Computability and the Absolute Galois Group of Q

Russell Miller

Queens College & CUNY Graduate Center

Special Session on Computability Theory North American Annual Meeting of the ASL Iowa State University 14 May 2024

(Partially joint work with Debanjana Kundu.)

Paths Through Finite-Branching Trees

König's Lemma

Every infinite finite-branching tree has an infinite path.

. .

Some fail to have any computable path! However,....

Jockusch-Soare *Low Basis Theorem* **(1972)**

Every infinite decidable subtree of 2^{ω} has a path of *low* degree.

Galois theory

Definition

The *absolute Galois group of* Q is the automorphism group of the field $\overline{0}$, the algebraic closure of $\mathbb O$. (Formally it is Gal($\overline{0}/\mathbb O$), but every automorphism of \overline{O} fixes \overline{O} pointwise.)

The goal here is to study the absolute Galois group $Gal(\mathbb{Q})$ from an effective standpoint. We will fix one computable presentation \overline{Q} of this algebraic closure. Indeed, as \overline{Q} is computably categorical, it is irrelevant which computable presentation \overline{Q} one chooses.

Points to bear in mind:

- At level 1, we simply have the two elements of \overline{Q} that square to 2. Calling them "positive" and "negative" is arbitrary.
- S_{anang} arent postate and negative to albiarary.
It is cleaner to replace $\sqrt[4]{6}$ by a primitive generator of the Galois $\frac{1}{10}$ is clearler to replace $\sqrt{6}$ by a primitive generator of the Gale
extension generated by $\sqrt{2}$, $\sqrt{3}$, and $\sqrt[4]{6}$. Then that level lists each automorphism of that Galois extension exactly once.

Presentation of Aut(0)

We view \overline{Q} as the union of a tower of finite Galois extensions $\mathbb{O} = K_0 \subset \mathbb{O}(z_1) = K_1 \subset \mathbb{O}(z_2) = K_2 \subseteq \cdots \cdots \subseteq \cup_n K_n = \overline{\mathbb{O}}.$ So we now have a computable (highly symmetric) tree $\mathcal{T}_{\overline{\mathbb{Q}}}$, where each node σ at level *n* is an automorphism of K_n , with $\tau \sqsubseteq \sigma$ iff $\sigma \upharpoonright K_{|\tau|} = \tau$.

 ${\sf Aut}(\overline{\mathbb{Q}})$ consists of the paths through $\mathcal{T}_{\overline{\mathbb{Q}}}$: we will say that $f\in{\sf Aut}(\overline{\mathbb{Q}})$ is *computable* iff the corresponding path is computable. Each node at level n in $\mathcal{T}_{\overline{\mathbb{O}}}$ corresponds to a unique automorphism of \mathcal{K}_n , and extends to countably many computable automorphisms of \overline{Q} , as well as to continuum-many other automorphisms of \overline{Q} .

There are Turing functionals Θ and Υ such that, for all paths $f,g\in$ Aut($\overline{\mathbb{Q}}$), $\Theta^{f\oplus g}$ is the product $f\circ g$ and Υ^f is the inverse automorphism *f*^{−1}. So this is as effective a presentation as one could wish for the continuum-size structure (Aut(\overline{Q}), \circ).

Computable automorphisms

Definition

For a Turing degree *d*, define

$$
\mathsf {Aut}_{\mathbf {d}}(\overline{\mathbb{Q}})=\{f\in \mathsf {Aut}(\overline{\mathbb{Q}}): \mathsf {deg}(f)\leq_{\mathcal T} \mathbf {d}\}.
$$

So Aut₀($\overline{\mathbb{Q}}$) is the subgroup of all computable automorphisms of $\overline{\mathbb{Q}}$.

Question

Is Aut_o (\overline{Q}) an elementary subgroup of Aut (\overline{Q}) ?

For example, let $f \in Aut_0(\overline{\mathbb{Q}})$ have the property that

$$
(\exists g\in \mathsf{Aut}(\overline{\mathbb{Q}}))\ g\circ g=f.
$$

Must there be a computable realization *g*? That is, when $f \in Aut_0(\mathbb{Q})$ and Aut $(\overline{\mathbb{Q}}) \models (\exists G) \; G \circ G = f$, does the same hold in Aut₀ $(\overline{\mathbb{Q}})$?

In terms of trees....

Trying to compute some *g* with $f = g \circ g$, we define a decidable subtree $\mathcal T$ of $\mathcal T_{\overline{\mathbb O}}$:

$$
T = \{ \gamma \in Aut(K_n) : n \in \mathbb{N} \& \gamma \circ \gamma = f \upharpoonright K_n \},
$$

containing all "square roots of $f \restriction K_n$ " in every Aut(K_n).

Now the elements $g \in Aut(\overline{\mathbb{Q}})$ with $g \circ g = f$ are precisely the paths through *T*. So the problem of computing some such *g* is precisely the problem of computing a path through this *T*.

Open question

But does this *T* have a computable path or not? Some computable finite-branching trees have no computable path – but is this *T* really that complicated?

Examining $q \circ q = f$

Sometimes we can see how to define g . Example: say $\mathcal{K}_m = \mathbb{Q}(\sqrt{2\pi})$ mes we can see how to define g. Example: say $K_m = \mathbb{Q}(\sqrt{5})$. Sometimes we can see now to define g. Example. say $N_m =$
Now $f(\sqrt{5}) = \sqrt{5}$, as *f* is a square. This seems to allow both $g(\sqrt{5})=\pm\sqrt{5}$ as possibilities. But be patient....

We reach $K_n = \mathbb{Q}(\zeta_5)$, where ζ_5 is a primitive fifth root of 1, so $2(\zeta_5 + \zeta_5^4) + 1 = \sqrt{5}$. Now *f* has either $f(\zeta_5) = \zeta_5$ or $f(\zeta_5) = \zeta_5^4$. If $f(\zeta_5) = \zeta_5$, then either $g(\zeta_5) = \zeta_5$ or $g(\zeta_5) = \zeta_5^4$. In both cases,

$$
g(\sqrt{5})=g(2(\zeta_5+\zeta_5^4)+1)=2(g(\zeta_5)+g(\zeta_5^4))+1=\sqrt{5}.
$$

But if $f(\zeta_5) = \zeta_5^4$, then either $g(\zeta_5) = \zeta_5^2$ or $g(\zeta_5) = \zeta_5^3$. Now

$$
g(\sqrt{5})=g(2(\zeta_5+\zeta_5^4)+1)=2(g(\zeta_5)+g(\zeta_5^4))+1=2(\zeta_5^2+\zeta_5^3)+1=-\sqrt{5}.
$$

So the value $f(\zeta_5)$ tells us how to define $g($ √ 5). (It does not tell us how to define $g(\zeta_5)$, but maybe some later information about *f* will help....)

Does this always work?

Now we try the same with $\sqrt{2}$. Again *f* ($\sqrt{2}$ = $\sqrt{2}$. But if ζ_8 is a primitive 8-th root of 1, then $\zeta_8 + \zeta_8^7 = \sqrt{2}$. So we check...

 ζ_8 has conjugates ζ_8^3 , ζ_8^5 , and ζ_8^7 . However, all four maps $\zeta_8 \mapsto \zeta_8^k$ square to the identity. (Here the Galois group is $\mathbb{Z}_2 \times \mathbb{Z}_2$, not $\mathbb{Z}/(4)$.) Therefore the only possibility for *f* is $f(\zeta_8) = \zeta_8$, and this tells us nothing about $g(\zeta_8)$, nor about $g(\surd 2).$

So the question is: given an input *zⁿ* for *g*, can we always determine, from some finite portion of *f*, how to define *g*(*z*_{*n*})? (For $g(\sqrt{2})$, this can be determined. For $g(\sqrt{7})$, we don't know.)

If we know that no finite portion of *f* determines $g(z_n)$, then any choice for *g*(*zn*) will be correct. The difficulty is knowing whether to wait, or just to choose $g(z_n)$ arbitrarily right now.

Skolem functions for Aut(0)

A (generalized) Skolem function for Aut(\overline{Q}), for the formula $(\exists G)$ $G \circ G = F$, is a function *S* such that, whenever $f \in Aut(\overline{\mathbb{Q}})$ satisfies this formula, $S(f) \in Aut(\overline{\mathbb{Q}})$ with $S(f) \circ S(f) = f$.

Theorem (Kundu-M.)

There is no computable Skolem function for Aut(\overline{Q}) for the formula $(∃G) G ∘ G = F.$

Proof: Given any Turing functional Φ, run Φ id. If Φ id*Kⁿ* (*i*)↓= ±*i* for some *n*, Kundu-M. have a mechanism yielding $f_0, f_1 \in Aut(\mathbb{Q})$ with

- *f*₀, *f*₁ ∈ (Aut $(\overline{\mathbb{Q}}))$ ² with *f*₀^{\upharpoonright} $K_n = f_1 \upharpoonright K_n = \text{id} \upharpoonright K_n$.
- **•** Every $g_0 \in Aut(\overline{Q})$ with $g_0 \circ g_0 = f_0$ has $g_0(i) = i$.
- \bullet Every $q_1 \in$ Aut(\overline{Q}) with $q_1 \circ q_1 = f_1$ has $q_1(i) = -i$.

So either $\Phi^{f_0}(i)$ or $\Phi^{f_1}(i)$ will be incorrect!

The Mechanism

Choose a prime p so large that $\sqrt{p} \notin K_n$. Now Gal $(\mathbb{Q}(\sqrt[4]{p}, i)/\mathbb{Q}) \cong D_4,$ and the permutation (13)(24) of the four conjugates of $\sqrt[4]{p}$ is the square of (1234) and (1432) (and nothing else). Both (1234) and (1432) map *i* to *i*. So (13)(24) gives our f_0 , whose square roots all fix *i*.

For f_1 , which forces $g_1(i) = -i$, we use a similar trick involving extensions *F* containing *i* that have Galois group *S*⁴ over Q, hence have Gal($F/\mathbb{Q}(i)$) $\cong A_4$. Here (13)(24) is again the square of (1234) and (1432) and nothing else, and these two 4-cycles are both odd permutations, hence $\notin A_4$, and so both map *i* to −*i*. S_4 and A_4 are the "generic" Galois groups for degree-4 polynomials over Q, so it is always possible to find such an extension *F* with $F \cap K_n = \mathbb{Q}(i)$.

Which leaves us wondering....

It remains open whether we can repeat this mechanism with other Galois extensions than $\mathbb{O}(i)$. If we can, then it should be possible to use finite-injury to diagonalize against all computable square roots, and to build a (computable?) $f \in Aut(\overline{\mathbb{Q}})$ that is a square there, but is not a square in Aut $_{\mathsf{deg}(f)}(\overline{\mathbb{Q}}).$ This would show that Aut $_{\mathsf{deg}(f)}(\overline{\mathbb{Q}})$ is not an elementary subgroup of Aut (\overline{Q}) .

The principal question is whether there are other elements of $Aut(\overline{\mathbb{Q}})$ (besides the identity) that can be expressed as squares in Aut(\overline{Q}) in two distinct ways. But the identity and complex conjugation are very special automorphisms.

Artin-Schreier Theorem

The only elements of finite order in $Aut(\overline{Q})$ are the identity, complex conjugation *c*, and its conjugates *hch*−¹ .

Perhaps no other $f \in Aut(\overline{\mathbb{Q}})$ has more than one square root?