
Computability and the
Absolute Galois Group of Q

Russell Miller

Queens College & CUNY Graduate Center

Special Session on Computability Theory
North American Annual Meeting of the ASL

Iowa State University
14 May 2024

(Partially joint work with Debanjana Kundu.)

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 1 / 12

Paths Through Finite-Branching Trees

König’s Lemma
Every infinite finite-branching tree has an infinite path.

v���@
@
@
v���AAA v

v
v

v v vAAA ������
v v v v...

Some fail to have any computable path! However,....

Jockusch-Soare Low Basis Theorem (1972)

Every infinite decidable subtree of 2<ω has a path of low degree.

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 2 / 12

Galois theory

Definition
The absolute Galois group of Q is the automorphism group of the field
Q, the algebraic closure of Q. (Formally it is Gal(Q/Q), but every
automorphism of Q fixes Q pointwise.)

The goal here is to study the absolute Galois group Gal(Q) from an
effective standpoint. We will fix one computable presentation Q of this
algebraic closure. Indeed, as Q is computably categorical, it is
irrelevant which computable presentation Q one chooses.

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 3 / 12

Intuitive picture of Aut(Q) = Gal(Q) = Gal(Q/Q)

1 7→

√
2 7→

1
```

```
`̀

√
2

���
���
−
√

2

√
3 7→

��
���

PP
PPP

√
3 −

√
3

��
�

PP
PPP

√
3 −

√
3

4
√

6 7→
@@ ��

4
√

6 − 4
√

6

H
HH

��

i 4
√

6 −i 4
√

6 i 4
√

6 −i 4
√

6

@@ ��

4
√

6 − 4
√

6

@@ ��

...
...

...
...

Points to bear in mind:
At level 1, we simply have the two elements of Q that square to 2.
Calling them “positive” and “negative” is arbitrary.
It is cleaner to replace 4

√
6 by a primitive generator of the Galois

extension generated by
√

2,
√

3, and 4
√

6. Then that level lists
each automorphism of that Galois extension exactly once.

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 4 / 12

Intuitive picture of Aut(Q) = Gal(Q) = Gal(Q/Q)

1 7→

√
2 7→

1
```

```
`̀

√
2

���
���
−
√

2

√
3 7→

��
���

PP
PPP

√
3 −

√
3

��
�

PP
PPP

√
3 −

√
3

4
√

6 7→
@@ ��

4
√

6 − 4
√

6

H
HH

��

i 4
√

6 −i 4
√

6 i 4
√

6 −i 4
√

6

@@ ��

4
√

6 − 4
√

6

@@ ��

...
...

...
...

Points to bear in mind:
At level 1, we simply have the two elements of Q that square to 2.
Calling them “positive” and “negative” is arbitrary.
It is cleaner to replace 4

√
6 by a primitive generator of the Galois

extension generated by
√

2,
√

3, and 4
√

6. Then that level lists
each automorphism of that Galois extension exactly once.

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 4 / 12

Intuitive picture of Aut(Q) = Gal(Q) = Gal(Q/Q)

1 7→

√
2 7→

1
```

```
`̀

√
2

���
���
−
√

2

√
3 7→

��
���

PP
PPP

√
3 −

√
3

��
�

PP
PPP

√
3 −

√
3

4
√

6 7→
@@ ��

4
√

6 − 4
√

6

H
HH

��

i 4
√

6 −i 4
√

6 i 4
√

6 −i 4
√

6

@@ ��

4
√

6 − 4
√

6

@@ ��

...
...

...
...

Points to bear in mind:
At level 1, we simply have the two elements of Q that square to 2.
Calling them “positive” and “negative” is arbitrary.
It is cleaner to replace 4

√
6 by a primitive generator of the Galois

extension generated by
√

2,
√

3, and 4
√

6. Then that level lists
each automorphism of that Galois extension exactly once.

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 4 / 12

Intuitive picture of Aut(Q) = Gal(Q) = Gal(Q/Q)

1 7→

√
2 7→

1
```

```
`̀

√
2

���
���
−
√

2

√
3 7→

��
���

PP
PPP

√
3 −

√
3

��
�

PP
PPP

√
3 −

√
3

4
√

6 7→
@@ ��

4
√

6 − 4
√

6

H
HH

��

i 4
√

6 −i 4
√

6 i 4
√

6 −i 4
√

6

@@ ��

4
√

6 − 4
√

6

@@ ��

...
...

...
...

Points to bear in mind:
At level 1, we simply have the two elements of Q that square to 2.
Calling them “positive” and “negative” is arbitrary.
It is cleaner to replace 4

√
6 by a primitive generator of the Galois

extension generated by
√

2,
√

3, and 4
√

6. Then that level lists
each automorphism of that Galois extension exactly once.

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 4 / 12

Intuitive picture of Aut(Q) = Gal(Q) = Gal(Q/Q)

1 7→

√
2 7→

1
```

```
`̀

√
2

���
���
−
√

2

√
3 7→

��
���

PP
PPP

√
3 −

√
3

��
�

PP
PPP

√
3 −

√
3

4
√

6 7→

@@ ��

4
√

6 − 4
√

6

H
HH

��

i 4
√

6 −i 4
√

6 i 4
√

6 −i 4
√

6

@@ ��

4
√

6 − 4
√

6

@@ ��

...
...

...
...

Points to bear in mind:
At level 1, we simply have the two elements of Q that square to 2.
Calling them “positive” and “negative” is arbitrary.
It is cleaner to replace 4

√
6 by a primitive generator of the Galois

extension generated by
√

2,
√

3, and 4
√

6. Then that level lists
each automorphism of that Galois extension exactly once.

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 4 / 12

Intuitive picture of Aut(Q) = Gal(Q) = Gal(Q/Q)

1 7→

√
2 7→

1
```

```
`̀

√
2

���
���
−
√

2

√
3 7→

��
���

PP
PPP

√
3 −

√
3

��
�

PP
PPP

√
3 −

√
3

4
√

6 7→
@@ ��

4
√

6 − 4
√

6

H
HH

��

i 4
√

6 −i 4
√

6 i 4
√

6 −i 4
√

6

@@ ��

4
√

6 − 4
√

6

@@ ��

...
...

...
...

Points to bear in mind:
At level 1, we simply have the two elements of Q that square to 2.
Calling them “positive” and “negative” is arbitrary.
It is cleaner to replace 4

√
6 by a primitive generator of the Galois

extension generated by
√

2,
√

3, and 4
√

6. Then that level lists
each automorphism of that Galois extension exactly once.

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 4 / 12

Intuitive picture of Aut(Q) = Gal(Q) = Gal(Q/Q)

1 7→

√
2 7→

1
```

```
`̀

√
2

���
���
−
√

2

√
3 7→

��
���

PP
PPP

√
3 −

√
3

��
�

PP
PPP

√
3 −

√
3

4
√

6 7→
@@ ��

4
√

6 − 4
√

6

H
HH

��

i 4
√

6 −i 4
√

6

i 4
√

6 −i 4
√

6

@@ ��

4
√

6 − 4
√

6

@@ ��

...
...

...
...

Points to bear in mind:
At level 1, we simply have the two elements of Q that square to 2.
Calling them “positive” and “negative” is arbitrary.
It is cleaner to replace 4

√
6 by a primitive generator of the Galois

extension generated by
√

2,
√

3, and 4
√

6. Then that level lists
each automorphism of that Galois extension exactly once.

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 4 / 12

Intuitive picture of Aut(Q) = Gal(Q) = Gal(Q/Q)

1 7→

√
2 7→

1
```

```
`̀

√
2

���
���
−
√

2

√
3 7→

��
���

PP
PPP

√
3 −

√
3

��
�

PP
PPP

√
3 −

√
3

4
√

6 7→
@@ ��

4
√

6 − 4
√

6

H
HH

��

i 4
√

6 −i 4
√

6 i 4
√

6 −i 4
√

6

@@ ��

4
√

6 − 4
√

6

@@ ��

...
...

...
...

Points to bear in mind:
At level 1, we simply have the two elements of Q that square to 2.
Calling them “positive” and “negative” is arbitrary.
It is cleaner to replace 4

√
6 by a primitive generator of the Galois

extension generated by
√

2,
√

3, and 4
√

6. Then that level lists
each automorphism of that Galois extension exactly once.

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 4 / 12

Intuitive picture of Aut(Q) = Gal(Q) = Gal(Q/Q)

1 7→

√
2 7→

1
```

```
`̀

√
2

���
���
−
√

2

√
3 7→

��
���

PP
PPP

√
3 −

√
3

��
�

PP
PPP

√
3 −

√
3

4
√

6 7→
@@ ��

4
√

6 − 4
√

6

H
HH

��

i 4
√

6 −i 4
√

6 i 4
√

6 −i 4
√

6

@@ ��

4
√

6 − 4
√

6

@@ ��

...
...

...
...

Points to bear in mind:
At level 1, we simply have the two elements of Q that square to 2.
Calling them “positive” and “negative” is arbitrary.
It is cleaner to replace 4

√
6 by a primitive generator of the Galois

extension generated by
√

2,
√

3, and 4
√

6. Then that level lists
each automorphism of that Galois extension exactly once.

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 4 / 12

Presentation of Aut(Q)

We view Q as the union of a tower of finite Galois extensions
Q = K0 ⊆ Q(z1) = K1 ⊆ Q(z2) = K2 ⊆ · · · · · · ⊆ ∪nKn = Q.
So we now have a computable (highly symmetric) tree TQ, where each
node σ at level n is an automorphism of Kn, with τ v σ iff σ�K|τ | = τ .

Aut(Q) consists of the paths through TQ: we will say that f ∈ Aut(Q) is
computable iff the corresponding path is computable. Each node at
level n in TQ corresponds to a unique automorphism of Kn, and
extends to countably many computable automorphisms of Q, as well
as to continuum-many other automorphisms of Q.

There are Turing functionals Θ and Υ such that, for all paths
f ,g ∈ Aut(Q), Θf⊕g is the product f ◦ g and Υf is the inverse
automorphism f−1. So this is as effective a presentation as
one could wish for the continuum-size structure (Aut(Q), ◦).

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 5 / 12

Computable automorphisms

Definition
For a Turing degree d , define

Autd (Q) = {f ∈ Aut(Q) : deg(f) ≤T d}.

So Aut0(Q) is the subgroup of all computable automorphisms of Q.

Question

Is Aut0(Q) an elementary subgroup of Aut(Q)?

For example, let f ∈ Aut0(Q) have the property that

(∃g ∈ Aut(Q)) g ◦ g = f .

Must there be a computable realization g? That is, when f ∈ Aut0(Q)
and Aut(Q) |= (∃G) G ◦G = f , does the same hold in Aut0(Q)?

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 6 / 12

In terms of trees....

Trying to compute some g with f = g ◦ g, we define a decidable
subtree T of TQ:

T = {γ ∈ Aut(Kn) : n ∈ N & γ ◦ γ = f�Kn},

containing all “square roots of f�Kn” in every Aut(Kn).

Now the elements g ∈ Aut(Q) with g ◦ g = f are precisely the paths
through T . So the problem of computing some such g is precisely the
problem of computing a path through this T .

Open question
But does this T have a computable path or not? Some computable
finite-branching trees have no computable path – but is this T really
that complicated?

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 7 / 12

Examining g ◦ g = f

Sometimes we can see how to define g. Example: say Km = Q(
√

5).
Now f (

√
5) =

√
5, as f is a square. This seems to allow both

g(
√

5) = ±
√

5 as possibilities. But be patient....

We reach Kn = Q(ζ5), where ζ5 is a primitive fifth root of 1, so
2(ζ5 + ζ4

5) + 1 =
√

5. Now f has either f (ζ5) = ζ5 or f (ζ5) = ζ4
5 .

If f (ζ5) = ζ5, then either g(ζ5) = ζ5 or g(ζ5) = ζ4
5 . In both cases,

g(
√

5) = g(2(ζ5 + ζ4
5) + 1) = 2(g(ζ5) + g(ζ4

5)) + 1 =
√

5.

But if f (ζ5) = ζ4
5 , then either g(ζ5) = ζ2

5 or g(ζ5) = ζ3
5 . Now

g(
√

5) = g(2(ζ5+ζ4
5)+1) = 2(g(ζ5)+g(ζ4

5))+1 = 2(ζ2
5 +ζ3

5)+1 = −
√

5.

So the value f (ζ5) tells us how to define g(
√

5). (It does not tell us how
to define g(ζ5), but maybe some later information about f will help....)

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 8 / 12

Does this always work?

Now we try the same with
√

2. Again f (
√

2) =
√

2. But if ζ8 is a
primitive 8-th root of 1, then ζ8 + ζ7

8 =
√

2. So we check...

ζ8 has conjugates ζ3
8 , ζ5

8 , and ζ7
8 . However, all four maps ζ8 7→ ζk

8
square to the identity. (Here the Galois group is Z2 × Z2, not Z/(4).)
Therefore the only possibility for f is f (ζ8) = ζ8, and this tells us
nothing about g(ζ8), nor about g(

√
2).

So the question is: given an input zn for g, can we always determine,
from some finite portion of f , how to define g(zn)?
(For g(

√
2), this can be determined. For g(

√
7), we don’t know.)

If we know that no finite portion of f determines g(zn), then any choice
for g(zn) will be correct. The difficulty is knowing whether to wait, or
just to choose g(zn) arbitrarily right now.

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 9 / 12

Skolem functions for Aut(Q)

A (generalized) Skolem function for Aut(Q), for the formula
(∃G) G ◦G = F , is a function S such that, whenever f ∈ Aut(Q)
satisfies this formula, S(f) ∈ Aut(Q) with S(f) ◦ S(f) = f .

Theorem (Kundu-M.)

There is no computable Skolem function for Aut(Q) for the formula
(∃G) G ◦G = F .

Proof: Given any Turing functional Φ, run Φid. If Φid�Kn (i)↓= ±i for some
n, Kundu-M. have a mechanism yielding f0, f1 ∈ Aut(Q) with

f0, f1 ∈ (Aut(Q))2 with f0�Kn = f1�Kn = id�Kn.
Every g0 ∈ Aut(Q) with g0 ◦ g0 = f0 has g0(i) = i .
Every g1 ∈ Aut(Q) with g1 ◦ g1 = f1 has g1(i) = −i .

So either Φf0(i) or Φf1(i) will be incorrect!

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 10 / 12

The Mechanism

Choose a prime p so large that
√

p /∈ Kn. Now Gal(Q(4
√

p, i)/Q) ∼= D4,
and the permutation (13)(24) of the four conjugates of 4

√
p is the

square of (1234) and (1432) (and nothing else). Both (1234) and
(1432) map i to i . So (13)(24) gives our f0, whose square roots all fix i .

For f1, which forces g1(i) = −i , we use a similar trick involving
extensions F containing i that have Galois group S4 over Q, hence
have Gal(F/Q(i)) ∼= A4. Here (13)(24) is again the square of (1234)
and (1432) and nothing else, and these two 4-cycles are both odd
permutations, hence /∈ A4, and so both map i to −i . S4 and A4 are the
“generic” Galois groups for degree-4 polynomials over Q, so it is
always possible to find such an extension F with F ∩ Kn = Q(i).

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 11 / 12

Which leaves us wondering....
It remains open whether we can repeat this mechanism with other
Galois extensions than Q(i). If we can, then it should be possible to
use finite-injury to diagonalize against all computable square roots,
and to build a (computable?) f ∈ Aut(Q) that is a square there, but is
not a square in Autdeg(f)(Q). This would show that Autdeg(f)(Q) is not
an elementary subgroup of Aut(Q).

The principal question is whether there are other elements of Aut(Q)
(besides the identity) that can be expressed as squares in Aut(Q) in
two distinct ways. But the identity and complex conjugation are very
special automorphisms.

Artin-Schreier Theorem

The only elements of finite order in Aut(Q) are the identity, complex
conjugation c, and its conjugates hch−1.

Perhaps no other f ∈ Aut(Q) has more than one square root?

Russell Miller (CUNY) Computability and Gal(Q) ASL Iowa State 12 / 12

	Main Part

