A Return to Degree Spectra of Relations on a Cone

Matthew Harrison-Trainor

University of Illinois Chicago

ASL 2024 Iowa State

The setting throughout this talk is:

- \mathcal{A} is a (computable) structure
- R is an additional (computable) relation on A.

Definition

The degree spectrum of R is

 $dgSp(R) = \{d_T(R^{\mathcal{B}}) : \mathcal{B} \text{ is a computable copy of } \mathcal{A}\}.$

Suppose that \mathcal{A} and R are "natural". What are the possible degree spectra?

In my thesis, I considered degree spectra on a cone, with on a cone capturing the intuitive idea that A and R are natural.

One particularly interesting example is the case where the structure is $\mathcal{A} = (\mathbb{N}, <)$. This example had been considered by Wright and myself, and more recently Bazhenov, Kalociński, and Wrocławski.

This talk is about recent work with Jad Damaj in which we solved a question I had not been able to solve in my thesis: we produce examples of natural relations on \mathbb{N} which have surprising degree spectra on a cone.

Degree spectra relative to a cone

Let A be a computable structure and R a relation on A.

Definition

The degree spectrum of R below the degree **d** is

 $\mathsf{dgSp}(\mathcal{A}, R)_{\leq \mathbf{d}} = \{ d(R^{\mathcal{B}}) \oplus \mathbf{d} : \mathcal{B} \cong \mathcal{A} \text{ and } \mathcal{B} \leq_{\mathcal{T}} \mathbf{d} \}$

Recall that a cone is a set of Turing degrees

$$C_{\mathbf{d}} = \{\mathbf{c} : \mathbf{c} \ge_{\mathcal{T}} \mathbf{d}\}.$$

Given enough determinacy, any set of Turing degrees either contains a cone or is disjoint from a cone.

We think of sets containing a cone as being "large", and the complement as being "small".

Relativised degree spectra

Let A and B be structures and R and S relations on A and B respectively.

For any degree **d**, either $dgSp(\mathcal{A}, R)_{\leq d}$ is equal to $dgSp(\mathcal{B}, S)_{\leq d}$, one is strictly contained in the other, or they are incomparable. By Borel determinacy, exactly one of these happens on a cone.

Definition (Montalbán)

The degree spectrum of (\mathcal{A}, R) on a cone is equal to that of (\mathcal{B}, S) if we have equality on a cone, and similarly for containment and incomparability.

Example

If $\mathcal{A} = (\mathbb{N}, <)$ and R is the empty unary relation R =, then for all degrees **d** we have $dgSp(\mathcal{A}, R)_{\leq \mathbf{d}} = {\mathbf{d}}.$

Example

If $\mathcal{A} = (\mathbb{N}, <)$ and R is the successor relation, then for all degree **d** we have $dgSp(\mathcal{A}, R)_{\leq d} = degrees c.e.$ in and above **d**.

These are the two minimal examples.

Theorem (Harizanov)

One of the following is true for all degrees **d** on a cone:

• dgSp
$$(\mathcal{A}, R)_{\leq d} = \{d\}$$
, or

② dgSp(\mathcal{A}, R)_{≤d} ⊇ degrees c.e. in and above **d**.

D.c.e. relations

Theorem (HT)

There is a computable structure A and relatively intrinsically d.c.e. relations R and S on A with the following property:

for any degree **d**, $dgSp(\mathcal{A}, R)_{\leq d}$ and $dgSp(\mathcal{B}, S)_{\leq d}$ are incomparable.

Corollary (HT)

There are two degree spectra on a cone which are incomparable, each contained within the d.c.e. degrees and containing the c.e. degrees.

Theorem (HT)

Let A be a structure and R a relation on A. Then one of the following is true relative to all degrees on a cone:

- dgSp(\mathcal{A}, R) $\subseteq \Delta_2^0$, or
- ② 2-*CEA* ⊆ dgSp(\mathcal{A}, R).

Theorem (Wright)

For every relation R on $(\mathbb{N}, <)$, the degree spectrum is either:

- the computable degrees,
- the c.e. degrees,
- the Δ_2^0 degrees, or
- intermediate between the c.e. degrees and the Δ_2^0 degrees.

The successor relation often plays an important role.

Theorem (HT)

If a relation R on $(\mathbb{N}, <)$ is intrinsically α -c.e. on a cone, then its degree spectrum on a cone is either the computable degrees or the c.e. degrees.

Question

Is there a relation R whose degree spectrum is intermediate (on a cone)?

Theorem (Bazhenov, Kalociński, and Wrocławski)

There is a total computable function whose degree spectrum (not on a cone) strictly contains all c.e. degrees and is strictly contained in the Δ_2^0 degrees.

This total computable function is not a natural one.

The proof is by a priority argument:

For each $e, e_1, e_2, n \in \omega$, we have the following requirements:

 $\mathcal{I}_e: I \neq \Phi_e^J, \quad \mathcal{J}_e: J \neq \Phi_e^I, \quad \text{and} \quad R_{\langle e_1, e_2, n \rangle}: \Phi_{e_1}^{\Gamma_{f_\mathcal{A}}} \neq W_n \vee \Phi_{e_2}^{W_n} \neq \Gamma_{f_\mathcal{A}},$

where $\Gamma_{f_{\mathcal{A}}}$ is the graph of $f_{\mathcal{A}}$. The non-c.e. degree requirements are based on [5, p. 195].

On a cone, the degree spectrum is the c.e. degrees.

Theorem (Damaj, HT)

There are relations on $(\omega, <)$ whose degree spectrum on a cone is strictly between the c.e. degrees and the Δ_2^0 degrees.

One example is:

This follows a simple pattern; the hard work comes after the construction.

Let I_n be the loop of length n. The function is described by:

 $l_1 l_1 l_2 l_1 l_3 l_2 l_4 l_1 l_5 l_2 l_6 l_3 l_7 l_1 l_8 \dots$

- The blocks in odd positions follow the pattern $l_1 l_2 l_3 l_4 \dots$ enumerating the natural numbers in increasing order
- The blocks in even positions $l_1 l_1 l_2 l_1 l_2 l_3 \dots$ are an enumeration of all of the natural numbers such that each number occurs infinitely many times.
- Every block appears infinitely many times, but any pair of blocks appears adjacent to each other only once.

We do not have a good characterization of these intermediate degree spectra. Using our method of constructing these relations R, for any computable listing of indices for Δ_2^0 sets, the degree spectrum of R contains some degree which is not in the listing.

Theorem (Damaj, HT)

For every computable ordinal α , there is a relation R on $(\mathbb{N}, <)$ whose degree spectrum on a cone is intermediate but contains all α -c.e. degrees.

Thanks!