On Peterzil – Steinhorn groups definable in algebraically closed fields.

S. Starchenko (joint with M. Kamensky)

Department of Mathematics University of Notre Dame

ASL 2012 North America Annual Meeting University of Wisconsin, Madison March 31, 2012

In the paper *Definable compactness and definable subgroups of o-minimal groups (1999)* K. Peterzil and C. Steinhorn showed that to any "unbounded" curve in an o-minimal group one can associate a one-dimensional "non-compact" subgroup.

Peterzil – Steinhorn Theorem

Theorem (Peterzil–Steinhorn)

Let G be a group definable in an o-minimal structure. Let $\sigma\colon(\textit{a},\textit{b})\to\textit{G}$ be a curve such that the limit $\;$ lim $\;$ $\sigma(t)\;$ does not exist in

G. Then the set of all limits

$$
H = \lim_{t_1 \to b, t_2 \to b} \sigma(t_1) \cdot \sigma(t_2)^{-1}
$$

t→*b*[−]

is a one dimensional "non-compact" subgroup of G.

We will denote the above subgroup *H* by *PS*[σ] and call it *(left) Peterzil–Steinhorn subgroup of* $σ$ *in G.*

Remark

We can also define the right Peterzil–Steinhorn subgroup as the set of all limits

$$
H_r = \lim_{t_1 \to b, t_2 \to b} \sigma(t_1)^{-1} \cdot \sigma(t_2)
$$

Left vs. Right

Let σ : $(0,\infty) \rightarrow G$ be a definable curve. If

$$
g \in PS[\sigma] = \lim_{t_1 \to \infty, t_2 \to \infty} \sigma(t_1) \cdot \sigma(t_2)^{-1}
$$

Then writing $g\sim \sigma(\infty)\sigma(\infty)^{-1}$ we have $g\cdot \sigma(\infty)\sim \sigma(\infty),$ and $PS[\sigma]$ can be viewed as "the left stabilizer" of $\sigma(\infty)$.

For the same reason the right PS-subgroup

 $\lim_{t_1\to\infty, t_2\to\infty} \sigma(t_1)^{-1}\cdot \sigma(t_2)$

can be viewed as "the right stabilizer" of $\sigma(\infty)$:

 ${q \in G: \sigma(\infty) \sim \sigma(\infty)q}.$

Some Examples

Example

Let $\sigma(t)$: $(a, b) \rightarrow G$ be a continuous curve. If the image of σ in *G* is a subgroup *H* of *G* then $PS[\sigma] = H$.

Example

Let $\sigma: (0,\infty) \to (\mathbb{R}, +)^2$ be an unbounded curve. After reparametrization we may assume $\sigma(t) = (t, y(t))$. Then $PS[\sigma]$ is the line through the origin with the slope

$$
a=\lim_{t\to\infty}\frac{d}{dt}y(t).
$$

Remark

In the above example PS-subgroup is just the usual linear asymptote of σ at infinity.

S. Starchenko (University of Notre Dame) Connect Conne

Some Examples

Example

Let $\sigma \colon (0,\infty) \to (\mathbb{R}^{>0},\cdot)^2$ be a semi-algebraic curve such that $\lim_{t\to\infty} \sigma(t)$ does not exist. After reparametrization we may assume $\sigma(t) = (t^k, y(t))$. Write $y(t) = at^q + o(t^q)$ with $a \neq 0 \in \mathbb{R}$. Then $PS[\sigma] = \{(t^k, t^q): t > 0\}.$

Remark

In general, for a curve σ : $(0,\infty) \to GL(n,\mathbb{R})$ it is not easy to detect what $PS[\sigma]$ is.

Exercise

Compute *PS*[σ] for

$$
\sigma(t) = \begin{pmatrix} 1+t^2 & t \\ t & 1 \end{pmatrix}.
$$

Let $C \subseteq GL(n, \mathbb{C})$ be a complex algebraic curve.

Identifying $\mathbb C$ with $\mathbb R^2$ via $\mathbb C=\mathbb R\oplus i\mathbb R$ we can view $\mathrm{GL}(n,\mathbb C)$ as a subgroup *G* of $GL(2n,\mathbb{R})$.

Under this identification C is a semi-algebraic set of $\mathbb R$ -dimension 2, and it is unbounded. Let σ : $(0,\infty) \rightarrow C$ be an unbounded semi-algebraic curve.

Working in R we obtain a semi-algebraic subgroup *PS*[σ] of *G* of R-dimension one.

Let *H* be the Zariski closure of $PS[\sigma]$ in $GL(n,\mathbb{C})$. It is a complex-algebraic subgroup of $GL(n, \mathbb{C})$ of complex dimension one.

Thus to every algebraic curve *C* in GL(*n*, C) we can assign a one–dimensional algebraic PS–subgroup!

Theorem (Hilbert – Mumford)

 $\mathsf{Let} \ G < \mathrm{GL}(n,\mathbb{C})$ be a reductive algebraic group, and $\vec{a} \in \mathbb{C}^n$. Assume $\vec{0} \in$ cl($G \cdot \vec{a}$). Then there is a one–parameter subgroup $H < G$ such *that* $\vec{0} \in \text{cl}(H \cdot \vec{a})$. (One–parameter: there is an algebraic group $\mathsf{isonorphism}\ \varphi\colon \overline{\mathbb{C}^*}\to \overline{H}.$

This theorem is a key in constructing algebraic quotients $G \setminus \mathbb{C}^n$.

Question 1

Let $C \subseteq GL(n, \mathbb{C})$ be a complex algebraic curve. To get a PS-subgroup associated with C we identified $\mathbb C$ with $\mathbb R^2$ and used R-topology.

But there are infinitely many real closed fields *R* with $\mathbb{C} = R \oplus iR$, and we could use another *R*-semialgebraic structure on C.

Do we always get the same PS-subgroups?

Question 2

If PS-subgroups over $\mathbb C$ do not depend on the choice of a real closed subfield, can we constructed them"algebraically"? Can we do it in all characteristics?

PS-Subgroups Redefined

Let σ : $(0, \infty) \rightarrow GL(n, \mathbb{R})$ be an unbounded semialgebraic curve. Recall that

$$
PS[\sigma] = \lim_{t_1 \to b^-,\ t_2 \to b^-} \sigma(t_1) \cdot \sigma(t_2)^{-1}.
$$

Let $\mathcal{R} \succ \mathbb{R}$ be a proper elementary extension, and let $\mathcal{O} \subset \mathcal{R}$ be the convex hull of $\mathbb R$.

We can write $\mathcal O$ as the disjoint union $\mathcal O = \dot\bigcup \{r+\mu\colon r\in\mathbb R\},$ where μ is the set of infinitesimally small elements. We have the standard part mapping st: $\mathcal{O} \to \mathbb{R}$ defined by st $(r + \mu) = r$ for $r \in \mathbb{R}$.

Let $\tau \in \mathcal{R} \setminus \mathbb{R}$ be a large positive nonstandard element. Let $\sigma(\mathcal{R}) \subseteq GL(n,\mathcal{R})$ be the image of $(0,\infty) \subseteq \mathcal{R}$ under σ .

Claim

Viewing $\mathrm{GL}(n,\mathcal{R})$ as a subset of \mathcal{R}^{n^2} we have $PS[\sigma] = \text{st}\left(\left[\sigma(\mathcal{R}) \cdot \sigma(\tau)^{-1}\right] \bigcap \mathcal{O}^{n^2}\right)$

$$
PS[\sigma] = \mathsf{st}\left(\left[\sigma(R)\cdot \sigma(\tau)^{-1}\right]\bigcap \mathcal{O}^{n^2}\right)
$$

To get a PS-subgroup for an algebraic curve $C \subseteq GL(n, k)$ we need:

- \triangleright A "branch" of *C* at infinity.
- \triangleright A "standard part" mapping.

Algebraic Preliminaries

Let *k* be an algebraically closed field.

Let $C \subset GL(n, k)$ be an irreducible algebraic curve. We view $GL(n, k)$ as a subset of k^m with $m = n^2$.

As usual:

- $I_C \subset k[x_1, \ldots, x_m]$ is the ideal of polynomial vanishing on *C*;
- \blacktriangleright $k[C] = k[\bar{x}]/I_c$ is the ring of regular functions on C;
- \triangleright $k(C)$ is the field of rational functions on *C* (It is the field of fractions of *k*[*C*]).

Let \bar{C} be the Zariski closure of C in $\mathbb{P}^m(k).$ We assume \bar{C} is smooth. The set $\overline{C} \setminus C$ is finite, and for $\rho \in \overline{C} \setminus C$ let

$$
\Sigma_{\rho}(\bar{x})=\{r(\bar{x})\in k(C)\colon r(\rho)=0\}.
$$

Remark

Since \overline{C} is smooth, the set Σ_{ρ} determines all values $r(\rho)$, $\rho \in k(C)$.

S. Starchenko (University of Notre Dame) Connect Conne

Let *L* > *k* be a proper algebraically close extension of *k*.

We choose a valuation ring $\mathcal{O} \subset L$ containing k such that the residue field of O is *k*.

In other words, we choose a subring *k* ⊂ O ⊂ *L* such that

► $a \in \mathcal{O}$ or $a^{-1} \in \mathcal{O}$ for any $a \neq 0 \in L$;

I there is a ring homomorphsim st: $\mathcal{O} \rightarrow k$ such that st $\restriction k = \mathrm{id}_k$. For $\mu = \textup{st}^{-1}(0)$ we have that $\mathcal O$ is the disjoint union $\mathcal{O} = \bigcup \{a + \mu : a \in k\}$ with st $(a + \mu) = a$ for $a \in k$.

For *x*, *y* ∈ *L* with *x* \neq 0 we define $v(x) \le v(y) \Longleftrightarrow x^{-1}y \in \mathcal{O}$.

Basic Facts

Let \mathcal{L}_V be the language of rings $(+, \cdot, -, 0, 1)$ augmented by a binary relational symbol.

We consider L as an \mathcal{L}_V -structure by interpreting the binary relation as $v(x) \leqslant v(y)$.

It is not hard to see that both $\mathcal O$ and μ are $\mathcal L_V$ -definable:

 $\mathcal{O} = \{ y \in L : v(1) \leq v(y) \}, \quad \mu = \{ x \in L : \neg v(x) \leq v(1) \}.$

Fact

1. *L* has a quantifier elimination in the language \mathcal{L}_v .

2. *Let X* ⊆ *L ^m be a* L*^v -definable subset (with parameters from L). Then the image in* k^m *of the set* $X \cap \mathcal{O}^m$ *ander the map st is definable in the language of rings. Moreover if X is algebraic then* $st(X \cap \mathcal{O}^m)$ *has dimension at most of X.*

We have $C \subseteq GL(n, k)$.

We fix $\rho \in \overline{C} \setminus C$. Let $\Sigma(\overline{x}) = \Sigma_o(\overline{x}) \subseteq k(C)$.

As usual we denote by *C*(*L*) the set of *L*-points on *C*.

Let $C^\infty = C(L) \setminus \mathcal{O}^m$ and $C^\infty_\rho = \{x \in C^\infty \colon r(x) \in \mu \text{ for all } r \in \Sigma(\bar x)\}.$

Claim

The set C_{ρ}^{∞} *is* \mathcal{L}_{V} -definable over *k*.

Proof.

Follows from the existence of a uniformizing parameter.

Recall
$$
C_{\rho}^{\infty} = \{x \in C^{\infty} : r(x) \in \mu \text{ for all } r \in \Sigma\}.
$$

Claim

Every two elements $\alpha, \beta \in \mathcal{C}_\rho^\infty$ *have the same type over* k *(in the language* \mathcal{L}_V *)*.

Proof.

By quantifier elimination we need to show that for any $p(\bar{x}), q(\bar{x}) \in k[\bar{x}]$

 $v(p(\alpha)) \nleq v(q(\alpha))$ iff $v(p(\beta)) \nleq v(p(\beta))$.

It is not hard to see that

v(*p*(α)) \nleq *v*(*q*(α)) iff *v*(*p*(α)/*q*(α)) \in μ iff *p*(\bar{x})/*q*(\bar{x}) \in $\Sigma(\bar{x})$.

PS-subgroup

We fix $\beta \in \mathcal{C}_\rho^\infty$. Let $H\subseteq {\rm GL}(n,k)$ be the image of $\mathcal{C}^\infty_\rho\cdot\beta^{-1}\cap\mathcal{O}^m$ under the map st.

Claim

H is an algebraic subgroup of GL(*n*, *k*)*.*

Proof.

We show that *H* is closed under multiplication. Assume $h_1, h_2 \in H$. We need to show that $h_1 \cdot h_2$ is in H. Let $\alpha_1, \alpha_2 \in C_\rho^\infty$ be such that $\alpha_i\beta^{-1} \in h_i + \mu^m$ for $i=1,2$. Since α_2 and β realize the same type over k there is $\alpha_1' \in C_\rho^\infty$ with $\alpha'_1 \cdot \alpha_2^{-1} \in h_1 + \mu^m$. Hence $\alpha'_1 \cdot \beta^{-1} = (\alpha'_1 \cdot \alpha_2^{-1})$ $\binom{1}{2} \cdot (\alpha_2 \cdot \beta^{-1}) \in (h_1 + \mu^m) \cdot (h_2 + \mu^m).$

Since the group operations are defined by polynomial maps over *k* we have $(h_1 + \mu^m) \cdot (h_2 + \mu^m) \subseteq (h_1 \cdot h_2) + \mu^m$ and $h_1 \cdot h_2 \in H$.

PS-Subgroup

Claim

 $H = \mathsf{st}\left(\mathcal{C}_{\rho}^{\infty} \cdot \beta^{-1} \cap \mathcal{O}^m \right)$ is a one-dimensional subgroup of $\mathrm{GL}(n,k)$

Proof.

We only need to show that it is infinite. Assume *H* is finite. Then $C_\rho^\infty\cdot\beta^{-1}$ would be covered by finitely many disjoint open balls $a_i + \mu^m,$ and the curve $C(L) \cdot \beta^{-1}$ would be covered nontrivially by a finite disjoint union of open balls. By a result of Hrushovski and Loeser, every irreducible curve in *L* is $v + q$ -connected. A contradiction.

Remark

The subgroup *H* does not depend on the choice of β and *L*. But it may depend on the choice of the point ρ in $\overline{C} \setminus C$. We will denote this subgroup by *PS*[*C*ρ].

Algebraic Definition?

Question: Is it possible to define *PS*[*C*ρ] working enirely in *k*?

Conjecture. $PS[C_{\rho}]$ is "the left stabilizer" of ρ .

By *a left compactification* of GL(*n*, *k*) we mean a complete variety *V* with an embedding $GL(n, k) \hookrightarrow V$ so that the action of $GL(n, k)$ on itself by multiplication on the left extends to an action on *V*.

Claim

Let $C \subset GL(n, k)$ *be a curve, and* $GL(n, k) \hookrightarrow V$ *be a left compactification.* Let $\overline{C} \subset V$ *be the Zariski closure of* \overline{C} *in* V *and* $\rho \in \overline{C} \setminus C$. Then

 $PS[C_{\alpha}] \subseteq Stab(\rho) = \{g \in GL(n, k): g \cdot \rho = \rho\}.$

Question

Let $C \subset GL(n,k)$ be a curve. Is there a left compactification $GL(n, k) \hookrightarrow V$ such that for any $\rho \in \overline{C} \setminus S$ we have $PS[C_{\rho}] = Stab(\rho)$?

S. Starchenko (University of Notre Dame) Connect Conne

A Problem

It fails for projective compactifications.

Let $\xi\colon$ $\mathrm{GL}(n,\mathbb{C})\hookrightarrow \mathrm{GL}(N,\mathbb{C})\subseteq \mathbb{C}^{N\times N}$ be an embedding, and $\pi\colon \mathbb{C}^{N\times N}\to \mathbb{P}^{(N\times N)-1}(\mathbb{C})$ be the projection.

The Zariski closure $\left[GL(n, \mathbb{C}) \right]_{\epsilon}$ of $\pi \circ \xi(\mathrm{GL}(n, \mathbb{C}))$ is called *a projective compactification* of GL(*n*, C).

Example

Let *C* be the Zariski closure of

$$
\sigma(t) = \begin{pmatrix} 1+t^2 & t \\ t & 1 \end{pmatrix}
$$

in $GL(2, \mathbb{C})$. Its PS-subgroup is isomorphic to $(\mathbb{C}, +)$. But, due to Hilbert–Mumford criterion, for any projective compactification $[GL(2, \mathbb{C})]_{\varepsilon}$ and a point $\rho \in \mathcal{C} \setminus \mathcal{C}$ the stabilizer *Stab*(ρ) contains a one–parameter subgroup. In particular the dimension $Stab(\rho)$ is at least 2.

Up-to a definable isomorphism there are exactly two non-compact groups definable in the field of reals: $(\mathbb{R},+)$ and $(\mathbb{R}^{>0},\cdot).$

Question

Let σ : $(0,\infty) \to GL(n,\mathbb{R})$ be an unbounded semialgebraic curve. How to detect if $PS[\sigma]$ is additive or multiplicative?

Example

For

$$
\sigma(t) = \begin{pmatrix} 1+t^2 & t \\ t & 1 \end{pmatrix}
$$

the Peterizl-Steinhorn subgroup is additive.

Remark

In general the growth rate of $\sigma(t)$ does not provide enough information to detect the nature of *PS*[σ].

There is an unbounded semialgebraic curve in $GL(2,\mathbb{R})$ whose (left) PS-subgroup is additive but the right PS-subgroup is multiplicative.

Conjecture [G. Poulios]

Let σ : $(0, \infty) \rightarrow GL(n, \mathbb{R})$ be an unbounded semi-algebraic curve. Let $\lambda \in \mathbb{R}$ be such that

 $\lim_{t\to\infty} t^{\lambda} \dot{\sigma}(t) \sigma(t)^{-1}$

exists (in the space of all $(n \times n)$ matrices) and is nonzero. Then

- \blacktriangleright *PS*[σ] is additive if and only if $\lambda < 1$;
- \blacktriangleright *PS*[σ] is multiplicative if and only if $\lambda = 1$;