An Unusual Reflection Principle for Self Justifying Logics

Dan E. Willard

University at Albany - SUNY

April 1, 2012

Gödel's 2nd Incomplet. Theorem indicates strong formalisms cannot verify their own consistency But Humans Intuitively Appreciate their Own Consistency

Topic of our 64 Page Paper: What kinds of systems are Adequately Weak to formalize **some type (?)** of knowledge of their own consistency?

Research in New Technical Report and Six Prior Articles in JSL and APAL Has Sought to:

- Develop New Generalizations of Second Inc Theorem
- **②** Formalize **Unusual** "Boundary-Case Exceptions" to It.
- **③** Produce Tightest Possible Match Between Items 1 + 2.

2. Background Literature (summarized in 3 slides)

Definition: Axiom System β called **Self Justifying** relative to Deduction Method *d* when :

- one of β 's formal theorems states *d*'s deduction method, applied to axiom system β , is consistent.
- **2** and the axiom system β is **also actually** consistent.

 $\forall \alpha \ \forall d$ Kleene (1938), Rogers (1966) & Jersolow (1971) noted Easy To Construct axiom system $\alpha^d \supseteq \alpha$ satisfying Requirement 1 i.e. set $\alpha^d = \alpha \cup \text{SelfCons}(\alpha, d)$ (defined below)

"There is no proof (using d's deduction method) of 0 = 1 from the Union of system α with this sentence (looking at itself)"

Above Well Defined But Catch is α^d Usually Fails Item 2.

- i.e. α^d is inconsistent via a Gödel diagonalization paradigm.
- Thus prior to Willard (1993), this topic mostly shunned.

3. More Background Literature

Definition: Let α denote axiom system lacking Induction Principle Then $\Psi(x)$ called α -Initial Segment iff α can prove:

$$\Psi(0)$$
 AND $\forall x \ \Psi(x) \rightarrow \Psi(x+1)$ (1)

Pudlák 1985: All axiom systems of finite cardinality have Initial Segments Ψ where α can verify its Herbrand and Semantic Tableaux Consistency for every x satisfying $\Psi(x)$

- Intuition: All integers x satisfy $\Psi(x)$ BUT α NOT KNOW THIS !
- Above Result does not generalize for Hilbert Deduction

Kreisel-Takeuti (1974) Earliest Local-Consistency Result:

- Showed Second-Order Generalization of Cut-Free Deduction Can Verify Its Own Consistency.
- Sets Ψ (in Equation 1) = Dedekind's Definition of Integers

Verbrugge-Visser (1994) developed analogous arithmetic reflection principles using local consistency constructs.

• Visser (2005) discusses this topic further and summarizes Harvey Friedman's Ohio State 1979 Tech Report

4. Generalizations of Second Inc Theorem

- Bezboruah-Shepherdson 1976: Showed some Gödel encodings of Robinson's Q CANNOT VERIFY their Hilbert consistency.
- Pudlák 1985: Generalized Above for all Gödel encodings of proofs and for All Initial Segments (defined on prior slide) when Hilbert Deduction Present.
- Wilkie-Paris 1987 : showed $I\Sigma_0$ +Exp CANNOT PROVE Hilbert Consistency of Q,
- Solovay (1994 Private Com.) : Showed NO SYSTEM (weaker than Q) Recognizing MERELY SUCCESSOR as total function can VERIFY its Hilbert Consistency.
- W— 2002-2009 : generalized work of Adamowicz-Zbierski to show THREE DIFFERENT ENCODINGS of I Σ_0 CANNOT PROVE their semantic tableaux consistency.

Hence Self-Justifying Formalisms Always Contain weaknesses.

5. Main Perspective of Willard's 1993-2009 Research

Notation: Add(x, y, z) and Mult(x, y, z) are 3-way atomic predicates employed by our axiom systems.

Definitions: An axiom system α is

- Type-A iff it contains Equation 1 as axiom:
- **Type-M** iff it contains 1 + 2 as axiom:
- Type-S iff it can prove (3) BUT NOT PROVE (1) NOR (2) :

$$\forall x \ \forall y \ \exists z \quad Add(x, y, z) \tag{1}$$

$$\forall x \ \forall y \ \exists z \quad Mult(x, y, z) \tag{2}$$

$$\forall x \; \exists z \; Add(x,1,z) \tag{3}$$

Combined Result of Pudlak, Solovay, Nelson, Wilkie-Paris:

• No natural Type-S system can recognize its Hilbert consistency:

Our Main Prior Results about this Subject:

- Some Type-A prove all PA's π₁ theorems and their semantic tableaux consistency
- Ost Type-M axiom systems UNABLE to JUSTIFY their semantic tableaux consistency.

6. Limitations Upon Self Justifying Systems

- Pudlak (1985) + Solovay (1994) (combined with Nelson + Wilkie-Paris) implies self-justication collapes when Hilbert Deduction is present for most systems rocognizing Successor as total functioon.
- JSL(2002)+ APAL(2007) indicates Semantic Tableaux Self Jusitication collapses when Multiplication recognized as Total Function.
- FOL-2004 Paper showed that while JSL 2005 could add a π_1 and Σ_1 modus ponens rule to our semantic tableaux evasions of Second Incompleteness Theorem, Same NOT TRUE with π_2 and Σ_2 modus ponens rules.

Next Three Slides Have GOOD NEWS despite Items 1-3: Self-Justifying Systems Support Unusually Robust Reflection Principles.

Thus Bad News from Items 1-3 Not Fully Dismal !

7. New Perspective about Reflection Principles

Def: Reflect_{α,D}(Ψ) denotes sentence Ψ 's reflection principle under the axiom system α and deduction method D i.e.

$$\forall p \{ \mathsf{Prf}_{\alpha,D}(\ulcorner \Psi \urcorner, p) \Rightarrow \Psi \}$$
(4)

Löb's Theorem: If $\alpha \supset$ Peano Arith then α cannot prove Reflect_{α,D}(Ψ) except in trivial case where it can prove Ψ .

Gödel's Anti-Reflection Theorem: No reasonable axiom system α can prove Reflect_{α,D}(Ψ) for all π_1 sentences.

i.e. Difficulties always arise because Gödel Sentences declaring "There is no proof of me" have π_1 encodings.

Surprising Fact: Self-Justifying Systems Support "Transformed" π_1 Reflection Principles Despite Above 2 Theorems, i.e.

$$\forall p \{ \Pr_{\alpha,D}(\ulcorner \Psi \urcorner, p) \Rightarrow \Psi^{T} \}$$
(5)

where T is isomorphism mapping π_1 sentences into π_1 sentences such that $\Psi \leftrightarrow \Psi^T$ holds in Standard Model.

8. Two New Theorems About Reflection Principles

Def: Ax System α is Level(1^D) Consistent iff α UNABLE TO PROVE under deduction method D BOTH some π_1 sentence and its negation.

Theorem 6.12 If α can formally verify its own Level(1^D) Consistency Then there exists some T where α can verify (6)'s "Transformational" Reflection Principle for All π_1 sentences Ψ simultaneously.

$$\forall p \{ \mathsf{Prf}_{\alpha,D}(\ulcorner \Psi \urcorner, p) \Rightarrow \Psi^{\mathsf{T}} \}$$
(6)

Intuition Behind Theorem 6.12 : The identity $\Psi \leftrightarrow \Psi^T$ holds in Standard Model, BUT α UNABLE to verify it.

Theorem E.1 If Ax System α unable to prove its own consistency (i.e. satisfies Second Inc.Theorem) then α UNABLE TO VERIFY (6)'s Transform Reflection Principle for All π_1 sentences Ψ simultaneously.

Proof Sketch: All conventional axiom systems can refute all false π_1 sentences. Hence if Ψ false then α can refute both Ψ and Ψ^T . But then α could use (6)'s reflection principle to confirm its own consistency. Latter impossible because contradicts Theorem 6.12's hypothesis.

9. Mysterious Two Sentences in Gödel's 1931 Paper

Most Surprising Two Sentences in Gödel's Paper:

• "It must be expressly noted that Theorem XI (i.e the Second Inc Theorem) represents no contradiction of the formalistic standpoint of Hilbert. For this standpoint presupposes only the existence of a consistency proof by finite means, and there might conceivably be finite proofs which cannot be stated in ... "

Our Interpretation of Gödel's Statement • :

- We agree with most logicians that Gödel was excessively cautious in Statement • because history has proven the Second Inc Theorem to be a 95 % Robust Result from a "Consistency Perspective".
- **2** However, Gödel's Statement is QUITE SIGNIFICANT from a "Reflection Perspective" because π_1 Transform Reflection explains how Thinking Beings aquire motivation to cogitate.

$$\forall p \{ \mathsf{Prf}_{\alpha,D}(\ulcorner \Psi \urcorner, p) \Rightarrow \Psi^T \}$$
(7)

10. Concluding Remarks

Wide Significance of Gödel's 2nd Incomp Theorem illustrated by:

- Its generalization using 1939 Hilbert-Bernays Derivation Conditions
- Solovay's 1994 Extension of Pudläk's 1985 Work:

No Axiom System viewing successor as a total function can justify its own Hilbert consistency.

Above Precludes many but not all uses of **"I am consistent"** axioms:

- This is because Reflection Principles explain how Thinking Beings Motivate Themselves to Cogitate
- This use of Reflection Principles Is Very Helpful, EVEN IF it does not formalize a STRONG RESPECT where systems confirm their own consistency.

Many Other Results at http://arxiv.org/abs/1108.6330.

- Purpose of this Talk was to be pointer to 64-page report
- Latter Both Unifies and Extends our Prior Results