Computability and the Absolute Galois Group of \mathbb{Q}

Russell Miller

Queens College & CUNY Graduate Center

Special Session on Computability Theory North American Annual Meeting of the ASL Iowa State University 14 May 2024

(Partially joint work with Debanjana Kundu.)

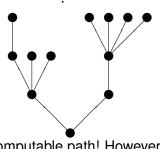
Russell Miller (CUNY)

Computability and Gal(Q)

Paths Through Finite-Branching Trees

König's Lemma

Every infinite finite-branching tree has an infinite path.



Some fail to have any computable path! However,....

Jockusch-Soare Low Basis Theorem (1972)

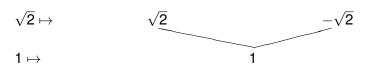
Every infinite decidable subtree of $2^{<\omega}$ has a path of *low* degree.

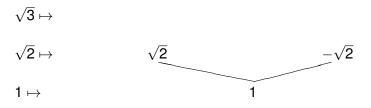
Galois theory

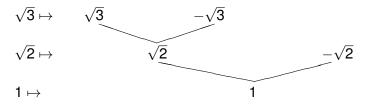
Definition

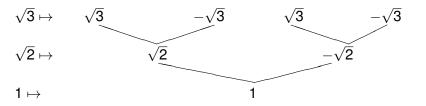
The absolute Galois group of \mathbb{Q} is the automorphism group of the field $\overline{\mathbb{Q}}$, the algebraic closure of \mathbb{Q} . (Formally it is $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, but every automorphism of $\overline{\mathbb{Q}}$ fixes \mathbb{Q} pointwise.)

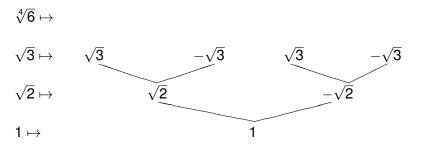
The goal here is to study the absolute Galois group $Gal(\mathbb{Q})$ from an effective standpoint. We will fix one computable presentation $\overline{\mathbb{Q}}$ of this algebraic closure. Indeed, as $\overline{\mathbb{Q}}$ is computably categorical, it is irrelevant which computable presentation $\overline{\mathbb{Q}}$ one chooses.

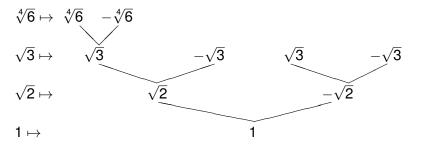


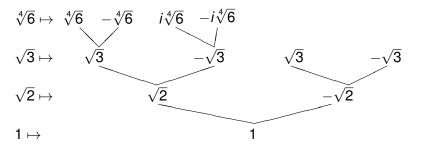


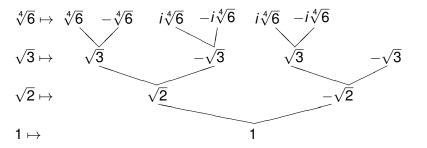


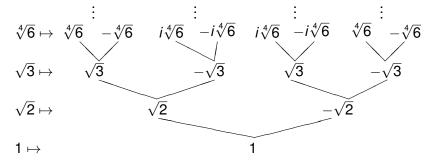












Points to bear in mind:

- At level 1, we simply have the two elements of Q that square to 2.
 Calling them "positive" and "negative" is arbitrary.
- It is cleaner to replace $\sqrt[4]{6}$ by a primitive generator of the Galois extension generated by $\sqrt{2}$, $\sqrt{3}$, and $\sqrt[4]{6}$. Then that level lists each automorphism of that Galois extension exactly once.

Presentation of $Aut(\overline{\mathbb{Q}})$

We view $\overline{\mathbb{Q}}$ as the union of a tower of finite Galois extensions $\mathbb{Q} = K_0 \subseteq \mathbb{Q}(z_1) = K_1 \subseteq \mathbb{Q}(z_2) = K_2 \subseteq \cdots \subseteq \bigcup_n K_n = \overline{\mathbb{Q}}.$ So we now have a computable (highly symmetric) tree $T_{\overline{\mathbb{Q}}}$, where each node σ at level *n* is an automorphism of K_n , with $\tau \sqsubseteq \sigma$ iff $\sigma \upharpoonright K_{|\tau|} = \tau$.

Aut($\overline{\mathbb{Q}}$) consists of the paths through $T_{\overline{\mathbb{Q}}}$: we will say that $f \in Aut(\overline{\mathbb{Q}})$ is *computable* iff the corresponding path is computable. Each node at level *n* in $T_{\overline{\mathbb{Q}}}$ corresponds to a unique automorphism of K_n , and extends to countably many computable automorphisms of $\overline{\mathbb{Q}}$, as well as to continuum-many other automorphisms of $\overline{\mathbb{Q}}$.

There are Turing functionals Θ and Υ such that, for all paths $f, g \in \operatorname{Aut}(\overline{\mathbb{Q}}), \Theta^{f \oplus g}$ is the product $f \circ g$ and Υ^f is the inverse automorphism f^{-1} . So this is as effective a presentation as one could wish for the continuum-size structure (Aut($\overline{\mathbb{Q}}$), \circ).

Computable automorphisms

Definition

For a Turing degree **d**, define

$$\operatorname{Aut}_{\boldsymbol{d}}(\overline{\mathbb{Q}}) = \{ f \in \operatorname{Aut}(\overline{\mathbb{Q}}) : \operatorname{deg}(f) \leq_{\mathcal{T}} \boldsymbol{d} \}.$$

So $Aut_0(\overline{\mathbb{Q}})$ is the subgroup of all computable automorphisms of $\overline{\mathbb{Q}}$.

Question

Is $Aut_0(\overline{\mathbb{Q}})$ an elementary subgroup of $Aut(\overline{\mathbb{Q}})$?

For example, let $f \in Aut_0(\overline{\mathbb{Q}})$ have the property that

$$(\exists g \in \operatorname{Aut}(\overline{\mathbb{Q}})) g \circ g = f.$$

Must there be a computable realization g? That is, when $f \in Aut_0(\overline{\mathbb{Q}})$ and $Aut(\overline{\mathbb{Q}}) \models (\exists G) \ G \circ G = f$, does the same hold in $Aut_0(\overline{\mathbb{Q}})$?

In terms of trees....

Trying to compute some *g* with $f = g \circ g$, we define a decidable subtree *T* of $T_{\overline{\Omega}}$:

$$T = \{ \gamma \in \operatorname{Aut}(K_n) : n \in \mathbb{N} \& \gamma \circ \gamma = f \upharpoonright K_n \},\$$

containing all "square roots of $f \upharpoonright K_n$ " in every Aut(K_n).

Now the elements $g \in Aut(\overline{\mathbb{Q}})$ with $g \circ g = f$ are precisely the paths through T. So the problem of computing some such g is precisely the problem of computing a path through this T.

Open question

But does this T have a computable path or not? Some computable finite-branching trees have no computable path – but is this T really that complicated?

Examining $g \circ g = f$

Sometimes we can see how to define *g*. Example: say $K_m = \mathbb{Q}(\sqrt{5})$. Now $f(\sqrt{5}) = \sqrt{5}$, as *f* is a square. This seems to allow both $g(\sqrt{5}) = \pm\sqrt{5}$ as possibilities. But be patient....

We reach $K_n = \mathbb{Q}(\zeta_5)$, where ζ_5 is a primitive fifth root of 1, so $2(\zeta_5 + \zeta_5^4) + 1 = \sqrt{5}$. Now *f* has either $f(\zeta_5) = \zeta_5$ or $f(\zeta_5) = \zeta_5^4$. • If $f(\zeta_5) = \zeta_5$, then either $g(\zeta_5) = \zeta_5$ or $g(\zeta_5) = \zeta_5^4$. In both cases,

$$g(\sqrt{5}) = g(2(\zeta_5 + \zeta_5^4) + 1) = 2(g(\zeta_5) + g(\zeta_5^4)) + 1 = \sqrt{5}.$$

• But if $f(\zeta_5) = \zeta_5^4$, then either $g(\zeta_5) = \zeta_5^2$ or $g(\zeta_5) = \zeta_5^3$. Now

$$g(\sqrt{5}) = g(2(\zeta_5 + \zeta_5^4) + 1) = 2(g(\zeta_5) + g(\zeta_5^4)) + 1 = 2(\zeta_5^2 + \zeta_5^3) + 1 = -\sqrt{5}.$$

So the value $f(\zeta_5)$ tells us how to define $g(\sqrt{5})$. (It does not tell us how to define $g(\zeta_5)$, but maybe some later information about *f* will help....)

Does this always work?

Now we try the same with $\sqrt{2}$. Again $f(\sqrt{2}) = \sqrt{2}$. But if ζ_8 is a primitive 8-th root of 1, then $\zeta_8 + \zeta_8^7 = \sqrt{2}$. So we check...

 ζ_8 has conjugates ζ_8^3 , ζ_8^5 , and ζ_8^7 . However, all four maps $\zeta_8 \mapsto \zeta_8^k$ square to the identity. (Here the Galois group is $\mathbb{Z}_2 \times \mathbb{Z}_2$, not $\mathbb{Z}/(4)$.) Therefore the only possibility for *f* is $f(\zeta_8) = \zeta_8$, and this tells us nothing about $g(\zeta_8)$, nor about $g(\sqrt{2})$.

So the question is: given an input z_n for g, can we always determine, from some finite portion of f, how to define $g(z_n)$? (For $g(\sqrt{2})$, this can be determined. For $g(\sqrt{7})$, we don't know.)

If we know that no finite portion of *f* determines $g(z_n)$, then any choice for $g(z_n)$ will be correct. The difficulty is knowing whether to wait, or just to choose $g(z_n)$ arbitrarily right now.

Skolem functions for $Aut(\overline{\mathbb{Q}})$

A (generalized) Skolem function for $Aut(\overline{\mathbb{Q}})$, for the formula $(\exists G) \ G \circ G = F$, is a function *S* such that, whenever $f \in Aut(\overline{\mathbb{Q}})$ satisfies this formula, $S(f) \in Aut(\overline{\mathbb{Q}})$ with $S(f) \circ S(f) = f$.

Theorem (Kundu-M.)

There is no computable Skolem function for $Aut(\overline{\mathbb{Q}})$ for the formula $(\exists G) \ G \circ G = F$.

Proof: Given any Turing functional Φ , run Φ^{id} . If $\Phi^{\text{id}|\mathcal{K}_n}(i) \downarrow = \pm i$ for some *n*, Kundu-M. have a mechanism yielding $f_0, f_1 \in \text{Aut}(\overline{\mathbb{Q}})$ with

- $f_0, f_1 \in (\operatorname{Aut}(\overline{\mathbb{Q}}))^2$ with $f_0 \upharpoonright K_n = f_1 \upharpoonright K_n = \operatorname{id} \upharpoonright K_n$.
- Every $g_0 \in \operatorname{Aut}(\overline{\mathbb{Q}})$ with $g_0 \circ g_0 = f_0$ has $g_0(i) = i$.
- Every $g_1 \in \operatorname{Aut}(\overline{\mathbb{Q}})$ with $g_1 \circ g_1 = f_1$ has $g_1(i) = -i$.

So either $\Phi^{f_0}(i)$ or $\Phi^{f_1}(i)$ will be incorrect!

The Mechanism

Choose a prime *p* so large that $\sqrt{p} \notin K_n$. Now $\text{Gal}(\mathbb{Q}(\sqrt[4]{p}, i)/\mathbb{Q}) \cong D_4$, and the permutation (13)(24) of the four conjugates of $\sqrt[4]{p}$ is the square of (1234) and (1432) (and nothing else). Both (1234) and (1432) map *i* to *i*. So (13)(24) gives our f_0 , whose square roots all fix *i*.

For f_1 , which forces $g_1(i) = -i$, we use a similar trick involving extensions F containing i that have Galois group S_4 over \mathbb{Q} , hence have Gal($F/\mathbb{Q}(i)$) $\cong A_4$. Here (13)(24) is again the square of (1234) and (1432) and nothing else, and these two 4-cycles are both odd permutations, hence $\notin A_4$, and so both map i to -i. S_4 and A_4 are the "generic" Galois groups for degree-4 polynomials over \mathbb{Q} , so it is always possible to find such an extension F with $F \cap K_n = \mathbb{Q}(i)$.

Which leaves us wondering....

It remains open whether we can repeat this mechanism with other Galois extensions than $\mathbb{Q}(i)$. If we can, then it should be possible to use finite-injury to diagonalize against all computable square roots, and to build a (computable?) $f \in \operatorname{Aut}(\overline{\mathbb{Q}})$ that is a square there, but is not a square in $\operatorname{Aut}_{\operatorname{deg}(f)}(\overline{\mathbb{Q}})$. This would show that $\operatorname{Aut}_{\operatorname{deg}(f)}(\overline{\mathbb{Q}})$ is not an elementary subgroup of $\operatorname{Aut}(\overline{\mathbb{Q}})$.

The principal question is whether there are other elements of $Aut(\overline{\mathbb{Q}})$ (besides the identity) that can be expressed as squares in $Aut(\overline{\mathbb{Q}})$ in two distinct ways. But the identity and complex conjugation are very special automorphisms.

Artin-Schreier Theorem

The only elements of finite order in Aut($\overline{\mathbb{Q}}$) are the identity, complex conjugation *c*, and its conjugates hch^{-1} .

Perhaps no other $f \in Aut(\overline{\mathbb{Q}})$ has more than one square root?