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Motivating question

Question
At what level of quantifier complexity does the theory of a degree structure
become undecidable?

For DT we know that the ∃∀ theory is decidable, but the ∃∀∃ theory
in undecidable.
For the c.e. Turing degrees we know the ∃ theory is decidable and the
∃∀∃ theory is undecidable but do not know about the ∃∀ theory.
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What is known for De

Theorem (Lagemann ’72)
Every finite lattice embeds into the enumeration degrees. Hence the ∃
theory is decidable.

Theorem (Kent ’06)
The ∃∀∃ theory of De is undecidable.
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Generalized extension of embeddings

It turns out that the ∃∀ theory of a partial order is equivalent to the
following question.

Question (Generalized extension of embeddings)

Given finite partial orders P and Q0, . . . ,Qk−1 is it true that every
embedding of P into D can be extended to Qi for some i < k?

The case when k = 1 is known as the extension of embedding problem.
Lempp, Slaman and Soskova, ’21 proved that the extension of embeddings
problem is decidable for the e-degrees. via the following theorem

Theorem (Lempp, Slaman, Soskova ’21)
Every finite lattice embeds into the enumeration degrees a strong interval.
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Example questions

Example (Downwards density)

P = . The possible extensions are Q0 = Q1 = .
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Example questions

Example (Minimal pair)

P = . Extensions Q0 = Q1 = .
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Example questions

Example (Strong minimal pair)

P = . Extensions Q0 = Q1 = .
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Example questions

Example (Super minimal pair)

P = . Q0 = Q1 = . Q2 = .
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Example questions

Example (Strong super minimal pair)

P = . Q0 = Q1 = .
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Types of minimal pairs

Definition
In an upper semi-lattice with least element 0 a pair a, b > 0 is a:

minimal pair if a ∧ b = 0.
strong minimal pair if it is a minimal pair, and for all x such that
0 < x ≤ a we have x ∨ b = a ∨ b.
super minimal pair if both a, b and b, a are strong minimal pairs.
strong super minimal pair if it is a minimal pair, and for all x, y such
that 0 < x ≤ a and 0 < y ≤ b we have x ∨ y = a ∨ b.

J. Jacobsen-Grocott (UW–Madison) Strong minimal pairs ASL, Ames 2024 12 / 22



What is now known

Theorem (J-G, Soskova)
There are no strong super minimal pairs in the enumeration degrees.

Theorem (J-G/Anonymous referee)
There are strong minimal pairs in the enumeration degrees.

Question
Are there super minimal pairs in the enumeration degrees?
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Enumeration reducibility

Definition
We define A ≤e B if is a c.e. set of axioms W such that

x ∈ A ⇐⇒ ∃⟨x , u⟩ ∈ W [Du ⊆ B]

where (Du)u is a listing of all finite sets by strong indices.

We have that ≤e is a pre-order and taking equivalences classes give us
a degree structure De .
The lowest element of De is 0e which is the class of c.e. sets.
The Turing degrees embed into De as a definable substructure.
From an effective listing of c.e. sets (We)e we obtain an effective
listing of enumeration operators (Ψe)e . Defined by A = Ψe(B) if
A ≤e B via the set of axioms We .
Unlike Turing operators Ψe(A) is always a set. We also have that
these operators are monotonic: if B ⊆ A then Ψe(B) ⊆ Ψe(A).
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The Gutteridge operator

Theorem (Gutteridge ’71)
For every a ̸= 0e there is b ∈ De such that 0 < b < a.

As part of his proof, Gutteridge constructed an enumeration operator Θ
with the following properties:

1 If A is not c.e. then Θ(A) <e A.
2 If Θ(A) is c.e. then A is ∆0

2.
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No strong super minimal pairs outside of ∆0
2

The construction of Θ produces a sequence (nk)k such that:
B =

⊕
k nk is a c.e. set.

Θ(A) = B ∪ {⟨k , nk⟩ : k ∈ A}.

Lemma
Θ(A ∪ C ) = Θ(A) ∪Θ(C ).

Lemma (J-G)

If A and C are not ∆0
2 then there are X ,Y such that ∅ <e X ≤e A,

∅ <e Y ≤e C , and X ⊕ Y <e A⊕ C .

Proof.
Take X = Θ(A⊕ ∅),Y = Θ(∅ ⊕ C ).
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K-pairs

Definition (Kalimullin ’03)

A and B are a Kalimullin pair (K-pair) if there is a c.e. set W ⊆ ω2 such
that A× B ⊆ W and A× B ⊆ W . A K-pair is called trivial if one of A,B
is c.e.

Kalimullin pairs have been used to prove that the jump is definable in De

(Kalimullin ’03) and that the total degrees are definable (Ganchev and
Soskova ’15).
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No strong minimal with A in ∆0
2

We use the following two facts about K-pairs.

Theorem (The minimal pair K-property, Kalimullin ’03)

A,B are a K-pair if and only if for all X ⊆ ω, A⊕ X and B ⊕ X form a
minimal pair relative to X . i.e. Y ≤e A⊕ X ,Y ≤e B ⊕ X =⇒ Y ≤e X .

Theorem (Kalimullin ’03)

Every nonzero ∆0
2 degree computes a nontrivial K-pair.

Theorem (Soskova)

If A is ∆0
2 then A,B is not a strong minimal pair in De for any B .
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Stong minimal pairs

Theorem (J-G/Anonymous referee)
If A,B are a non trivial K-pair with B ≤e ∅′ and A ≰e ∅′, then (A, ∅′) form
a strong minimal pair.

The existence of a strong minimal pair was initially proven with a two part
forcing construction. My modifying that construction into a 0′ finite injury
argument we get the following:

Theorem (J-G)

There is a strong minimal pair A,B such that A is Σ0
2 and B is Π0

2.
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Thank you

Thank You
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