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A Tale of Two Fractals

Cantor sets

• “Deterministic” fractals.

• Determined by e.g., splitting ratio and gaps between intervals.

Point fractals

• “Random” fractals.

• Membership is determined via a property of its points.
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Point fractals via effective dimension

Given α ∈ [0, 1], let

Kα = {X ∈ 2ω : lim inf
n→∞

K (X ⌈n)
n

= α}

Cai & Hartmanis (1994):

dimH Kα = α

Early version of point-to-set principle.
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Point fractals via effective dimension

dimH Kα = α

The Cai-Hartmanis theorem (lower bound) can be proved by

1. finding a suitable Cantor set sitting inside Kα and using the

mass distribution principle, or

2. using the point-to-set principle.
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Point sets in Euclidean space

Identifying elements of 2ω with binary expansions of reals, Cai and

Hartmanis actually proved the theorem for Hausdorff dimension in

R.

Hypothesis: The sets Kα lie at the extreme end of a whole family

of similarly behaved point fractals in Euclidean space.
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Point fractals: Irrationality

The irrationality exponent of a real number x is defined as

δ(x) = sup

{
δ : ∃∞p, q

∣∣∣∣x − p

q

∣∣∣∣ < 1

qδ

}
.

Every irrational number has irrationality exponent ≥ 2 [Dirichlet].

A Liouville number is defined by the property δ(x) = ∞.

Other examples:

– δ(e) = 2

– δ(π) ≤ 7.60630853
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Point fractals: Jarnik-Besicovitch

Jarńık (1931), and independently Besicovitch (1934), showed

dimH{x : δ(x) ≥ δ} =
2

δ

Jarńık’s proof actually shows that

dimH{x : δ(x) = δ} =
2

δ
.
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Effective Dimension

The irrationality exponent reflects how well a real can be

approximated by rational numbers.

Information theoretically: Think of (p, q) as a description of a real

with respect to a very simple decoder: (p, q) 7→ p/q.

The effective dimension [Lutz] reflects how well a real can be

approximated by arbitrary effective decoders:

dimH(x) = lim inf
n→∞

K (x ↾ n)
n

(The Kolmogorov complexity characterization is due to

Mayordomo.)
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Effective Dimension and Irrationality Exponent

For a random real x ∈ [0, 1], p/q cannot give significantly more

than 2 log q bits of information about x .

Hence almost every real has irrationality exponent 2.

If x ∈ (0, 1) is Liouville, on the other hand, for every n there exist

p/q such that 2 log q bits of information give us n log q bits of x

Hence the effective dimension of a Liouville number is 0 [Staiger,

2002]

This line of reasoning can be generalized to obtain

dimH(x) ≤
2

δ(x)
[Calude & Staiger, 2013].
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Diophantine complexity

We can reformulate the irrationality exponent as an “effective

dimension”.

For x ∈ R, let

Kn(x) = min{K (p/q) : |x − p/q| ≤ 2−n}.

(the Kolmogorov complexity at precision n).

Then

dimH(x) = lim inf
n

Kn(x)

n

[Lutz & Mayordomo, 2008]
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Diophantine complexity

Similarly, let

Dn(x) = min{2 log q : ∃p |x − p/q| ≤ 2−n}.

(the Diophantine complexity at level n).

Then

δ(x) = lim inf
n

Dn(x)

n
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Effective Dimension and Irrationality Exponent

Question: Are these two isolated examples, or are they instances

of a more general phenomenon?
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Hausdorff Dimension vs Irrationality Exponent

Theorem [Becher, R., & Slaman, 2018]

Let δ ≥ 2. For every β ∈ [0, 2/δ] there is a Cantor-like set E such

that dimH(E ) = β and for the uniform measure on E , almost all

real numbers have irrationality exponent δ.

Theorem [B-R-S, 2018]

Let δ ≥ 2. For every β ∈ [0, 2/δ] there is a Cantor-like set E such

that for the uniform measure on E , almost all real numbers have

irrationality exponent δ and effective dimension β.
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How much compression?

Question: How much ”compression” is needed to obtain point

fractals that exhibits the Jarnik-Besicovitch-Cai-Hartmanis

stratification with respect to Hausdorff dimension?
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Generalized Complexity Measures

Let (M, ·, 1) be a monoid.

We call a function C : M → R≥0 ∪ {∞} a complexity measure if

the following hold:

(a) C (1) = 0

(b) C (xy) ≤ C (x) + C (y) for all x , y ∈ M

(c) C (x) ≤ C (xy) + C (y) for all x , y ∈ M

(d) C (xy) = C (yx) for all x , y ∈ M

We call the pair (M,C ) C -monoid.
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Examples

– Prefix-free Kolmogorov complexity (up to an additive constant)

on set of strings with concatenation (if we restrict (d) to strings of

the same length).

– The height map (p/q) 7→ log |q|.

– Finite measurable partitions of [0, 1] under refinement with

entropy.

– Many other examples: the least degree of a polynomial vanishing

identically on a variety; invariant metrics on groups (distance from

0), . . .
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Dimension vs irrationality exponent – generalized

Suppose M is dense in a metric space (X , d) and for each r > 0,

the set Mr = {m ∈ M : C (m) ≤ r} is finite. For x ∈ X , let

Cn(x) = inf{C (m) : d(x ,m) ≤ 2−n}

and

C (x) = sup{β : ∃∞m d(x ,m) ≤ 2−βC(m)}.

Theorem [Cotner & R.]

For all x ∈ X \M,

lim inf
n

Cn(x)

n
= C (x)−1.

16



Normal compressors

Normal compressors [Cilibrasi & Vitanyi, 2005]

– Defined on the monoid 2<ω.

– Upper-semicomputable, induced by prefix-codes.

– Relaxation: Require inequalities to hold only up to log(n) term,

where n is the maximal length of a string involved in the inequality

concerned.

– Compression: Require additionally

• C (xx) ≤ C (x)

• C (x) ≤ C (xy)

• C (xy) + C (z) ≤ C (xz) + C (yz)
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Dimension of generalized complexity level-sets

Theorem

Let C be a normal compressor on 2<ω. Then, for any α ∈ [0, 1],

dimH

{
x : lim inf

n→∞

C (x⌈n)
n

= α

}
= α.
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Dimension of generalized complexity level-sets

Theorem

Let C be a complexity measure on 2<ω such that for each r > 0,

the set Mr = {m ∈ M : C (m) ≤ r} is finite. Assume there exists a

constant c > 0 and a mapping π : 2<ω → Q ∩ [0, 1] such that for

any interval I ⊂ [0, 1] there exists a k0 > 0 such that for all k ≥ k0

there exist ∃σ1, . . . σt ∈ 2<ω with π(σi ) ∈ I for all i ≤ t and

(i) C (σi ) ≤ log(k) for all i ≤ t,

(ii) |π(σi )− π(σj)| ≥ 1
k for i ̸= j , and

(iii) t ≥ c|I |k

Then, for any α ∈ [0, 1],

dimH

{
x : lim inf

n→∞

Cn(x)

n
= α

}
= α.
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Dimension of generalized complexity level-sets

– Being a normal compressor ensures that the effective

C -dimension (in 2ω) agrees with the generalized irrationality

exponent (in R).

– Being a complexity measure together with (i)-(iii) ensures that

the image of C under π induces a regular system [Baker &

Schmidt, 1970].
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Fourier dimension

A (Borel) measure µ on R is an α-Fourier measure if there exists

a constant c such that for all x ∈ R,

|µ̂(x)| ≤ c |x |−α/2,

where µ̂ is the Fourier-Stieltjes transform of µ.

The Fourier dimension of A ⊆ R is defined as

dimF A = sup{α : ∃α-Fourier µ, µ(A) = 1}.
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Salem sets

It always holds that dimF ≤ dimH , but they can be drastically

different.

For example, dimF (middle-third Cantor set) = 0.

Sets for which dimF = dimH are called Salem sets.

“Deterministic” constructions of Salem sets were long elusive, until

Kaufman showed that the Jarnik-Besicovitch fractal is a Salem set.
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Salem sets

“The property of being a Salem measure [...] is deeper than

average decay [...] and indicative of the level of the arithmetic

structure of the measure in question. Roughly speaking, “random”

fractal measures often [are Salem], whereas “structured” ones [such

as the middle third Cantor measure, are not].” (Laba, ICM 2014)
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Salem sets via complexity measures?

Conjecture: If C is a normal compressor, then{
x : lim inf

n→∞

C (x⌈n)
n

= α

}
is a Salem set.
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