Diagonal extender based Prikry forcing

Dima Sinapova University of California Irvine

March 2012

Dima Sinapova University of California Irvine Diagonal extender based Prikry forcing

3 ×

Cardinal arithmetic and the exponential operation

What is true about the operation $\kappa \mapsto 2^{\kappa}$?

E + 4 E +

▶ Any reasonable behavior of $\kappa \mapsto 2^{\kappa}$ for regular κ is consistent with ZFC.

Image: A image: A

- Any reasonable behavior of $\kappa \mapsto 2^{\kappa}$ for regular κ is consistent with ZFC.
- ► The case of singular cardinals is much more intricate:

• 3 >

Image: A image: A

- Any reasonable behavior of $\kappa \mapsto 2^{\kappa}$ for regular κ is consistent with ZFC.
- The case of singular cardinals is much more intricate:
 - involves large cardinals,
 - constraints provable from ZFC.

- Any reasonable behavior of $\kappa \mapsto 2^{\kappa}$ for regular κ is consistent with ZFC.
- The case of singular cardinals is much more intricate:
 - involves large cardinals,
 - constraints provable from ZFC.
- ► The Singular Cardinal Hypothesis (SCH): if κ is strong limit, then 2^κ = κ⁺.

- Any reasonable behavior of $\kappa \mapsto 2^{\kappa}$ for regular κ is consistent with ZFC.
- The case of singular cardinals is much more intricate:
 - involves large cardinals,
 - constraints provable from ZFC.
- ► The Singular Cardinal Hypothesis (SCH): if κ is strong limit, then 2^κ = κ⁺.

The Singular Cardinal Problem: Describe a complete set of rules for the behavior of the exponential function $\kappa \mapsto 2^{\kappa}$ for singular cardinals κ .

・ 同 ト ・ ヨ ト ・ ヨ ト

- 17

★ 문 ► ★ 문 ►

(Magidor) If there exists a supercompact cardinal, then there is a forcing extension in which ℵ_ω is strong limit and 2^{ℵ_ω} = ℵ_{ω+2}.

向下 イヨト イヨト

- (Magidor) If there exists a supercompact cardinal, then there is a forcing extension in which ℵ_ω is strong limit and 2^{ℵ_ω} = ℵ_{ω+2}.
- Gitik and Woodin significantly reduced the large cardinal hypothesis to a measurable cardinal κ of Mitchell order κ⁺⁺. This hypothesis was shown to be optimal by Gitik and Mitchell using core model theory.

伺 とう ヨン うちょう

- (Magidor) If there exists a supercompact cardinal, then there is a forcing extension in which ℵ_ω is strong limit and 2^{ℵ_ω} = ℵ_{ω+2}.
- Gitik and Woodin significantly reduced the large cardinal hypothesis to a measurable cardinal κ of Mitchell order κ⁺⁺. This hypothesis was shown to be optimal by Gitik and Mitchell using core model theory.
- So, the failure of SCH is equiconsistent with the existence of a measurable κ of Mitchell order κ⁺⁺.

伺 とう ヨン うちょう

물 제 문 제 문 제

 (Silver) SCH cannot fail for the first time at a singular cardinal with uncountable cofinality.

同 と く ヨ と く ヨ と

- (Silver) SCH cannot fail for the first time at a singular cardinal with uncountable cofinality.
- (Solovay) SCH holds above a strongly compact cardinal.

伺 と く き と く き と

- (Silver) SCH cannot fail for the first time at a singular cardinal with uncountable cofinality.
- (Solovay) SCH holds above a strongly compact cardinal.
- ▶ (Shelah) If $2^{\aleph_n} < \aleph_{\omega}$ for every $n < \omega$, then $2^{\aleph_{\omega}} < \aleph_{\omega_4}$.

向下 イヨト イヨト

- (Silver) SCH cannot fail for the first time at a singular cardinal with uncountable cofinality.
- (Solovay) SCH holds above a strongly compact cardinal.
- (Shelah) If $2^{\aleph_n} < \aleph_{\omega}$ for every $n < \omega$, then $2^{\aleph_{\omega}} < \aleph_{\omega_4}$.
- It is open if the bound can be improved.

向下 イヨト イヨト

Prikry type forcing

Motivation: blowing up the power set of a singular cardinal in order to construct models of not SCH.

個 と く ヨ と く ヨ と …

Motivation: blowing up the power set of a singular cardinal in order to construct models of not SCH.

Classical Prikry: starts with a normal measure on κ and adds a cofinal ω-sequence in κ, while preserving cardinals.

伺 とう ヨン うちょう

Motivation: blowing up the power set of a singular cardinal in order to construct models of not SCH.

- Classical Prikry: starts with a normal measure on κ and adds a cofinal ω-sequence in κ, while preserving cardinals.
- Violating SCH: Let κ be a Laver indestructible supercompact cardinal. Force to add κ⁺⁺ many subsets of κ. Then force with Prikry forcing to make κ have cofinality ω. In the final model cardinals are preserved, κ remains strong limit, and 2^κ > κ⁺. I.e. SCH fails at κ.

□ ▶ ★ 臣 ▶ ★ 臣 ▶ ...

▲圖▶ ★ 国▶ ★ 国▶

1. Magidor forcing:

個 と く ヨ と く ヨ と …

- 1. Magidor forcing:
 - start with an increasing sequence (U_α | α < λ) of normal measures on κ;

・日・ ・ ヨ・ ・ ヨ・

- 1. Magidor forcing:
 - start with an increasing sequence (U_α | α < λ) of normal measures on κ;
 - force to add a club set of order type λ in κ .

個 と く ヨ と く ヨ と …

- 1. Magidor forcing:
 - start with an increasing sequence (U_α | α < λ) of normal measures on κ;
 - force to add a club set of order type λ in κ .
- 2. Supercompact Prikry:

個 と く ヨ と く ヨ と …

- 1. Magidor forcing:
 - start with an increasing sequence (U_α | α < λ) of normal measures on κ;
 - force to add a club set of order type λ in κ .
- 2. Supercompact Prikry:
 - start with a supercompactness measure U on $\mathcal{P}_{\kappa}(\eta)$;

伺 と く き と く き と

- 1. Magidor forcing:
 - start with an increasing sequence (U_α | α < λ) of normal measures on κ;
 - force to add a club set of order type λ in κ .

2. Supercompact Prikry:

- start with a supercompactness measure U on $\mathcal{P}_{\kappa}(\eta)$;
- ▶ force to add an increasing ω -sequence of sets $x_n \in (\mathcal{P}_{\kappa}(\eta))^V$, with $\eta = \bigcup_n x_n$.

伺下 イヨト イヨト

- 1. Magidor forcing:
 - start with an increasing sequence (U_α | α < λ) of normal measures on κ;
 - force to add a club set of order type λ in κ .
- 2. Supercompact Prikry:
 - start with a supercompactness measure U on $\mathcal{P}_{\kappa}(\eta)$;
 - ▶ force to add an increasing ω -sequence of sets $x_n \in (\mathcal{P}_{\kappa}(\eta))^V$, with $\eta = \bigcup_n x_n$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3. Gitik-Sharon's diagonal supercompact Prikry:

- 1. Magidor forcing:
 - start with an increasing sequence (U_α | α < λ) of normal measures on κ;
 - force to add a club set of order type λ in κ .
- 2. Supercompact Prikry:
 - start with a supercompactness measure U on $\mathcal{P}_{\kappa}(\eta)$;
 - ▶ force to add an increasing ω -sequence of sets $x_n \in (\mathcal{P}_{\kappa}(\eta))^V$, with $\eta = \bigcup_n x_n$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3. Gitik-Sharon's diagonal supercompact Prikry:

 start with a sequence (U_n | n < ω) of supercompactness measures on P_κ(κ⁺ⁿ);

- 1. Magidor forcing:
 - start with an increasing sequence (U_α | α < λ) of normal measures on κ;
 - force to add a club set of order type λ in κ .
- 2. Supercompact Prikry:
 - start with a supercompactness measure U on $\mathcal{P}_{\kappa}(\eta)$;
 - ▶ force to add an increasing ω -sequence of sets $x_n \in (\mathcal{P}_{\kappa}(\eta))^V$, with $\eta = \bigcup_n x_n$.

3. Gitik-Sharon's diagonal supercompact Prikry:

- start with a sequence (U_n | n < ω) of supercompactness measures on P_κ(κ⁺ⁿ);
- force to add an increasing ω -sequence of sets $x_n \in \mathcal{P}_{\kappa}((\kappa^{+n})^V)$ with $(\kappa^{+\omega})^V = \bigcup_n x_n$.

・ロン ・回 と ・ ヨ と ・ ヨ と

- 1. Magidor forcing:
 - ► start with an increasing sequence $\langle U_{\alpha} \mid \alpha < \lambda \rangle$ of normal measures on κ ;
 - force to add a club set of order type λ in κ .
- 2. Supercompact Prikry:
 - start with a supercompactness measure U on $\mathcal{P}_{\kappa}(\eta)$;
 - ▶ force to add an increasing ω -sequence of sets $x_n \in (\mathcal{P}_{\kappa}(\eta))^V$, with $\eta = \bigcup_n x_n$.

3. Gitik-Sharon's diagonal supercompact Prikry:

- start with a sequence (U_n | n < ω) of supercompactness measures on P_κ(κ⁺ⁿ);
- ▶ force to add an increasing ω -sequence of sets $x_n \in \mathcal{P}_{\kappa}((\kappa^{+n})^V)$ with $(\kappa^{+\omega})^V = \bigcup_n x_n$.

The strategy: add subsets to a large cardinal, then singularize it.

→ Ξ → < Ξ →</p>

Developed by Gitik-Magidor.

• 3 >

A ■

Image: A image: A

- Developed by Gitik-Magidor.
- Large cardinal hypothesis: λ > κ, κ = sup_n κ_n, each κ_n is λ + 1 strong.

伺下 イヨト イヨト

- Developed by Gitik-Magidor.
- Large cardinal hypothesis: λ > κ, κ = sup_n κ_n, each κ_n is λ + 1 strong.
- Adds λ sequences through $\prod_n \kappa_n$, and so 2^{κ} becomes λ .

同 ト く ヨ ト く ヨ ト

- Developed by Gitik-Magidor.
- Large cardinal hypothesis: λ > κ, κ = sup_n κ_n, each κ_n is λ + 1 strong.
- Adds λ sequences through $\prod_n \kappa_n$, and so 2^{κ} becomes λ .
- Preserves κ^+ , and adds a weak square sequence at κ .

伺 とう ヨン うちょう

Alternative way: start with a singular κ and blow up its powerset in a Prikry fashion via **extender based forcing**.

- Developed by Gitik-Magidor.
- Large cardinal hypothesis: λ > κ, κ = sup_n κ_n, each κ_n is λ + 1 strong.
- Adds λ sequences through $\prod_n \kappa_n$, and so 2^{κ} becomes λ .
- Preserves κ^+ , and adds a weak square sequence at κ .
- No need to add subsets of κ in advance, so can keep GCH below κ (as opposed to the above forcings).

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Alternative way: start with a singular κ and blow up its powerset in a Prikry fashion via **extender based forcing**.

- Developed by Gitik-Magidor.
- Large cardinal hypothesis: λ > κ, κ = sup_n κ_n, each κ_n is λ + 1 strong.
- Adds λ sequences through $\prod_n \kappa_n$, and so 2^{κ} becomes λ .
- Preserves κ^+ , and adds a weak square sequence at κ .
- No need to add subsets of κ in advance, so can keep GCH below κ (as opposed to the above forcings).
- Allows more flexibility when interleaving collapses in order to make κ a small cardinal (e.g. ℵ_ω).

The hybrid Prikry

Dima Sinapova University of California Irvine Diagonal extender based Prikry forcing

æ

(S.) Starting from a supercompact cardinal κ , there is a forcing which simultaneously singularizes κ and increases its powerset.

伺 と く き と く き と

(S.) Starting from a supercompact cardinal κ , there is a forcing which simultaneously singularizes κ and increases its powerset.

 Combine extender based forcing with diagonal supercompact Prikry.

高 とう ヨン うまと

(S.) Starting from a supercompact cardinal κ , there is a forcing which simultaneously singularizes κ and increases its powerset.

- Combine extender based forcing with diagonal supercompact Prikry.
- In the ground model κ is supercompact and GCH holds.

(S.) Starting from a supercompact cardinal κ , there is a forcing which simultaneously singularizes κ and increases its powerset.

- Combine extender based forcing with diagonal supercompact Prikry.
- ▶ In the ground model κ is supercompact and GCH holds. The κ_n 's will be chosen generically.

(S.) Starting from a supercompact cardinal κ , there is a forcing which simultaneously singularizes κ and increases its powerset.

- Combine extender based forcing with diagonal supercompact Prikry.
- ▶ In the ground model κ is supercompact and GCH holds. The κ_n 's will be chosen generically.
- No bounded subsets of κ are added.

(S.) Starting from a supercompact cardinal κ , there is a forcing which simultaneously singularizes κ and increases its powerset.

- Combine extender based forcing with diagonal supercompact Prikry.
- ▶ In the ground model κ is supercompact and GCH holds. The κ_n 's will be chosen generically.
- No bounded subsets of κ are added.
- ▶ In the final model, GCH holds below κ , and $2^{\kappa} > \kappa^+$.

(S.) Starting from a supercompact cardinal κ , there is a forcing which simultaneously singularizes κ and increases its powerset.

- Combine extender based forcing with diagonal supercompact Prikry.
- ▶ In the ground model κ is supercompact and GCH holds. The κ_n 's will be chosen generically.
- No bounded subsets of κ are added.
- In the final model, GCH holds below κ, and 2^κ > κ⁺. In particular, SCH fails at κ.

(S.) Starting from a supercompact cardinal κ , there is a forcing which simultaneously singularizes κ and increases its powerset.

- Combine extender based forcing with diagonal supercompact Prikry.
- ▶ In the ground model κ is supercompact and GCH holds. The κ_n 's will be chosen generically.
- No bounded subsets of κ are added.
- In the final model, GCH holds below κ, and 2^κ > κ⁺. In particular, SCH fails at κ.
- Collapses (κ⁺)^V. More precisely, (κ^{+ω+1})^V becomes the successor of κ in the generic extension.

(4 回) (4 回) (4 回)

(S.) Starting from a supercompact cardinal κ , there is a forcing which simultaneously singularizes κ and increases its powerset.

- Combine extender based forcing with diagonal supercompact Prikry.
- ▶ In the ground model κ is supercompact and GCH holds. The κ_n 's will be chosen generically.
- No bounded subsets of κ are added.
- In the final model, GCH holds below κ, and 2^κ > κ⁺. In particular, SCH fails at κ.
- Collapses (κ⁺)^V. More precisely, (κ^{+ω+1})^V becomes the successor of κ in the generic extension.

(4 回) (4 回) (4 回)

Let $\sigma: V \to M$ witness that κ is $\kappa^{+\omega+2} + 1$ - strong and let $E = \langle E_{\alpha} \mid \alpha < \kappa^{+\omega+2} \rangle$ be κ complete ultrafilters on κ , where:

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\sigma: V \to M$ witness that κ is $\kappa^{+\omega+2} + 1$ - strong and let $E = \langle E_{\alpha} \mid \alpha < \kappa^{+\omega+2} \rangle$ be κ complete ultrafilters on κ , where: 1. each $E_{\alpha} = \{Z \subset \kappa \mid \alpha \in \sigma(Z)\}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\sigma: V \to M$ witness that κ is $\kappa^{+\omega+2} + 1$ - strong and let $E = \langle E_{\alpha} \mid \alpha < \kappa^{+\omega+2} \rangle$ be κ complete ultrafilters on κ , where: 1. each $E_{\alpha} = \{Z \subset \kappa \mid \alpha \in \sigma(Z)\}$ 2. for $\alpha \leq_E \beta$, $\pi_{\beta,\alpha}: \kappa \to \kappa$ are such that $\sigma \pi_{\beta,\alpha}(\beta) = \alpha$.

伺下 イヨト イヨト

Let $\sigma: V \to M$ witness that κ is $\kappa^{+\omega+2} + 1$ - strong and let $E = \langle E_{\alpha} \mid \alpha < \kappa^{+\omega+2} \rangle$ be κ complete ultrafilters on κ , where: 1. each $E_{\alpha} = \{Z \subset \kappa \mid \alpha \in \sigma(Z)\}$ 2. for $\alpha \leq_E \beta$, $\pi_{\beta,\alpha}: \kappa \to \kappa$ are such that $\sigma \pi_{\beta,\alpha}(\beta) = \alpha$. 3. if $\alpha \leq_E \beta$, then E_{α} is the projection of E_{β} by $\pi_{\beta\alpha}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $\sigma: V \to M$ witness that κ is $\kappa^{+\omega+2} + 1$ - strong and let $E = \langle E_{\alpha} \mid \alpha < \kappa^{+\omega+2} \rangle$ be κ complete ultrafilters on κ , where: 1. each $E_{\alpha} = \{Z \subset \kappa \mid \alpha \in \sigma(Z)\}$ 2. for $\alpha \leq_E \beta$, $\pi_{\beta,\alpha}: \kappa \to \kappa$ are such that $\sigma\pi_{\beta,\alpha}(\beta) = \alpha$. 3. if $\alpha \leq_E \beta$, then E_{α} is the projection of E_{β} by $\pi_{\beta\alpha}$ 4. the $\pi_{\beta,\alpha}$'s commute.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $\sigma: V \to M$ witness that κ is $\kappa^{+\omega+2} + 1$ - strong and let $E = \langle E_{\alpha} \mid \alpha < \kappa^{+\omega+2} \rangle$ be κ complete ultrafilters on κ , where: 1. each $E_{\alpha} = \{Z \subset \kappa \mid \alpha \in \sigma(Z)\}$ 2. for $\alpha \leq_E \beta$, $\pi_{\beta,\alpha}: \kappa \to \kappa$ are such that $\sigma\pi_{\beta,\alpha}(\beta) = \alpha$. 3. if $\alpha \leq_E \beta$, then E_{α} is the projection of E_{β} by $\pi_{\beta\alpha}$ 4. the $\pi_{\beta,\alpha}$'s commute. 5. for $a \subset \kappa^{+\omega+2}$, with $|a| < \kappa$, there are unboundedly many

 $\beta \in \kappa^{+\omega+2}$, such that for all $\alpha \in a$, $\alpha \leq_E \beta$.

(4月) (3日) (3日) 日

 $\mathbb{Q}=\mathbb{Q}_0\cup\mathbb{Q}_1$ is defined as follows:

回 と く ヨ と く ヨ と …

æ

 $\mathbb{Q}=\mathbb{Q}_0\cup\mathbb{Q}_1$ is defined as follows:

 $\blacktriangleright \mathbb{Q}_1 = \{ f : \kappa^{+\omega+2} \to \kappa \mid |f| < \kappa^{+\omega+1} \}$

御 と く ヨ と く ヨ と …

 $\mathbb{Q}=\mathbb{Q}_0\cup\mathbb{Q}_1$ is defined as follows:

- $\blacktriangleright \ \mathbb{Q}_1 = \{ f : \kappa^{+\omega+2} \to \kappa \mid |f| < \kappa^{+\omega+1} \}$
- \mathbb{Q}_0 has conditions of the form $p = \langle a, A, f \rangle$ such that:

伺下 イヨト イヨト

 $\mathbb{Q}=\mathbb{Q}_0\cup\mathbb{Q}_1$ is defined as follows:

- $\blacktriangleright \ \mathbb{Q}_1 = \{ f : \kappa^{+\omega+2} \to \kappa \mid |f| < \kappa^{+\omega+1} \}$
- \mathbb{Q}_0 has conditions of the form $p = \langle a, A, f \rangle$ such that:
 - $f \in \mathbb{Q}_1$

伺下 イヨト イヨト

 $\mathbb{Q}=\mathbb{Q}_0\cup\mathbb{Q}_1$ is defined as follows:

- $\blacktriangleright \ \mathbb{Q}_1 = \{f: \kappa^{+\omega+2} \to \kappa \mid |f| < \kappa^{+\omega+1}\}$
- \mathbb{Q}_0 has conditions of the form $p = \langle a, A, f \rangle$ such that:
 - $f \in \mathbb{Q}_1$ • $a \subset \kappa^{+\omega+2}$, $|a| < \kappa$, and $a \cap \operatorname{dom}(f) = \emptyset$

伺い イヨト イヨト ニヨ

 $\mathbb{Q}=\mathbb{Q}_0\cup\mathbb{Q}_1$ is defined as follows:

- $\blacktriangleright \ \mathbb{Q}_1 = \{f: \kappa^{+\omega+2} \to \kappa \mid |f| < \kappa^{+\omega+1}\}$
- \mathbb{Q}_0 has conditions of the form $p = \langle a, A, f \rangle$ such that:
 - $f \in \mathbb{Q}_1$
 - ▶ $a \subset \kappa^{+\omega+2}$, $|a| < \kappa$, and $a \cap \operatorname{dom}(f) = \emptyset$
 - ▶ *a* has an \leq_E maximal element and $A \in E_{\max a}$

同 と く ヨ と く ヨ と

 $\mathbb{Q}=\mathbb{Q}_0\cup\mathbb{Q}_1$ is defined as follows:

- $\blacktriangleright \ \mathbb{Q}_1 = \{ f : \kappa^{+\omega+2} \to \kappa \mid |f| < \kappa^{+\omega+1} \}$
- \mathbb{Q}_0 has conditions of the form $p = \langle a, A, f \rangle$ such that:
 - $f \in \mathbb{Q}_1$
 - ▶ $a \subset \kappa^{+\omega+2}$, $|a| < \kappa$, and $a \cap \operatorname{dom}(f) = \emptyset$
 - ▶ a has an \leq_E maximal element and $A \in E_{\max a}$
 - ▶ for all $\alpha \leq \beta \leq_E \gamma$ in *a*, $\nu \in \pi_{\max a, \gamma}$ "*A*, $\pi_{\gamma, \alpha}(\nu) = \pi_{\beta, \alpha}(\pi_{\gamma, \beta}(\nu)).$

伺下 イヨト イヨト

 $\mathbb{Q}=\mathbb{Q}_0\cup\mathbb{Q}_1$ is defined as follows:

- $\blacktriangleright \ \mathbb{Q}_1 = \{ f : \kappa^{+\omega+2} \to \kappa \mid |f| < \kappa^{+\omega+1} \}$
- \mathbb{Q}_0 has conditions of the form $p = \langle a, A, f \rangle$ such that:
 - $f \in \mathbb{Q}_1$
 - ▶ $a \subset \kappa^{+\omega+2}$, $|a| < \kappa$, and $a \cap \operatorname{dom}(f) = \emptyset$
 - ▶ a has an \leq_E maximal element and $A \in E_{\max a}$
 - ▶ for all $\alpha \leq \beta \leq_E \gamma$ in $a, \nu \in \pi_{\max a, \gamma}$ " $A, \pi_{\gamma, \alpha}(\nu) = \pi_{\beta, \alpha}(\pi_{\gamma, \beta}(\nu)).$
 - ▶ for all $\alpha < \beta$ in a, $\nu \in A$, $\pi_{\max a, \alpha}(\nu) < \pi_{\max a, \beta}(\nu)$

伺 とう ヨン うちょう

 $\mathbb{Q}=\mathbb{Q}_0\cup\mathbb{Q}_1$ is defined as follows:

- $\blacktriangleright \ \mathbb{Q}_1 = \{ f : \kappa^{+\omega+2} \to \kappa \mid |f| < \kappa^{+\omega+1} \}$
- \mathbb{Q}_0 has conditions of the form $p = \langle a, A, f \rangle$ such that:
 - f ∈ Q₁
 a ⊂ κ^{+ω+2}, |a| < κ, and a ∩ dom(f) = Ø
 a has an ≤_E maximal element and A ∈ E_{max a}
 for all α ≤ β ≤_E γ in a, ν ∈ π_{max a,γ}"A, π_{γ,α}(ν) = π_{β,α}(π_{γ,β}(ν)).
 - ▶ for all $\alpha < \beta$ in a, $\nu \in A$, $\pi_{\max a, \alpha}(\nu) < \pi_{\max a, \beta}(\nu)$

 $\blacktriangleright \ \langle b, B, g \rangle \leq_0 \langle a, A, f \rangle \text{ if } b \supset a, \ \pi_{\max b, \max a} "B \subset A, \text{ and } g \supset f.$

同 ト く ヨ ト く ヨ ト

 $\mathbb{Q}=\mathbb{Q}_0\cup\mathbb{Q}_1$ is defined as follows:

- $\blacktriangleright \ \mathbb{Q}_1 = \{ f : \kappa^{+\omega+2} \to \kappa \mid |f| < \kappa^{+\omega+1} \}$
- \mathbb{Q}_0 has conditions of the form $p = \langle a, A, f \rangle$ such that:
 - f ∈ Q₁
 a ⊂ κ^{+ω+2}, |a| < κ, and a ∩ dom(f) = Ø
 a has an ≤_E maximal element and A ∈ E_{max a}
 for all α ≤ β ≤_E γ in a, ν ∈ π_{max a,γ}"A, π_{γ,α}(ν) = π_{β,α}(π_{γ,β}(ν)).
 for all α < β in a, ν ∈ A, π_{max a,α}(ν) < π_{max a,β}(ν)
- ▶ $\langle b, B, g \rangle \leq_0 \langle a, A, f \rangle$ if $b \supset a$, $\pi_{\max b, \max a}$ " $B \subset A$, and $g \supset f$. ▶ $g \leq \langle a, A, f \rangle$ if:

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $\mathbb{Q}=\mathbb{Q}_0\cup\mathbb{Q}_1$ is defined as follows:

- $\blacktriangleright \ \mathbb{Q}_1 = \{ f : \kappa^{+\omega+2} \to \kappa \mid |f| < \kappa^{+\omega+1} \}$
- \mathbb{Q}_0 has conditions of the form $p = \langle a, A, f \rangle$ such that:

► $\langle b, B, g \rangle \leq_0 \langle a, A, f \rangle$ if $b \supset a$, $\pi_{\max b, \max a}$ " $B \subset A$, and $g \supset f$. ► $g \leq \langle a, A, f \rangle$ if:

・吊り ・ヨン ・ヨン ・ヨ

▶
$$g \supset f$$
, dom $(g) \supset a$,

 $\mathbb{Q}=\mathbb{Q}_0\cup\mathbb{Q}_1$ is defined as follows:

- $\blacktriangleright \ \mathbb{Q}_1 = \{ f : \kappa^{+\omega+2} \to \kappa \mid |f| < \kappa^{+\omega+1} \}$
- \mathbb{Q}_0 has conditions of the form $p = \langle a, A, f \rangle$ such that:
 - f ∈ Q₁
 a ⊂ κ^{+ω+2}, |a| < κ, and a ∩ dom(f) = Ø
 a has an ≤_E maximal element and A ∈ E_{max a}
 for all α ≤ β ≤_E γ in a, ν ∈ π_{max a,γ}" A, π_{γ,α}(ν) = π_{β,α}(π_{γ,β}(ν)).
 for all α < β in a, ν ∈ A, π_{max a,α}(ν) < π_{max a,β}(ν)
- ▶ $\langle b, B, g \rangle \leq_0 \langle a, A, f \rangle$ if $b \supset a$, $\pi_{\max b, \max a}$ " $B \subset A$, and $g \supset f$. ▶ $g \leq \langle a, A, f \rangle$ if:

・ 同 ト ・ ヨ ト ・ ヨ ト …

- ▶ $g \supset f$, dom $(g) \supset a$,
- $g(\max a) \in A$,

 $\mathbb{Q}=\mathbb{Q}_0\cup\mathbb{Q}_1$ is defined as follows:

- $\blacktriangleright \ \mathbb{Q}_1 = \{ f : \kappa^{+\omega+2} \to \kappa \mid |f| < \kappa^{+\omega+1} \}$
- \mathbb{Q}_0 has conditions of the form $p = \langle a, A, f \rangle$ such that:
 - f ∈ Q₁
 a ⊂ κ^{+ω+2}, |a| < κ, and a ∩ dom(f) = Ø
 a has an ≤_E maximal element and A ∈ E_{max a}
 for all α ≤ β ≤_E γ in a, ν ∈ π_{max a,γ}"A, π_{γ,α}(ν) = π_{β,α}(π_{γ,β}(ν)).
 for all α < β in a, ν ∈ A, π_{max a,α}(ν) < π_{max a,β}(ν)
- ► $\langle b, B, g \rangle \leq_0 \langle a, A, f \rangle$ if $b \supset a$, $\pi_{\max b, \max a}$ " $B \subset A$, and $g \supset f$. ► $g \leq \langle a, A, f \rangle$ if:

・ 同 ト ・ ヨ ト ・ ヨ ト

- $g \supset f$, $\operatorname{dom}(g) \supset a$,
- $g(\max a) \in A$,
- for all $\beta \in a$, $g(\beta) = \pi_{\max a,\beta}(g(\max a))$.

回 と く ヨ と く ヨ と

æ

▶ \mathbb{Q} is equivalent to \mathbb{Q}_1 , which is equivalent to the Cohen poset for adding $\kappa^{+\omega+2}$ many subsets to $\kappa^{+\omega+1}$.

同 と く ヨ と く ヨ と

- ▶ \mathbb{Q} is equivalent to \mathbb{Q}_1 , which is equivalent to the Cohen poset for adding $\kappa^{+\omega+2}$ many subsets to $\kappa^{+\omega+1}$.
- Q has the Prikry property. I.e. for p ∈ Q₀ and a formula φ, there is q ≤ p with q ∈ Q₀ such that q ⊩_Q φ or q ⊩_Q ¬φ.

- ▶ \mathbb{Q} is equivalent to \mathbb{Q}_1 , which is equivalent to the Cohen poset for adding $\kappa^{+\omega+2}$ many subsets to $\kappa^{+\omega+1}$.
- Q has the Prikry property. I.e. for p ∈ Q₀ and a formula φ, there is q ≤ p with q ∈ Q₀ such that q ⊢_Q φ or q ⊢_Q ¬φ.
- \mathbb{Q} has the $\kappa^{+\omega+2}$ chain condition.

伺下 イヨト イヨト

- ▶ \mathbb{Q} is equivalent to \mathbb{Q}_1 , which is equivalent to the Cohen poset for adding $\kappa^{+\omega+2}$ many subsets to $\kappa^{+\omega+1}$.
- Q has the Prikry property. I.e. for p ∈ Q₀ and a formula φ, there is q ≤ p with q ∈ Q₀ such that q ⊢_Q φ or q ⊢_Q ¬φ.
- \mathbb{Q} has the $\kappa^{+\omega+2}$ chain condition.
- \mathbb{Q} is $< \kappa$ closed.

伺下 イヨト イヨト

The hybrid Prikry - the main forcing

Conditions in $\ensuremath{\mathbb{P}}$ are of the form

$$p = \langle x_0, f_0, ..., x_{l-1}, f_{l-1}, A_l, F_l, ... \rangle$$

where l = length(p) and:

白 と く ヨ と く ヨ と …

æ

$$p = \langle x_0, f_0, ..., x_{l-1}, f_{l-1}, A_l, F_l, ... \rangle$$

where l = length(p) and:

1. For n < l, • $x_n \in \mathcal{P}_{\kappa}(\kappa^{+n})$, and for $i < n, x_i \prec x_n$,

E 🖌 🖌 E 🕨

$$p = \langle x_0, f_0, ..., x_{l-1}, f_{l-1}, A_l, F_l, ... \rangle$$

where l = length(p) and:

1. For
$$n < l$$
,
• $x_n \in \mathcal{P}_{\kappa}(\kappa^{+n})$, and for $i < n, x_i \prec x_n$,
• $f_n \in \mathbb{Q}_1$

白 と く ヨ と く ヨ と …

æ

$$p = \langle x_0, f_0, ..., x_{l-1}, f_{l-1}, A_l, F_l, ... \rangle$$

where l = length(p) and:

1. For n < l, • $x_n \in \mathcal{P}_{\kappa}(\kappa^{+n})$, and for $i < n, x_i \prec x_n$, • $f_n \in \mathbb{Q}_1$ 2. For $n \ge l$,

$$p = \langle x_0, f_0, ..., x_{l-1}, f_{l-1}, A_l, F_l, ... \rangle$$

where l = length(p) and:

1. For n < l, • $x_n \in \mathcal{P}_{\kappa}(\kappa^{+n})$, and for $i < n, x_i \prec x_n$, • $f_n \in \mathbb{Q}_1$ 2. For $n \ge l$, • $A_n \in U_n$, and $x_{l-1} \prec y$ for all $y \in A_l$.

$$p = \langle x_0, f_0, ..., x_{l-1}, f_{l-1}, A_l, F_l, ... \rangle$$

where I = length(p) and:

For n < l,

 x_n ∈ P_κ(κ⁺ⁿ), and for i < n, x_i ≺ x_n,
 f_n ∈ Q₁

 For n ≥ l,

 A_n ∈ U_n, and x_{l-1} ≺ y for all y ∈ A_l.
 F_n is a function with domain A_n, for y ∈ A_n, F_n(y) ∈ Q₀.

$$p = \langle x_0, f_0, ..., x_{l-1}, f_{l-1}, A_l, F_l, ... \rangle$$

where I = length(p) and:

For n < l,

 x_n ∈ P_κ(κ⁺ⁿ), and for i < n, x_i ≺ x_n,
 f_n ∈ Q₁

 For n ≥ l,

 A_n ∈ U_n, and x_{l-1} ≺ y for all y ∈ A_l.
 F_n is a function with domain A_n, for y ∈ A_n, F_n(y) ∈ Q₀.

 For x ∈ A_n, denote F_n(x) = ⟨aⁿ_x, Aⁿ_x, fⁿ_x⟩. Then for l ≤ n < m, y ∈ A_n, z ∈ A_m with y ≺ z, we have aⁿ_y ⊂ a^m_z.

伺 ト イヨト イヨト

個 と く ヨ と く ヨ と …

æ

 \blacktriangleright $\mathbb P$ has the Prikry property.

- < ≣ →

- \blacktriangleright $\mathbb P$ has the Prikry property.
- \blacktriangleright $\mathbb P$ has the $\kappa^{+\omega+2}$ chain condition.

向下 イヨト イヨト

- \blacktriangleright $\mathbb P$ has the Prikry property.
- \blacktriangleright $\mathbb P$ has the $\kappa^{+\omega+2}$ chain condition.
- Cardinals $\leq \kappa$ and $\geq \kappa^{+\omega+1}$ are preserved.

- \mathbb{P} has the Prikry property.
- \blacktriangleright $\mathbb P$ has the $\kappa^{+\omega+2}$ chain condition.
- Cardinals $\leq \kappa$ and $\geq \kappa^{+\omega+1}$ are preserved.
- $(\kappa^{+\omega+1})^V$ becomes the successor of κ in the generic extension.

- \blacktriangleright \mathbb{P} has the Prikry property.
- \mathbb{P} has the $\kappa^{+\omega+2}$ chain condition.
- Cardinals $\leq \kappa$ and $\geq \kappa^{+\omega+1}$ are preserved.
- $(\kappa^{+\omega+1})^V$ becomes the successor of κ in the generic extension.
- ▶ P blows up the powerset of κ to (κ^{+ω+2})^V. And so, in the generic extension SCH fails at κ.

Let G be \mathbb{P} -generic. G adds:

白 と く ヨ と く ヨ と …

æ

Let G be \mathbb{P} -generic. G adds:

 $\langle x_n \mid n < \omega \rangle$, such that setting $\kappa_n =_{def} x_n \cap \kappa$, $\kappa = \sup_n \kappa_n$, and

白 と く ヨ と く ヨ と …

2

Let G be \mathbb{P} -generic. G adds: $\langle x_n \mid n < \omega \rangle$, such that setting $\kappa_n =_{def} x_n \cap \kappa$, $\kappa = \sup_n \kappa_n$, and functions $f_n : (\kappa^{+\omega+2})^V \to \kappa$, $n < \omega$.

Let G be \mathbb{P} -generic. G adds: $\langle x_n \mid n < \omega \rangle$, such that setting $\kappa_n =_{def} x_n \cap \kappa$, $\kappa = \sup_n \kappa_n$, and functions $f_n : (\kappa^{+\omega+2})^V \to \kappa$, $n < \omega$.

• Set
$$t_{\alpha}(n) = f_n(\alpha)$$
; each $t_{\alpha} \in \prod_n \kappa$.

Let G be \mathbb{P} -generic. G adds: $\langle x_n \mid n < \omega \rangle$, such that setting $\kappa_n =_{def} x_n \cap \kappa$, $\kappa = \sup_n \kappa_n$, and functions $f_n : (\kappa^{+\omega+2})^V \to \kappa$, $n < \omega$.

Let G be \mathbb{P} -generic. G adds: $\langle x_n \mid n < \omega \rangle$, such that setting $\kappa_n =_{def} x_n \cap \kappa$, $\kappa = \sup_n \kappa_n$, and functions $f_n : (\kappa^{+\omega+2})^V \to \kappa$, $n < \omega$.

- ▶ Set $t_{\alpha}(n) = f_n(\alpha)$; each $t_{\alpha} \in \prod_n \kappa$. (With some more work we can actually make $t_{\alpha} \in \prod_n \kappa_n$)
- ▶ In V[G], setting $F_n^p(x) = \langle a_n^p(x), A_n^p(x), f_n^p(x) \rangle$, define:

Let G be \mathbb{P} -generic. G adds: $\langle x_n \mid n < \omega \rangle$, such that setting $\kappa_n =_{def} x_n \cap \kappa$, $\kappa = \sup_n \kappa_n$, and functions $f_n : (\kappa^{+\omega+2})^V \to \kappa$, $n < \omega$.

► Set
$$t_{\alpha}(n) = f_n(\alpha)$$
; each $t_{\alpha} \in \prod_n \kappa$.
(With some more work we can actually make $t_{\alpha} \in \prod_n \kappa_n$)

• In
$$V[G]$$
, setting $F_n^p(x) = \langle a_n^p(x), A_n^p(x), f_n^p(x) \rangle$, define:
 $F_n = \bigcup_{p \in G, l(p) \le n} a_n^p(x_n)$,

Let G be \mathbb{P} -generic. G adds: $\langle x_n \mid n < \omega \rangle$, such that setting $\kappa_n =_{def} x_n \cap \kappa$, $\kappa = \sup_n \kappa_n$, and functions $f_n : (\kappa^{+\omega+2})^V \to \kappa$, $n < \omega$.

$$F_n = \bigcup_{p \in G, l(p) \le n} a_n^p(x_n)$$
, and $F = \bigcup_n F_n$

Proposition

Let G be \mathbb{P} -generic. G adds: $\langle x_n \mid n < \omega \rangle$, such that setting $\kappa_n =_{def} x_n \cap \kappa$, $\kappa = \sup_n \kappa_n$, and functions $f_n : (\kappa^{+\omega+2})^V \to \kappa$, $n < \omega$.

Proposition

1.
$$t_{\alpha} \notin V$$
 iff $\alpha \in F$.

御 と く ヨ と く ヨ と … ヨ

Let G be \mathbb{P} -generic. G adds: $\langle x_n \mid n < \omega \rangle$, such that setting $\kappa_n =_{def} x_n \cap \kappa$, $\kappa = \sup_n \kappa_n$, and functions $f_n : (\kappa^{+\omega+2})^V \to \kappa$, $n < \omega$.

Proposition

- 1. $t_{\alpha} \notin V$ iff $\alpha \in F$.
- 2. If $\alpha < \beta$ are both in F, then $t_{\alpha} <^* t_{\beta}$.

向下 イヨト イヨト

Let G be \mathbb{P} -generic. G adds: $\langle x_n \mid n < \omega \rangle$, such that setting $\kappa_n =_{def} x_n \cap \kappa$, $\kappa = \sup_n \kappa_n$, and functions $f_n : (\kappa^{+\omega+2})^V \to \kappa$, $n < \omega$.

Proposition

- 1. $t_{\alpha} \notin V$ iff $\alpha \in F$.
- 2. If $\alpha < \beta$ are both in F, then $t_{\alpha} <^{*} t_{\beta}$.
- 3. *F* is unbounded in $(\kappa^{+\omega+2})^V$.

伺下 イヨト イヨト

Let G be \mathbb{P} -generic. G adds: $\langle x_n \mid n < \omega \rangle$, such that setting $\kappa_n =_{def} x_n \cap \kappa$, $\kappa = \sup_n \kappa_n$, and functions $f_n : (\kappa^{+\omega+2})^V \to \kappa$, $n < \omega$.

Proposition

- 1. $t_{\alpha} \notin V$ iff $\alpha \in F$.
- 2. If $\alpha < \beta$ are both in F, then $t_{\alpha} <^{*} t_{\beta}$.
- 3. *F* is unbounded in $(\kappa^{+\omega+2})^V$.

Then in the generic extension, $2^{\kappa} = (\kappa^{+\omega+2})^{V} = (\kappa^{++})^{V[G]}$.

伺下 イヨト イヨト

Let G be \mathbb{P} -generic. G adds: $\langle x_n \mid n < \omega \rangle$, such that setting $\kappa_n =_{def} x_n \cap \kappa$, $\kappa = \sup_n \kappa_n$, and functions $f_n : (\kappa^{+\omega+2})^V \to \kappa$, $n < \omega$.

Proposition

- 1. $t_{\alpha} \notin V$ iff $\alpha \in F$.
- 2. If $\alpha < \beta$ are both in F, then $t_{\alpha} <^{*} t_{\beta}$.
- 3. *F* is unbounded in $(\kappa^{+\omega+2})^V$.

Then in the generic extension, $2^{\kappa} = (\kappa^{+\omega+2})^{V} = (\kappa^{++})^{V[G]}$. We can also interleave collapses in the usual way to make $\kappa = \aleph_{\omega}$

Applications and questions

Dima Sinapova University of California Irvine Diagonal extender based Prikry forcing

□ > < E > < E > -

æ

This construction increases the powerset of κ while preserving GCH below κ and collapsing κ⁺.

E 🖌 🖌 E 🕨

- This construction increases the powerset of κ while preserving GCH below κ and collapsing κ⁺.
- Provides a strategy for the following question:

- This construction increases the powerset of κ while preserving GCH below κ and collapsing κ⁺.
- Provides a strategy for the following question:
 - Can we get a model with GCH below ℵ_ω, 2^{ℵ_ω} > ℵ_{ω+1}, where weak square fails at ℵ_ω?

- This construction increases the powerset of κ while preserving GCH below κ and collapsing κ⁺.
- Provides a strategy for the following question:
 - ► Can we get a model with GCH below ℵ_ω, 2^{ℵ_ω} > ℵ_{ω+1}, where weak square fails at ℵ_ω?
 - Or where the tree property holds at $\aleph_{\omega+1}$?

- This construction increases the powerset of κ while preserving GCH below κ and collapsing κ⁺.
- Provides a strategy for the following question:
 - ► Can we get a model with GCH below ℵ_ω, 2^{ℵ_ω} > ℵ_{ω+1}, where weak square fails at ℵ_ω?
 - Or where the tree property holds at $\aleph_{\omega+1}$?
 - Or where the tree property holds simultaneously at $\aleph_{\omega+1}$ and $\aleph_{\omega+2}$?

向下 イヨト イヨト