Complexity Notions on Monoids and Pointwise **Dimension**

Jan Reimann, Penn State

ASL Special Session on Computability Theory

Cantor sets

- "Deterministic" fractals.
- Determined by e.g., splitting ratio and gaps between intervals.

Point fractals

- "Random" fractals.
- Membership is determined via a property of its points.

Given $\alpha \in [0,1]$, let

$$
K_{\alpha} = \{ X \in 2^{\omega} \colon \liminf_{n \to \infty} \frac{K(X\lceil_n)}{n} = \alpha \}
$$

Cai & Hartmanis (1994):

$$
\dim_H K_\alpha = \alpha
$$

Early version of point-to-set principle.

dim_H $K_{\alpha} = \alpha$

The Cai-Hartmanis theorem (lower bound) can be proved by

- 1. finding a suitable Cantor set sitting inside K_{α} and using the mass distribution principle, or
- 2. using the point-to-set principle.

Identifying elements of 2^{ω} with binary expansions of reals, Cai and Hartmanis actually proved the theorem for Hausdorff dimension in R.

Hypothesis: The sets K_{α} lie at the extreme end of a whole family of similarly behaved point fractals in Euclidean space.

The **irrationality exponent** of a real number x is defined as

$$
\delta(x) = \sup \left\{ \delta \colon \exists^{\infty} p, q \ \middle| x - \frac{p}{q} \right\} < \frac{1}{q^{\delta}} \right\}.
$$

Every irrational number has irrationality exponent > 2 [Dirichlet].

A Liouville number is defined by the property $\delta(x) = \infty$.

Other examples:

$$
-\delta(e) = 2
$$

$$
-\delta(\pi) \le 7.60630853
$$

Jarník (1931), and independently Besicovitch (1934), showed

$$
\dim_{\mathrm{H}}\{x\colon \delta(x)\geq \delta\}=\frac{2}{\delta}
$$

Jarník's proof actually shows that

$$
\dim_H\{x\colon \delta(x)=\delta\}=\frac{2}{\delta}.
$$

The irrationality exponent reflects how well a real can be approximated by rational numbers.

Information theoretically: Think of (p, q) as a description of a real with respect to a very simple decoder: $(p, q) \mapsto p/q$.

The **effective dimension** [Lutz] reflects how well a real can be approximated by arbitrary effective decoders:

$$
\dim_{H}(x) = \liminf_{n \to \infty} \frac{K(x \restriction n)}{n}
$$

(The Kolmogorov complexity characterization is due to Mayordomo.)

Effective Dimension and Irrationality Exponent

For a random real $x \in [0,1]$, p/q cannot give significantly more than 2 log q bits of information about x .

Hence almost every real has irrationality exponent 2.

If $x \in (0,1)$ is Liouville, on the other hand, for every *n* there exist p/q such that 2 log q bits of information give us n log q bits of x

Hence the effective dimension of a Liouville number is 0 [Staiger, 2002]

This line of reasoning can be generalized to obtain

$$
\dim_{\mathrm{H}}(x) \leq \frac{2}{\delta(x)} \qquad \text{[Calculate & Staiger, 2013].}
$$

We can reformulate the irrationality exponent as an "effective dimension".

For $x \in \mathbb{R}$, let

$$
K_n(x) = \min\{K(p/q) : |x - p/q| \leq 2^{-n}\}.
$$

(the Kolmogorov complexity at precision n).

Then

$$
\dim_{H}(x) = \liminf_{n} \frac{K_{n}(x)}{n}
$$

[Lutz & Mayordomo, 2008]

Similarly, let

$$
D_n(x) = \min\{2\log q : \exists p \, |x - p/q| \leq 2^{-n}\}.
$$

(the Diophantine complexity at level n).

Then

$$
\delta(x) = \liminf_{n} \frac{D_n(x)}{n}
$$

Question: Are these two isolated examples, or are they instances of a more general phenomenon?

Theorem [Becher, R., & Slaman, 2018]

Let $\delta \geq 2$. For every $\beta \in [0, 2/\delta]$ there is a Cantor-like set E such that dim $H(E) = \beta$ and for the uniform measure on E, almost all real numbers have irrationality exponent δ .

Theorem [B-R-S, 2018]

Let $\delta \geq 2$. For every $\beta \in [0, 2/\delta]$ there is a Cantor-like set E such that for the uniform measure on E , almost all real numbers have irrationality exponent δ and effective dimension β .

Question: How much "compression" is needed to obtain point fractals that exhibits the Jarnik-Besicovitch-Cai-Hartmanis stratification with respect to Hausdorff dimension?

Let $(M, \cdot, 1)$ be a monoid.

We call a function $\mathcal{C}:M\to\mathbb{R}^{\geq 0}\cup\{\infty\}$ a $\bf{complexity}$ measure if the following hold:

(a) $C(1) = 0$

(b) $C(xy) \leq C(x) + C(y)$ for all $x, y \in M$

(c) $C(x) \leq C(xy) + C(y)$ for all $x, y \in M$

(d) $C(xy) = C(yx)$ for all $x, y \in M$

We call the pair (M, C) C-monoid.

– Prefix-free Kolmogorov complexity (up to an additive constant) on set of strings with concatenation (if we restrict (d) to strings of the same length).

– The height map $(p/q) \mapsto \log |q|$.

 $-$ Finite measurable partitions of [0, 1] under refinement with entropy.

– Many other examples: the least degree of a polynomial vanishing identically on a variety; invariant metrics on groups (distance from $0), \ldots$

Suppose M is dense in a metric space (X, d) and for each $r > 0$, the set $M_r = \{m \in M : C(m) \le r\}$ is finite. For $x \in X$, let

$$
C_n(x)=\inf\{C(m)\colon d(x,m)\leq 2^{-n}\}
$$

and

$$
\overline{C}(x) = \sup\{\beta : \exists^{\infty} m \ d(x,m) \leq 2^{-\beta C(m)}\}.
$$

Theorem [Cotner & R.] For all $x \in X \setminus M$,

$$
\liminf_n \frac{C_n(x)}{n} = \overline{C}(x)^{-1}.
$$

Normal compressors [Cilibrasi & Vitanyi, 2005]

- Defined on the monoid 2^{ω} .
- Upper-semicomputable, induced by prefix-codes.
- Relaxation: Require inequalities to hold only up to $log(n)$ term, where n is the maximal length of a string involved in the inequality concerned.
- Compression: Require additionally
	- $C(xx) \leq C(x)$
	- $C(x) \leq C(xy)$
	- $C(xy) + C(z) \le C(xz) + C(yz)$

Theorem

Let C be a normal compressor on $2^{&\omega}$. Then, for any $\alpha \in [0,1]$,

$$
\dim_H \left\{ x \colon \liminf_{n \to \infty} \frac{C(x \lceil_n)}{n} = \alpha \right\} = \alpha.
$$

Theorem

Let C be a complexity measure on $2^{<\omega}$ such that for each $r > 0$, the set $M_r = \{m \in M: C(m) \le r\}$ is finite. Assume there exists a constant $c > 0$ and a mapping $\pi : 2^{< \omega} \to \mathbb{Q} \cap [0, 1]$ such that for any interval $I \subset [0,1]$ there exists a $k_0 > 0$ such that for all $k > k_0$ there exist $\exists \sigma_1, \ldots \sigma_t \in 2^{<\omega}$ with $\pi(\sigma_i) \in I$ for all $i \leq t$ and

\n- (i)
$$
C(\sigma_i) \leq \log(k)
$$
 for all $i \leq t$,
\n- (ii) $|\pi(\sigma_i) - \pi(\sigma_j)| \geq \frac{1}{k}$ for $i \neq j$, and
\n- (iii) $t \geq c|I|k$
\n

Then, for any $\alpha \in [0,1]$,

$$
\dim_H \left\{ x \colon \liminf_{n \to \infty} \frac{C_n(x)}{n} = \alpha \right\} = \alpha.
$$

– Being a normal compressor ensures that the effective C-dimension (in 2^{ω}) agrees with the generalized irrationality exponent (in \mathbb{R}).

– Being a complexity measure together with (i)-(iii) ensures that the image of C under π induces a regular system [Baker & Schmidt, 1970].

A (Borel) measure μ on $\mathbb R$ is an α -**Fourier measure** if there exists a constant c such that for all $x \in \mathbb{R}$,

 $|\widehat{\mu}(x)| \leq c |x|^{-\alpha/2},$

where $\hat{\mu}$ is the Fourier-Stieltjes transform of μ .

The Fourier dimension of $A \subseteq \mathbb{R}$ is defined as

dim_F $A = \sup{\alpha : \exists \alpha\text{-Fourier } \mu, \mu(A) = 1}.$

It always holds that dim $F \le$ dim_H, but they can be drastically different.

For example, dim_F (middle-third Cantor set) = 0.

Sets for which dim $_F = \dim_H$ are called **Salem sets.**

"Deterministic" constructions of Salem sets were long elusive, until Kaufman showed that the Jarnik-Besicovitch fractal is a Salem set.

"The property of being a Salem measure [...] is deeper than average decay [...] and indicative of the level of the arithmetic structure of the measure in question. Roughly speaking, "random" fractal measures often [are Salem], whereas "structured" ones [such as the middle third Cantor measure, are not]." (Laba, ICM 2014)

Conjecture: If C is a normal compressor, then

$$
\left\{ x \colon \liminf_{n \to \infty} \frac{C(x \lceil_n)}{n} = \alpha \right\}
$$

is a Salem set.