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Cardinal arithmetic and the exponential operation

What is true about the operation κ 7→ 2κ?

I Any reasonable behavior of κ 7→ 2κ for regular κ is consistent
with ZFC.

I The case of singular cardinals is much more intricate:
I involves large cardinals,
I constraints provable from ZFC.

I The Singular Cardinal Hypothesis (SCH): if κ is strong
limit, then 2κ = κ+.

The Singular Cardinal Problem: Describe a complete set of
rules for the behavior of the exponential function κ 7→ 2κ for
singular cardinals κ.
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Consistency results for singular cardinals

The need for large cardinals:

I (Magidor) If there exists a supercompact cardinal, then there
is a forcing extension in which ℵω is strong limit and
2ℵω = ℵω+2.

I Gitik and Woodin significantly reduced the large cardinal
hypothesis to a measurable cardinal κ of Mitchell order κ++.
This hypothesis was shown to be optimal by Gitik and
Mitchell using core model theory.

I So, the failure of SCH is equiconsistent with the existence of a
measurable κ of Mitchell order κ++.
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Consistency results for singular cardinals

Some constraints on singular arithmetic:

I (Silver) SCH cannot fail for the first time at a singular
cardinal with uncountable cofinality.

I (Solovay) SCH holds above a strongly compact cardinal.

I (Shelah) If 2ℵn < ℵω for every n < ω, then 2ℵω < ℵω4 .

I It is open if the bound can be improved.
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Prikry type forcing

Motivation: blowing up the power set of a singular cardinal in
order to construct models of not SCH.

I Classical Prikry: starts with a normal measure on κ and adds
a cofinal ω-sequence in κ, while preserving cardinals.

I Violating SCH: Let κ be a Laver indestructible supercompact
cardinal. Force to add κ++ many subsets of κ. Then force
with Prikry forcing to make κ have cofinality ω. In the final
model cardinals are preserved, κ remains strong limit, and
2κ > κ+. I.e. SCH fails at κ.
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Prikry type forcing

The following are some variations:

1. Magidor forcing:
I start with an increasing sequence 〈Uα | α < λ〉 of normal

measures on κ;
I force to add a club set of order type λ in κ.

2. Supercompact Prikry:
I start with a supercompactness measure U on Pκ(η);
I force to add an increasing ω-sequence of sets xn ∈ (Pκ(η))V ,

with η =
⋃

n xn.

3. Gitik-Sharon’s diagonal supercompact Prikry:
I start with a sequence 〈Un | n < ω〉 of supercompactness

measures on Pκ(κ+n);
I force to add an increasing ω-sequence of sets xn ∈ Pκ((κ+n)V )

with (κ+ω)V =
⋃

n xn.

The strategy: add subsets to a large cardinal, then singularize it.
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Extender based forcing

Alternative way: start with a singular κ and blow up its powerset
in a Prikry fashion via extender based forcing.

I Developed by Gitik-Magidor.

I Large cardinal hypothesis: λ > κ, κ = supn κn, each κn is
λ+ 1 strong.

I Adds λ sequences through
∏

n κn, and so 2κ becomes λ.

I Preserves κ+, and adds a weak square sequence at κ.

I No need to add subsets of κ in advance, so can keep GCH
below κ (as opposed to the above forcings).

I Allows more flexibility when interleaving collapses in order to
make κ a small cardinal (e.g. ℵω).
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The hybrid Prikry

Theorem
(S.) Starting from a supercompact cardinal κ, there is a forcing
which simultaneously singularizes κ and increases its powerset.

I Combine extender based forcing with diagonal supercompact
Prikry.

I In the ground model κ is supercompact and GCH holds. The
κn’s will be chosen generically.

I No bounded subsets of κ are added.

I In the final model, GCH holds below κ, and 2κ > κ+.
In particular, SCH fails at κ.

I Collapses (κ+)V . More precisely, (κ+ω+1)V becomes the
successor of κ in the generic extension.
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The hybrid Prikry - Preliminaries

Let σ : V → M witness that κ is κ+ω+2 + 1 - strong and let
E = 〈Eα | α < κ+ω+2〉 be κ complete ultrafilters on κ, where:

1. each Eα = {Z ⊂ κ | α ∈ σ(Z )}
2. for α ≤E β, πβ,α : κ→ κ are such that σπβ,α(β) = α.

3. if α ≤E β, then Eα is the projection of Eβ by πβα

4. the πβ,α’s commute.

5. for a ⊂ κ+ω+2, with |a| < κ, there are unboundedly many
β ∈ κ+ω+2, such that for all α ∈ a, α ≤E β.
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The hybrid Prikry - the basic modules

Q = Q0 ∪Q1 is defined as follows:

I Q1 = {f : κ+ω+2 → κ | |f | < κ+ω+1}
I Q0 has conditions of the form p = 〈a,A, f 〉 such that:

I f ∈ Q1

I a ⊂ κ+ω+2, |a| < κ, and a ∩ dom(f ) = ∅
I a has an ≤E − maximal element and A ∈ Emax a

I for all α ≤ β ≤E γ in a, ν ∈ πmax a,γ”A,
πγ,α(ν) = πβ,α(πγ,β(ν)).

I for all α < β in a, ν ∈ A, πmax a,α(ν) < πmax a,β(ν)

I 〈b,B, g〉 ≤0 〈a,A, f 〉 if b ⊃ a, πmax b,max a”B ⊂ A, and g ⊃ f .
I g ≤ 〈a,A, f 〉 if:

I g ⊃ f , dom(g) ⊃ a,
I g(max a) ∈ A,
I for all β ∈ a, g(β) = πmax a,β(g(max a)).
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The hybrid Prikry - the basic modules

Properties of Q:

I Q is equivalent to Q1, which is equivalent to the Cohen poset
for adding κ+ω+2 many subsets to κ+ω+1.

I Q has the Prikry property. I.e. for p ∈ Q0 and a formula φ,
there is q ≤ p with q ∈ Q0 such that q 
Q φ or q 
Q ¬φ.

I Q has the κ+ω+2 chain condition.

I Q is < κ closed.
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The hybrid Prikry - the main forcing

Conditions in P are of the form

p = 〈x0, f0, ..., xl−1, fl−1,Al ,Fl , ...〉

where l = length(p) and:

1. For n < l ,
I xn ∈ Pκ(κ+n), and for i < n, xi ≺ xn,
I fn ∈ Q1

2. For n ≥ l ,
I An ∈ Un, and xl−1 ≺ y for all y ∈ Al .
I Fn is a function with domain An, for y ∈ An, Fn(y) ∈ Q0.

3. For x ∈ An, denote Fn(x) = 〈an
x ,A

n
x , f

n
x 〉. Then for l ≤ n < m,

y ∈ An, z ∈ Am with y ≺ z , we have an
y ⊂ am

z .
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The hybrid Prikry - the main forcing

Properties of P:

I P has the Prikry property.

I P has the κ+ω+2 chain condition.

I Cardinals ≤ κ and ≥ κ+ω+1 are preserved.

I (κ+ω+1)V becomes the successor of κ in the generic extension.

I P blows up the powerset of κ to (κ+ω+2)V . And so, in the
generic extension SCH fails at κ.
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Blowing up the powerset of κ.

Let G be P-generic. G adds:

〈xn | n < ω〉, such that setting κn =def xn ∩ κ, κ = supn κn, and
functions fn : (κ+ω+2)V → κ, n < ω.

I Set tα(n) = fn(α); each tα ∈
∏

n κ.
(With some more work we can actually make tα ∈

∏
n κn)

I In V [G ], setting F p
n (x) = 〈ap

n(x),Ap
n(x), f p

n (x)〉, define:
Fn =

⋃
p∈G ,l(p)≤n ap

n(xn), and F =
⋃

n Fn

Proposition

1. tα /∈ V iff α ∈ F .

2. If α < β are both in F , then tα <
∗ tβ.

3. F is unbounded in (κ+ω+2)V .

Then in the generic extension, 2κ = (κ+ω+2)V = (κ++)V [G ].
We can also interleave collapses in the usual way to make κ = ℵω
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Applications and questions

I This construction increases the powerset of κ while preserving
GCH below κ and collapsing κ+.

I Provides a strategy for the following question:
I Can we get a model with GCH below ℵω, 2ℵω > ℵω+1, where

weak square fails at ℵω?
I Or where the tree property holds at ℵω+1?
I Or where the tree property holds simultaneously at ℵω+1 and
ℵω+2?
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