Semi-periodic Functions and the Scott Analysis of Linear Orderings

David Gonzalez

UC Berkeley

May 2024 ASL Annual Meeting, Iowa State

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline

- The definitions and history of Scott analysis
- Classification for linear orderings
- A recent construction using Semi-periodic functions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$\mathcal{L}_{\omega_1,\omega}$ formulas and their complexity

- *L*_{ω1,ω} is infinitary logic; it extends first order logic by allowing countable conjunctions and disjunctions.
- $\varphi \in \mathcal{L}_{\omega_1,\omega}$ is in $\Sigma_0^{\text{in}} = \Pi_0^{\text{in}}$ if it is quantifier free and has no infinitary disjunctions or conjunctions.
- For $\alpha \in \omega_1$, φ is $\Sigma_{\alpha}^{\text{in}}$ if $\varphi = \bigvee_i \exists \bar{x} \psi_i(\bar{x})$ for $\psi_i \in \Pi_{\beta}^{\text{in}}$ with $\beta < \alpha$.
- For $\alpha \in \omega_1$, φ is Π_{α}^{in} if $\varphi = \bigwedge_i \forall \bar{x} \psi_i(\bar{x})$ for $\psi_i \in \Sigma_{\beta}^{\text{in}}$ with $\beta < \alpha$.
- For $\alpha \in \omega_1$, φ is d- Σ_{α}^{in} if $\varphi = \psi \wedge \chi$ for $\psi \in \Sigma_{\alpha}^{in}$ and $\chi \in \Pi_{\alpha}^{in}$

 $\mathcal{L}_{\omega_1,\omega}$ formulas and their complexity

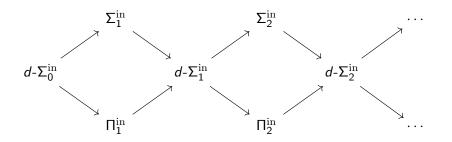
- For two models M, N we say $M \leq_{\alpha} N$ if $\Pi_{\alpha}^{\text{in}} \text{Th}(M) \subseteq \Pi_{\alpha}^{\text{in}} \text{Th}(N)$.
- ▶ Note that $M \ge_{\alpha} N$ if and only if $\sum_{\alpha}^{in} Th(M) \subseteq \sum_{\alpha}^{in} Th(N)$.

• We put $M \equiv_{\alpha} N$ if both of the above hold.

Scott Complexity

Theorem: [Scott] For every countable structure M there is a sentence $\varphi \in \mathcal{L}_{\omega_1,\omega}$ such that $N \cong M \iff N \models \varphi$. **Definition:** A φ as in the theorem statement is called a *Scott* sentence.

Definition: The Scott complexity (SC) of M is the least among $\{\Sigma_{\alpha}^{\text{in}}, \Pi_{\alpha}^{\text{in}}, d \cdot \Sigma_{\alpha}^{\text{in}}\}_{\alpha \in \omega_1}$ such that M has a Scott sentence of said complexity.



▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ - 国 - のへの

Definition: [Montalbán] The parametrized *Scott rank* (pSR) of *M* is the least $\alpha \in \omega_1$ such that *M* has a $\sum_{\alpha+2}^{in}$ Scott sentence.

Definition: [Montalbán] The unparametrized *Scott rank* (uSR) of M is the least $\alpha \in \omega_1$ such that M has a $\prod_{\alpha+1}^{in}$ Scott sentence.

Theorem: [Montalbán] The (un)parameterized Scott rank of M is the $\alpha \in \omega_1$ such that M the automorphism orbits of all tuples in M are definable in a $\Sigma_{\alpha}^{\text{in}}$ way with(out) parameters. There are also many other equivalent statements.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Scott analysis

For
$$T \in \mathcal{L}_{\omega_1,\omega}$$
 let
 $I_{SC}(T,\Gamma) = |\{M : M \models T \land SC(M) = \Gamma\}|,$
 $I_u(T,\alpha) = |\{M : M \models T \land uSR(M) = \alpha\}|,$
 $I_p(T,\alpha) = |\{M : M \models T \land pSR(M) = \alpha\}|.$

Scott analysis generally refers to any inquiry into the behavior of the above functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Linear orderings

Between G. and Rosseger 2023 and G., Harrison-Trainor and Ho 2024 we fully characterized the I_{SC} function for linear orderings.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

1.
$$I_{SC}(LO, \Pi_n) = 1$$
 if $n \leq 2$

2.
$$I_{SC}(LO, \Sigma_n) = 0$$
 if $n \leq 3$

3.
$$I_{SC}(LO, d-\Sigma_n) = \aleph_0$$
 if $n \le 4$

4.
$$I_{SC}(LO, \Sigma_4) = \aleph_0$$

5.
$$I_{SC}(LO, \Pi_3) = \aleph_0$$

6.
$$I_{SC}(LO, \Gamma) = 2^{\aleph_0}$$
 otherwise

The Relationship of the Concepts

Alvir, Greenberg, Harrison-Trainor and Turetsky (AGHTT) showed that Scott sentence complexity is related to Montalbán's Scott ranks.

SC	pSR	uSR	complexity of parameters
$\Sigma_{\alpha+2}^{in}$	α	$\alpha + 2$	$\Pi^{\mathrm{in}}_{lpha+1}$
$d-\Sigma_{\alpha+1}^{\mathrm{in}}$	α	$\alpha + 1$	Π^{in}_{lpha}
$\Pi_{\alpha+1}^{\mathrm{in}}$	α	α	none
α limit			
$\Sigma_{\alpha+1}^{\mathrm{in}}$	α	$\alpha + 1$	Π^{in}_{lpha}
$\Pi^{\mathrm{in}}_{\alpha}$	α	α	none

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For limit α , $\Sigma_{\alpha}^{\text{in}}$ and d- $\Sigma_{\alpha}^{\text{in}}$ are not possible. Notice the limit case is left ambiguous in their work.

Limit levels: History of the Mystery

- In 1983, A. Miller gave examples of all possible Scott complexities except for Σ_{λ+1}.
- ► 38 years later AGHTT gave an example of Scott complexity $\Sigma_{\lambda+1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ► The example is very pretty, but quite complex.
- Σ_{λ+1} was left open by G. and Rossegger G., Harrison-Trainor and Ho filled this gap with a new construction with surprisingly life

Example: Let $\sigma_0 = 0$ and $\sigma_{i+1} = \sigma_i^{\frown}(i+1)^{\frown}\sigma_i$. Limits of these finite strings produce semi-periodic function.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: Let $\sigma_0 = 0$ and $\sigma_{i+1} = \sigma_i^{\frown}(i+1)^{\frown}\sigma_i$. Limits of these finite strings produce semi-periodic function.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: Let $\sigma_0 = 0$ and $\sigma_{i+1} = \sigma_i^{\frown}(i+1)^{\frown}\sigma_i$. Limits of these finite strings produce semi-periodic function.

Example: Let $\sigma_0 = 0$ and $\sigma_{i+1} = \sigma_i^{\frown}(i+1)^{\frown}\sigma_i$. Limits of these finite strings produce semi-periodic function.

Example: Let $\sigma_0 = 0$ and $\sigma_{i+1} = \sigma_i^{\frown}(i+1)^{\frown}\sigma_i$. Limits of these finite strings produce semi-periodic function.

Example: Let $\sigma_0 = 0$ and $\sigma_{i+1} = \sigma_i^{\frown}(i+1)^{\frown}\sigma_i$. Limits of these finite strings produce semi-periodic function.

Example: Let $\sigma_0 = 0$ and $\sigma_{i+1} = \sigma_i^{\frown}(i+1)^{\frown}\sigma_i$. Limits of these finite strings produce semi-periodic function.

The Construction: λ -mixable pairs

Definition

An ordered pair $(\{L_i\}_{i \in \omega}, K)$ of a sequence of linear orderings $\{L_i\}_{i \in \omega}$ and a single linear ordering K is called a λ -mixable pair if the following properties hold for some non-zero fundamental sequence $\delta_i \to \lambda$:

- 1. $uSR(K) < \lambda$
- 2. $uSR(L_i) < \lambda$
- 3. $L_i \equiv_{\delta_i} L_{i+1}$
- 4. $L_i \not\equiv_{\delta_{i+1}} L_{i+1}$
- 5. any finite alternating sum

 $1 + L_{a_0} + 1 + K + 1 + L_{a_1} + 1 + K + \dots + 1 + L_{a_n}$ has intervals isomorphic to K only within the written K blocks (or as the entire written K block).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Construction: λ -mixable pair examples

•
$$L_i = \omega^{\delta_i}$$
 and $K = \zeta$
• $L_i = \zeta^{\delta_i}$ and $K = \omega$
• $L_i = \sum_{n < i} (n + \zeta^{\delta_n}) + \sum_{n \ge i} (n + \zeta^{\delta_i})$ and $K = \omega$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

The Construction

Given any λ -mixable pair ({ L_i } $_{i\in\omega}$, K) and semi-periodic function $f: \mathbb{Z} \to \mathbb{N}$, $L_f = \sum_{n\in\mathbb{Z}} (1 + L_{f(n)} + 1 + K)$

has Scott complexity $\Sigma_{\lambda+1}$.

Example:

 $\cdots + \omega + \zeta + \omega^{2} + \zeta + \omega + \zeta + \omega^{3} + \zeta + \omega + \zeta + \omega^{2} + \zeta + \omega + \cdots$

Definition: $fE_{\mathbb{Z}}g$ if there is an $n \in \mathbb{Z}$ such that for all $m \in \mathbb{Z}$ f(m) = g(m + n).

Definition: fE_{fing} if for all $n f_n E_{\mathbb{Z}}g_n$.

Translation: $fE_{\mathbb{Z}}g$ if and only if $L_f \cong L_g$. fE_{fing} if and only if $L_f \equiv_{\lambda} L_g$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Surprising: We now know more about $\Sigma_{\lambda+1}$ than $\Sigma_{\alpha+1}$ for non-limit α .

Proposition: There are continuum many Scott complexity $\Sigma_{\alpha+1}$ in some \equiv_{α} class.

Proposition: There is a \equiv_{α} class with only structures of Scott complexity $\Sigma_{\alpha+1}.$

Proposition: There is a rigid structure of Scott complexity $\Sigma_{\alpha+1}$.

Thank you!

(ロ)、(型)、(E)、(E)、 E) の(()

We found continuum many $\equiv_{\lambda}\text{-equivalent}$ linear orderings all with Scott complexity $\Sigma_{\lambda+1}.$

Combinatorial solution: There are continuum many E_{fin} classes in a single $E_{\mathbb{Z}}$ class. In fact, $E_0 \leq_B E_{\mathbb{Z}}|_{[b]_{E_{fin}}}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proof idea: An increasing enumeration of a non-zero set $A \in 2^{\omega}$ gives rise to a system of embeddings $\sigma_i \rightarrow \sigma_j$.

$$\sigma_0 \hookrightarrow \sigma_{A(1)} \hookrightarrow \sigma_{A(2)} \hookrightarrow \sigma_{A(3)} \hookrightarrow \cdots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙