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Peterzil – Steinhorn Theorem

In the paper Definable compactness and definable subgroups of
o-minimal groups (1999) K. Peterzil and C. Steinhorn showed that to
any “unbounded” curve in an o-minimal group one can associate a
one-dimensional “non-compact” subgroup.
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Peterzil – Steinhorn Theorem
Theorem (Peterzil–Steinhorn)
Let G be a group definable in an o-minimal structure. Let
σ : (a,b)→ G be a curve such that the limit lim

t→b−
σ(t) does not exist in

G. Then the set of all limits
H = Lim

t1→b, t2→b
σ(t1) · σ(t2)−1

is a one dimensional “non-compact” subgroup of G.

We will denote the above subgroup H by PS[σ] and call it (left)
Peterzil–Steinhorn subgroup of σ in G.

Remark
We can also define the right Peterzil–Steinhorn subgroup as the set of
all limits

Hr = Lim
t1→b, t2→b

σ(t1)−1 · σ(t2)
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Left vs. Right

Let σ : (0,∞)→ G be a definable curve. If

g ∈ PS[σ] = Lim
t1→∞, t2→∞

σ(t1) · σ(t2)−1

Then writing g ∼ σ(∞)σ(∞)−1 we have g · σ(∞) ∼ σ(∞), and PS[σ]
can be viewed as “the left stabilizer” of σ(∞).

For the same reason the right PS-subgroup

Lim
t1→∞, t2→∞

σ(t1)−1 · σ(t2)

can be viewed as “the right stabilizer” of σ(∞):

{g ∈ G : σ(∞) ∼ σ(∞)g}.
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Some Examples

Example
Let σ(t) : (a,b)→ G be a continuous curve. If the image of σ in G is a
subgroup H of G then PS[σ] = H.

Example

Let σ : (0,∞)→ (R,+)2 be an unbounded curve. After
reparametrization we may assume σ(t) = (t , y(t)). Then PS[σ] is the
line through the origin with the slope

a = lim
t→∞

d
dt

y(t).

Remark
In the above example PS-subgroup is just the usual linear asymptote
of σ at infinity.
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Some Examples

Example

Let σ : (0,∞)→ (R>0, ·)2 be a semi-algebraic curve such that
limt→∞ σ(t) does not exist. After reparametrization we may assume
σ(t) = (tk , y(t)). Write y(t) = atq + o(tq) with a 6= 0 ∈ R. Then

PS[σ] = {(tk , tq) : t > 0}.

Remark
In general, for a curve σ : (0,∞)→ GL(n,R) it is not easy to detect
what PS[σ] is.

Exercise
Compute PS[σ] for

σ(t) =

(
1 + t2 t

t 1

)
.
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PS-Subgroups Over C

Let C ⊆ GL(n,C) be a complex algebraic curve.

Identifying C with R2 via C = R⊕ i R we can view GL(n,C) as a
subgroup G of GL(2n,R).

Under this identification C is a semi-algebraic set of R-dimension 2,
and it is unbounded. Let σ : (0,∞)→ C be an unbounded
semi-algebraic curve.

Working in R we obtain a semi-algebraic subgroup PS[σ] of G of
R-dimension one.

Let H be the Zariski closure of PS[σ] in GL(n,C). It is a
complex-algebraic subgroup of GL(n,C) of complex dimension one.

Thus to every algebraic curve C in GL(n,C) we can assign a
one–dimensional algebraic PS–subgroup!
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Hilbert – Mumford Criterion

Theorem (Hilbert – Mumford)
Let G < GL(n,C) be a reductive algebraic group, and ~a ∈ Cn. Assume
~0 ∈ cl(G · ~a). Then there is a one–parameter subgroup H < G such
that ~0 ∈ cl(H · ~a). (One–parameter: there is an algebraic group
isonorphism ϕ : C∗ → H.)

This theorem is a key in constructing algebraic quotients G \ Cn.
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Some Questions

Question 1
Let C ⊆ GL(n,C) be a complex algebraic curve.
To get a PS-subgroup associated with C we identified C with R2 and
used R-topology.

But there are infinitely many real closed fields R with C = R ⊕ iR, and
we could use another R-semialgebraic structure on C.

Do we always get the same PS-subgroups?

Question 2
If PS-subgroups over C do not depend on the choice of a real closed
subfield, can we constructed them“algebraically”? Can we do it in all
characteristics?
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PS-Subgroups Redefined

Let σ : (0,∞)→ GL(n,R) be an unbounded semialgebraic curve.
Recall that

PS[σ] = lim
t1→b−, t2→b−

σ(t1) · σ(t2)−1.

Let R � R be a proper elementary extension, and let O ⊂ R be the
convex hull of R.

We can write O as the disjoint union O =
⋃̇
{r + µ : r ∈ R}, where µ is

the set of infinitesimally small elements. We have the standard part
mapping st : O → R defined by st(r + µ) = r for r ∈ R.

Let τ ∈ R \ R be a large positive nonstandard element.
Let σ(R) ⊆ GL(n,R) be the image of (0,∞) ⊆ R under σ.

Claim

Viewing GL(n,R) as a subset of Rn2
we have

PS[σ] = st
([
σ(R) · σ(τ)−1

]⋂
On2

)
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Summary.

PS[σ] = st
([
σ(R) · σ(τ)−1

]⋂
On2

)

To get a PS-subgroup for an algebraic curve C ⊆ GL(n, k) we need:
I A “branch” of C at infinity.
I A “standard part” mapping.
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Algebraic Preliminaries

Let k be an algebraically closed field.

Let C ⊆ GL(n, k) be an irreducible algebraic curve. We view GL(n, k)
as a subset of km with m = n2.

As usual:
I IC ⊂ k [x1, . . . , xm] is the ideal of polynomial vanishing on C;
I k [C] = k [x̄ ]/Ic is the ring of regular functions on C;
I k(C) is the field of rational functions on C (It is the field of

fractions of k [C]).

Let C̄ be the Zariski closure of C in Pm(k). We assume C̄ is smooth.
The set C̄ \ C is finite, and for ρ ∈ C̄ \ C let

Σρ(x̄) = {r(x̄) ∈ k(C) : r(ρ) = 0}.

Remark
Since C̄ is smooth, the set Σρ determines all values r(ρ), ρ ∈ k(C).
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Getting a standard part mapping

Let L > k be a proper algebraically close extension of k .

We choose a valuation ring O ⊂ L containing k such that the residue
field of O is k .

In other words, we choose a subring k ⊂ O ⊂ L such that
I a ∈ O or a−1 ∈ O for any a 6= 0 ∈ L;
I there is a ring homomorphsim st : O → k such that st � k = idk .

For µ = st−1(0) we have that O is the disjoint union
O = ∪̇{a + µ : a ∈ k} with st(a + µ) = a for a ∈ k .

For x , y ∈ L with x 6= 0 we define v(x) 6 v(y)⇐⇒ x−1y ∈ O.
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Basic Facts

Let Lv be the language of rings (+, ·,−,0,1) augmented by a binary
relational symbol.
We consider L as an Lv -structure by interpreting the binary relation as
v(x) 6 v(y).

It is not hard to see that both O and µ are Lv -definable:

O = {y ∈ L : v(1) 6 v(y)}, µ = {x ∈ L : ¬v(x) 6 v(1)}.

Fact
1. L has a quantifier elimination in the language Lv .
2. Let X ⊆ Lm be a Lv -definable subset (with parameters from L).

Then the image in km of the set X ∩ Om ander the map st is
definable in the language of rings.
Moreover if X is algebraic then st(X ∩ Om) has dimension at most
of X .
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A branch at infinity

We have C ⊆ GL(n, k).

We fix ρ ∈ C̄ \ C. Let Σ(x̄) = Σρ(x̄) ⊆ k(C).

As usual we denote by C(L) the set of L-points on C.

Let C∞ = C(L) \ Om and C∞ρ = {x ∈ C∞ : r(x) ∈ µ for all r ∈ Σ(x̄)}.

Claim
The set C∞ρ is Lv -definable over k.

Proof.
Follows from the existence of a uniformizing parameter.
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Recall C∞ρ = {x ∈ C∞ : r(x) ∈ µ for all r ∈ Σ}.

Claim
Every two elements α, β ∈ C∞ρ have the same type over k (in the
language Lv ).

Proof.
By quantifier elimination we need to show that for any p(x̄),q(x̄) ∈ k [x̄ ]

v(p(α)) � v(q(α)) iff v(p(β)) � v(p(β)).

It is not hard to see that

v(p(α)) � v(q(α)) iff v(p(α)/q(α)) ∈ µ iff p(x̄)/q(x̄) ∈ Σ(x̄).
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PS-subgroup

We fix β ∈ C∞ρ .
Let H ⊆ GL(n, k) be the image of C∞ρ · β−1 ∩ Om under the map st.

Claim
H is an algebraic subgroup of GL(n, k).

Proof.
We show that H is closed under multiplication.
Assume h1,h2 ∈ H. We need to show that h1 · h2 is in H.
Let α1, α2 ∈ C∞ρ be such that αiβ

−1 ∈ hi + µm for i = 1,2.
Since α2 and β realize the same type over k there is α′1 ∈ C∞ρ with
α′1 · α

−1
2 ∈ h1 + µm. Hence

α′1 · β−1 = (α′1 · α−1
2 ) · (α2 · β−1) ∈ (h1 + µm) · (h2 + µm).

Since the group operations are defined by polynomial maps over k we
have (h1 + µm) · (h2 + µm) ⊆ (h1 · h2) + µm and h1 · h2 ∈ H.
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PS-Subgroup

Claim
H = st

(
C∞ρ · β−1 ∩ Om) is a one-dimensional subgroup of GL(n, k)

Proof.
We only need to show that it is infinite.
Assume H is finite. Then C∞ρ · β−1 would be covered by finitely many
disjoint open balls ai + µm, and the curve C(L) · β−1 would be covered
nontrivially by a finite disjoint union of open balls.
By a result of Hrushovski and Loeser, every irreducible curve in L is
v + g-connected. A contradiction.

Remark
The subgroup H does not depend on the choice of β and L. But it may
depend on the choice of the point ρ in C̄ \ C.
We will denote this subgroup by PS[Cρ].
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Algebraic Definition?

Question: Is it possible to define PS[Cρ] working enirely in k?

Conjecture. PS[Cρ] is “the left stabilizer” of ρ.

By a left compactification of GL(n, k) we mean a complete variety V
with an embedding GL(n, k) ↪→ V so that the action of GL(n, k) on
itself by multiplication on the left extends to an action on V .

Claim
Let C ⊂ GL(n, k) be a curve, and GL(n, k) ↪→ V be a left
compactification. Let C̄ ⊂ V be the Zariski closure of C in V and
ρ ∈ C̄ \ C. Then

PS[Cρ] ⊆ Stab(ρ) = {g ∈ GL(n, k) : g · ρ = ρ}.

Question
Let C ⊂ GL(n, k) be a curve. Is there a left compactification
GL(n, k) ↪→ V such that for any ρ ∈ C̄ \ S we have PS[Cρ] = Stab(ρ)?
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A Problem

It fails for projective compactifications.

Let ξ : GL(n,C) ↪→ GL(N,C) ⊆ CN×N be an embedding, and
π : CN×N → P(N×N)−1(C) be the projection.

The Zariski closure [GL(n,C)]ξ of π◦ξ(GL(n,C)) is called a projective
compactification of GL(n,C).

Example
Let C be the Zariski closure of

σ(t) =

(
1 + t2 t

t 1

)
in GL(2,C). Its PS-subgroup is isomorphic to (C,+).
But, due to Hilbert–Mumford criterion, for any projective
compactification [GL(2,C)]ξ and a point ρ ∈ C̄ \ C the stabilizer
Stab(ρ) contains a one–parameter subgroup.
In particular the dimension Stab(ρ) is at least 2.
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Is it addition or multiplication?

Up-to a definable isomorphism there are exactly two non-compact
groups definable in the field of reals: (R,+) and (R>0, ·).

Question
Let σ : (0,∞)→ GL(n,R) be an unbounded semialgebraic curve.
How to detect if PS[σ] is additive or multiplicative?

Example
For

σ(t) =

(
1 + t2 t

t 1

)
the Peterizl-Steinhorn subgroup is additive.
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Is it addition or multiplication?

Remark
In general the growth rate of σ(t) does not provide enough information
to detect the nature of PS[σ].

There is an unbounded semialgebraic curve in GL(2,R) whose (left)
PS-subgroup is additive but the right PS-subgroup is multiplicative.

Conjecture [G. Poulios]
Let σ : (0,∞)→ GL(n,R) be an unbounded semi-algebraic curve.
Let λ ∈ R be such that

lim
t→∞

tλ σ̇(t)σ(t)−1

exists (in the space of all (n × n) matrices) and is nonzero. Then
I PS[σ] is additive if and only if λ < 1;
I PS[σ] is multiplicative if and only if λ = 1;
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