \ell arphi(e,m,k,\ell) \ \deg_{\mathsf{s}}(\mathcal{Q}) & ext{if } \exists k orall \ell
eg arphi(e,m,k,\ell). \end{cases}$$

 $\mathsf{Let}\ \mathbf{x} = \mathsf{deg}_{\mathsf{s}}(\mathcal{X}) \ \mathsf{for}\ \mathcal{X} = \mathsf{spine}(\mathcal{Q}, \{\mathcal{Z}_{e} + \mathcal{X}_{\langle e, m \rangle}\}_{\langle e, m \rangle \in \omega}).$

Key property: If $\mathcal{Z}_e \leq_s \mathcal{S}_{0,n}$ and $\mathcal{V} \leq_s \mathcal{Z}_e + \mathcal{R}_n$, then $\mathcal{Z}_e \geq_s \mathcal{X}$ iff $n \in C$.

Decoding step 1: walk up to deg_s($S_{0,n}$)

To determine if $n \in C$, we first identify a degree $\mathbf{z}_{0,n}$ that is "close" to deg_s($\mathcal{S}_{0,n}$):

Decoding step 1: walk up to deg_s($S_{0,n}$)

To determine if $n \in C$, we first identify a degree $\mathbf{z}_{0,n}$ that is "close" to deg_s($S_{0,n}$):

Let $\mathbf{z}_{0,0} = \deg_{\mathbf{s}}(\mathcal{S}_{0,0})$, and search for $\mathbf{z}_{i,i}$ for i < 2 and $1 \le j \le n$ and for **y** such that

```
(i) each z<sub>i,j</sub> meets to w<sub>i</sub>;
(ii) each z_{0,i} + z_{1,i} \ge_s m;
(iii) each z_{0,i-1} + z_{1,i} \ge_s p;
(iv) y meets to r;
(v) z_{0,n} + y >_{s} v.
```

Decoding step 1: walk up to deg_s($S_{0,n}$)

To determine if $n \in C$, we first identify a degree $\mathbf{z}_{0,n}$ that is "close" to deg_s($S_{0,n}$):

Let $\mathbf{z}_{0,0} = \deg_{\mathbf{s}}(\mathcal{S}_{0,0})$, and search for $\mathbf{z}_{i,i}$ for i < 2 and $1 \le j \le n$ and for **y** such that

```
(i) each z<sub>i,j</sub> meets to w<sub>i</sub>;
(ii) each z_{0,i} + z_{1,i} \ge_s m;
(iii) each z_{0,i-1} + z_{1,i} \ge_{s} p;
(iv) y meets to r;
(v) z_{0,n} + y >_{s} v.
```

The witnesses will eventually be found because $\mathbf{z}_{i,i} = \deg_{\mathbf{s}}(S_{i,i})$ and $\mathbf{y} = \deg_{\mathbf{s}}(\mathcal{R}_n)$ satisfy (i)-(v).

Output "yes" if $\mathbf{z}_{0,n} \geq_s \mathbf{x}$, and output "no" otherwise.

Decoding step 2: check if $\overline{\mathbf{z}_{0,n}} \geq_{s} \mathbf{x}_{n}$

Output "yes" if $\mathbf{z}_{0,n} \geq_{s} \mathbf{x}$, and output "no" otherwise.

Claim For all i < 2 and all $1 \le j \le n$, we have $\mathbf{z}_{i,j} \le \deg_{\mathbf{s}}(S_{i,j})$. Also, $\mathbf{y} \leq_{\mathbf{s}} \deg_{\mathbf{s}}(\mathcal{R}_n).$

Output "yes" if $\mathbf{z}_{0,n} \geq_s \mathbf{x}$, and output "no" otherwise.

Claim For all i < 2 and all $1 \le j \le n$, we have $\mathbf{z}_{i,j} \le_{s} \deg_{s}(S_{i,j})$. Also, $\mathbf{y} \le_{s} \deg_{s}(\mathcal{R}_{n})$.

The proof is by induction, using the facts that the $S_{i,j}$ are strongly independent, that any \mathbf{z} that meets to \mathbf{w}_i is $\leq_s \deg_s(S_{i,j})$ for some j, and that any \mathbf{y} that meets to \mathbf{r} is $\leq_s \deg_s(\mathcal{R}_m)$ for some m.

Output "yes" if $\mathbf{z}_{0,n} \geq_s \mathbf{x}$, and output "no" otherwise.

Claim For all i < 2 and all $1 \le j \le n$, we have $\mathbf{z}_{i,j} \le_{s} \deg_{s}(\mathcal{S}_{i,j})$. Also, $\mathbf{y} \le_{s} \deg_{s}(\mathcal{R}_{n})$.

The proof is by induction, using the facts that the $S_{i,j}$ are strongly independent, that any \mathbf{z} that meets to \mathbf{w}_i is $\leq_s \deg_s(S_{i,j})$ for some j, and that any \mathbf{y} that meets to \mathbf{r} is $\leq_s \deg_s(\mathcal{R}_m)$ for some m.

Therefore $\mathbf{z}_{0,n} = \deg_{\mathbf{s}}(\mathcal{Z}_e)$ where $\mathcal{Z}_e \leq_{\mathbf{s}} \mathcal{S}_{0,n}$ and $\mathcal{V} \leq_{\mathbf{s}} \mathcal{Z}_e + \mathcal{R}_n$.

Output "yes" if $\mathbf{z}_{0,n} \geq_s \mathbf{x}$, and output "no" otherwise.

Claim For all i < 2 and all $1 \le j \le n$, we have $\mathbf{z}_{i,j} \le_s \deg_s(\mathcal{S}_{i,j})$. Also, $\mathbf{y} \le_s \deg_s(\mathcal{R}_n)$.

The proof is by induction, using the facts that the $S_{i,j}$ are strongly independent, that any **z** that meets to \mathbf{w}_i is $\leq_s \deg_s(S_{i,j})$ for some j, and that any **y** that meets to **r** is $\leq_s \deg_s(\mathcal{R}_m)$ for some m.

Therefore $\mathbf{z}_{0,n} = \deg_{\mathbf{s}}(\mathcal{Z}_e)$ where $\mathcal{Z}_e \leq_{\mathbf{s}} \mathcal{S}_{0,n}$ and $\mathcal{V} \leq_{\mathbf{s}} \mathcal{Z}_e + \mathcal{R}_n$.

Now recall the key property of \mathcal{X} : If $\mathcal{Z}_e \leq_s \mathcal{S}_{0,n}$ and $\mathcal{V} \leq_s \mathcal{Z}_e + \mathcal{R}_n$, then $\mathcal{Z}_e \geq_s \mathcal{X}$ iff $n \in C$.

Thanks for coming to my talk! Do you have any questions about it?