A Return to Degree Spectra of Relations on a Cone

Matthew Harrison-Trainor

University of Illinois Chicago

ASL 2024 Iowa State

The setting throughout this talk is:

- \bullet A is a (computable) structure
- \bullet R is an additional (computable) relation on A.

Definition

The degree spectrum of R is

 $\mathsf{dgSp}(R) = \{d_\mathcal{T}(R^\mathcal{B}) : \mathcal{B} \text{ is a computable copy of } \mathcal{A}\}.$

Suppose that A and R are "natural". What are the possible degree spectra?

In my thesis, I considered degree spectra on a cone, with on a cone capturing the intuitive idea that $\mathcal A$ and $\mathcal R$ are natural.

One particularly interesting example is the case where the structure is $A = (N, <)$. This example had been considered by Wright and myself, and more recently Bazhenov, Kalociński, and Wrocławski.

This talk is about recent work with Jad Damaj in which we solved a question I had not been able to solve in my thesis: we produce examples of natural relations on $\mathbb N$ which have surprising degree spectra on a cone.

Degree spectra relative to a cone

Let A be a computable structure and R a relation on A .

Definition

The degree spectrum of R below the degree d is

$$
dgSp(\mathcal{A}, R)_{\leq d} = \{d(R^{\mathcal{B}}) \oplus d : \mathcal{B} \cong \mathcal{A} \text{ and } \mathcal{B} \leq_{\mathcal{T}} d\}
$$

Recall that a cone is a set of Turing degrees

$$
\mathcal{C}_{\boldsymbol{d}} = \big\{\boldsymbol{c} : \boldsymbol{c} \ge_{\mathcal{T}} \boldsymbol{d} \big\}.
$$

Given enough determinacy, any set of Turing degrees either contains a cone or is disjoint from a cone.

We think of sets containing a cone as being "large", and the complement as being "small".

Relativised degree spectra

Let A and B be structures and R and S relations on A and B respectively.

For any degree **d**, either dgSp(A, R)_{<d} is equal to dgSp(B, S)_{<d}, one is strictly contained in the other, or they are incomparable. By Borel determinacy, exactly one of these happens on a cone.

Definition (Montalbán)

The degree spectrum of (A, R) on a cone is equal to that of (B, S) if we have equality on a cone, and similarly for containment and incomparability.

Example

If $A = (N, <)$ and R is the empty unary relation $R =$, then for all degrees **d** we have dgSp $(A, R)_{\le d} = \{d\}.$

Example

If $A = (N, <)$ and R is the successor relation, then for all degree **d** we have $dgSp(\mathcal{A}, R)_{\leq d}$ = degrees c.e. in and above **d**.

These are the two minimal examples.

Theorem (Harizanov)

One of the following is true for all degrees **d** on a cone:

$$
\bullet \ \ \text{dgSp}(\mathcal{A}, R)_{\leq \mathbf{d}} = \{\mathbf{d}\}, \text{ or}
$$

2 dgSp(A, R)_{≤d} \supseteq degrees c.e. in and above **d**.

D.c.e. relations

Theorem (HT)

There is a computable structure A and relatively intrinsically d.c.e. relations R and S on A with the following property:

for any degree **d**, dgSp(A, R)_{≤d} and dgSp(B, S)_{≤d} are incomparable.

Corollary (HT)

There are two degree spectra on a cone which are incomparable, each contained within the d.c.e. degrees and containing the c.e. degrees.

Theorem (HT)

Let A be a structure and R a relation on A . Then one of the following is true relative to all degrees on a cone:

- **D** dgSp $(A, R) \subseteq \Delta^0_2$, or
- 2 2-CEA \subseteq dgSp(\mathcal{A}, \mathcal{R}).

Theorem (Wright)

For every relation R on $(N, <)$, the degree spectrum is either:

- the computable degrees,
- the c.e. degrees,
- the Δ_2^0 degrees, or
- $\mathop{\mathsf{intermediate}}$ between the c.e. degrees and the Δ^0_2 degrees.

The successor relation often plays an important role.

Theorem (HT)

If a relation R on $(N, <)$ is intrinsically α -c.e. on a cone, then its degree spectrum on a cone is either the computable degrees or the c.e. degrees.

Question

Is there a relation R whose degree spectrum is intermediate (on a cone)?

Theorem (Bazhenov, Kalociński, and Wrocławski)

There is a total computable function whose degree spectrum (not on a cone) strictly contains all c.e. degrees and is strictly contained in the Δ^0_2 degrees.

This total computable function is not a natural one.

The proof is by a priority argument:

For each $e, e_1, e_2, n \in \omega$, we have the following requirements:

 $\mathcal{I}_e: I \not\simeq \Phi_e^J$, $\mathcal{J}_e: J \not\simeq \Phi_e^I$, and $R_{\langle e_1,e_2,n \rangle}: \Phi_{e_1}^{\Gamma_{f_A}} \not\simeq W_n \vee \Phi_{e_2}^{W_n} \not\simeq \Gamma_{f_A}$,

where Γ_{f_A} is the graph of f_A . The non-c.e. degree requirements are based on [5, p. 195.

On a cone, the degree spectrum is the c.e. degrees.

Theorem (Damaj, HT)

There are relations on $(\omega, <)$ whose degree spectrum on a cone is strictly between the c.e. degrees and the Δ^0_2 degrees.

One example is:

This follows a simple pattern; the hard work comes after the construction.

Let I_n be the loop of length n. The function is described by:

 $I_1I_1I_2I_1I_3I_2I_4I_1I_5I_2I_6I_3I_7I_1I_8\ldots$

- The blocks in odd positions follow the pattern $I_1I_2I_3I_4...$ enumerating the natural numbers in increasing order
- The blocks in even positions $I_1I_1I_2I_1I_2I_3...$ are an enumeration of all of the natural numbers such that each number occurs infinitely many times.
- Every block appears infinitely many times, but any pair of blocks appears adjacent to each other only once.

We do not have a good characterization of these intermediate degree spectra. Using our method of constructing these relations R , for any computable listing of indices for Δ^0_2 sets, the degree spectrum of R contains some degree which is not in the listing.

Theorem (Damaj, HT)

For every computable ordinal α , there is a relation R on $(\mathbb{N},<)$ whose degree spectrum on a cone is intermediate but contains all α -c.e. degrees.

Thanks!