Strong minimal pairs in the enumeration degrees

Josiah Jacobsen-Grocott

University of Wisconsin—Madison Partially supported by NSF Grant No. DMS-2053848

Association for Symbolic Logic Annual Meeting, Ames Iowa, May 2024

1 The ∃∀ [theory of degree structures](#page-2-0)

[No strong super minimal pairs](#page-19-0)

[Strong minimal pairs](#page-0-0)

Question

At what level of quantifier complexity does the theory of a degree structure become undecidable?

- For $\mathcal{D}_{\mathcal{T}}$ we know that the $\exists\forall$ theory is decidable, but the $\exists\forall\exists$ theory in undecidable.
- For the c.e. Turing degrees we know the ∃ theory is decidable and the ∃∀∃ theory is undecidable but do not know about the ∃∀ theory.

Theorem (Lagemann '72)

Every finite lattice embeds into the enumeration degrees. Hence the ∃ theory is decidable.

Theorem (Kent '06)

The $\exists \forall \exists$ theory of \mathcal{D}_e is undecidable.

It turns out that the ∃∀ theory of a partial order is equivalent to the following question.

Question (Generalized extension of embeddings)

Given finite partial orders P and $\mathcal{Q}_0, \ldots, \mathcal{Q}_{k-1}$ is it true that every embedding of P into ${\cal D}$ can be extended to ${\cal Q}_i$ for some $i < k?$

The case when $k = 1$ is known as the extension of embedding problem. Lempp, Slaman and Soskova, '21 proved that the extension of embeddings problem is decidable for the e-degrees. via the following theorem

Theorem (Lempp, Slaman, Soskova '21)

Every finite lattice embeds into the enumeration degrees a strong interval.

Example (Minimal pair)

Example (Super minimal pair)

Example (Strong super minimal pair)

Definition

In an upper semi-lattice with least element 0 a pair $a, b > 0$ is a:

- minimal pair if a \wedge b = 0.
- \bullet strong minimal pair if it is a minimal pair, and for all x such that $0 < x < a$ we have $x \vee b = a \vee b$.
- super minimal pair if both a, b and b, a are strong minimal pairs.
- **•** strong super minimal pair if it is a minimal pair, and for all x, y such that $0 < x < a$ and $0 < y < b$ we have $x \vee y = a \vee b$.

Theorem (J-G, Soskova)

There are no strong super minimal pairs in the enumeration degrees.

Theorem (J-G/Anonymous referee)

There are strong minimal pairs in the enumeration degrees.

Question

Are there super minimal pairs in the enumeration degrees?

The ∃∀ [theory of degree structures](#page-2-0)

Definition

We define $A \leq_{e} B$ if is a c.e. set of axioms W such that

$$
x\in A \iff \exists \langle x,u\rangle \in W[D_u\subseteq B]
$$

where $(D_{u})_{u}$ is a listing of all finite sets by strong indices.

- We have that \leq_e is a pre-order and taking equivalences classes give us a degree structure \mathcal{D}_{σ} .
- The lowest element of \mathcal{D}_{e} is 0_{e} which is the class of c.e. sets.
- The Turing degrees embed into \mathcal{D}_e as a definable substructure.
- From an effective listing of c.e. sets $(W_e)_e$ we obtain an effective listing of enumeration operators $(\Psi_e)_e$. Defined by $A = \Psi_e(B)$ if $A \leq_e B$ via the set of axioms W_e .
- Unlike Turing operators $\Psi_e(A)$ is always a set. We also have that these operators are monotonic: if $B \subseteq A$ then $\Psi_e(B) \subseteq \Psi_e(A)$.

Theorem (Gutteridge '71)

For every $a \neq 0_e$ there is $b \in \mathcal{D}_e$ such that $0 < b < a$.

As part of his proof, Gutteridge constructed an enumeration operator Θ with the following properties:

- **1** If A is not c.e. then $\Theta(A) <_{e} A$.
- **2** If $\Theta(A)$ is c.e. then A is Δ_2^0 .

No strong super minimal pairs outside of Δ^0_2

The construction of Θ produces a sequence $(n_k)_k$ such that:

•
$$
B = \bigoplus_k n_k
$$
 is a c.e. set.

$$
\bullet \ \Theta(A)=B\cup \{\langle k,n_k\rangle : k\in A\}.
$$

Lemma

$$
\Theta(A\cup C)=\Theta(A)\cup\Theta(C).
$$

Lemma (J-G)

If A and C are not Δ_2^0 then there are X, Y such that $\emptyset <_{e} X \leq_{e} A$, $\emptyset \leq_{e} Y \leq_{e} C$, and $X \oplus Y \leq_{e} A \oplus C$.

Proof.

Take
$$
X = \Theta(A \oplus \emptyset)
$$
, $Y = \Theta(\emptyset \oplus C)$.

Definition (Kalimullin '03)

A and B are a Kalimullin pair (${\cal K}$ -pair) if there is a c.e. set $W\subseteq\omega^2$ such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$. A K-pair is called *trivial* if one of A, B $is \ c \ e$

Kalimullin pairs have been used to prove that the jump is definable in \mathcal{D}_{ϵ} (Kalimullin '03) and that the total degrees are definable (Ganchev and Soskova '15).

We use the following two facts about K -pairs.

Theorem (The minimal pair K -property, Kalimullin '03)

A, B are a K-pair if and only if for all $X \subseteq \omega$, $A \oplus X$ and $B \oplus X$ form a minimal pair relative to X. i.e. $Y \leq_e A \oplus X, Y \leq_e B \oplus X \implies Y \leq_e X$.

Theorem (Kalimullin '03)

Every nonzero Δ_2^0 degree computes a nontrivial K-pair.

Theorem (Soskova)

If A is Δ_2^0 then A, B is not a strong minimal pair in \mathcal{D}_e for any B.

The ∃∀ [theory of degree structures](#page-2-0)

[No strong super minimal pairs](#page-19-0)

3 [Strong minimal pairs](#page-0-0)

Theorem (J-G/Anonymous referee)

If A, B are a non trivial K-pair with $B \leq_e \emptyset'$ and $A \nleq_e \emptyset'$, then (A, \emptyset') form a strong minimal pair.

The existence of a strong minimal pair was initially proven with a two part forcing construction. My modifying that construction into a 0′ finite injury argument we get the following:

Theorem (J-G)

There is a strong minimal pair A, B such that A is Σ^0_2 and B is Π^0_2 .

Thank You