Strong minimal pairs in the enumeration degrees

Josiah Jacobsen-Grocott

University of Wisconsin—Madison Partially supported by NSF Grant No. DMS-2053848

Association for Symbolic Logic Annual Meeting, Ames Iowa, May 2024

1 The $\exists \forall$ theory of degree structures

2 No strong super minimal pairs

3 Strong minimal pairs

Question

At what level of quantifier complexity does the theory of a degree structure become undecidable?

- For D_T we know that the ∃∀ theory is decidable, but the ∃∀∃ theory in undecidable.
- For the c.e. Turing degrees we know the \exists theory is decidable and the $\exists \forall \exists$ theory is undecidable but do not know about the $\exists \forall$ theory.

Theorem (Lagemann '72)

Every finite lattice embeds into the enumeration degrees. Hence the \exists theory is decidable.

Theorem (Kent '06)

The $\exists \forall \exists$ theory of \mathcal{D}_e is undecidable.

It turns out that the $\exists \forall$ theory of a partial order is equivalent to the following question.

Question (Generalized extension of embeddings)

Given finite partial orders \mathcal{P} and $\mathcal{Q}_0, \ldots, \mathcal{Q}_{k-1}$ is it true that every embedding of P into \mathcal{D} can be extended to \mathcal{Q}_i for some i < k?

The case when k = 1 is known as the extension of embedding problem. Lempp, Slaman and Soskova, '21 proved that the extension of embeddings problem is decidable for the *e*-degrees. via the following theorem

Theorem (Lempp, Slaman, Soskova '21)

Every finite lattice embeds into the enumeration degrees a strong interval.

Example (Super minimal pair)

Example (Strong super minimal pair)

Definition

In an upper semi-lattice with least element 0 a pair a, b > 0 is a:

- minimal pair if $a \wedge b = 0$.
- strong minimal pair if it is a minimal pair, and for all x such that $0 < x \le a$ we have $x \lor b = a \lor b$.
- *super minimal pair* if both a, b and b, a are strong minimal pairs.
- strong super minimal pair if it is a minimal pair, and for all x, y such that 0 < x ≤ a and 0 < y ≤ b we have x ∨ y = a ∨ b.

Theorem (J-G, Soskova)

There are no strong super minimal pairs in the enumeration degrees.

Theorem (J-G/Anonymous referee)

There are strong minimal pairs in the enumeration degrees.

Question

Are there super minimal pairs in the enumeration degrees?

13/22

The ∃∀ theory of degree structures

14 / 22

Definition

We define $A \leq_e B$ if is a c.e. set of axioms W such that

$$x \in A \iff \exists \langle x, u \rangle \in W[D_u \subseteq B]$$

where $(D_u)_u$ is a listing of all finite sets by strong indices.

- We have that ≤_e is a pre-order and taking equivalences classes give us a degree structure D_e.
- The lowest element of \mathcal{D}_e is 0_e which is the class of c.e. sets.
- The Turing degrees embed into \mathcal{D}_e as a definable substructure.
- From an effective listing of c.e. sets (W_e)_e we obtain an effective listing of enumeration operators (Ψ_e)_e. Defined by A = Ψ_e(B) if A ≤_e B via the set of axioms W_e.
- Unlike Turing operators Ψ_e(A) is always a set. We also have that these operators are monotonic: if B ⊆ A then Ψ_e(B) ⊆ Ψ_e(A).

Theorem (Gutteridge '71)

For every $a \neq 0_e$ there is $b \in \mathcal{D}_e$ such that 0 < b < a.

As part of his proof, Gutteridge constructed an enumeration operator Θ with the following properties:

- If A is not c.e. then $\Theta(A) <_e A$.
- **2** If $\Theta(A)$ is c.e. then A is Δ_2^0 .

No strong super minimal pairs outside of Δ_2^0

The construction of Θ produces a sequence $(n_k)_k$ such that:

•
$$B = \bigoplus_k n_k$$
 is a c.e. set.

•
$$\Theta(A) = B \cup \{\langle k, n_k \rangle : k \in A\}$$

Lemma

$$\Theta(A\cup C)=\Theta(A)\cup\Theta(C).$$

Lemma (J-G)

If A and C are not Δ_2^0 then there are X, Y such that $\emptyset <_e X \leq_e A$, $\emptyset <_e Y \leq_e C$, and $X \oplus Y <_e A \oplus C$.

Proof.

$$\mathsf{Take}\; X = \Theta(A \oplus \emptyset), \, Y = \Theta(\emptyset \oplus C).$$

17 / 22

Definition (Kalimullin '03)

A and B are a Kalimullin pair (\mathcal{K} -pair) if there is a c.e. set $W \subseteq \omega^2$ such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$. A \mathcal{K} -pair is called *trivial* if one of A, B is c.e.

Kalimullin pairs have been used to prove that the jump is definable in \mathcal{D}_e (Kalimullin '03) and that the total degrees are definable (Ganchev and Soskova '15).

We use the following two facts about $\mathcal{K}\text{-pairs}.$

Theorem (The minimal pair \mathcal{K} -property, Kalimullin '03)

A, B are a \mathcal{K} -pair if and only if for all $X \subseteq \omega$, $A \oplus X$ and $B \oplus X$ form a minimal pair relative to X. i.e. $Y \leq_e A \oplus X, Y \leq_e B \oplus X \implies Y \leq_e X$.

Theorem (Kalimullin '03)

Every nonzero Δ_2^0 degree computes a nontrivial \mathcal{K} -pair.

Theorem (Soskova)

If A is Δ_2^0 then A, B is not a strong minimal pair in \mathcal{D}_e for any B.

The ∃∀ theory of degree structures

2 No strong super minimal pairs

Theorem (J-G/Anonymous referee)

If A, B are a non trivial \mathcal{K} -pair with $B \leq_e \emptyset'$ and $A \nleq_e \emptyset'$, then (A, \emptyset') form a strong minimal pair.

The existence of a strong minimal pair was initially proven with a two part forcing construction. My modifying that construction into a 0' finite injury argument we get the following:

Theorem (J-G)

There is a strong minimal pair A, B such that A is Σ_2^0 and B is Π_2^0 .

Thank You

