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Ranking countable isomorphism problems

Borel reducibility is a decisive tool for assessing whether
familiar classes of countable structures may be nicely
classified. However, isomorphism problems with countably
many isomorphism types have all the same Borel complexity;
thus, finer notions are required to investigate them properly.

This issue is well-known and fuels the study of, e.g., Turing
computable embeddings or (more recently) countable
reductions.

Here, we propose another framework for ranking countable
isomorphism problems which is inspired by algorithmic
learning theory.
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Algorithmic Learning Theory

Algorithmic Learning Theory (ALT) dates back to the work of
Gold and Putnam in the 1960’s and comprises different formal
models for the inductive inference.

Generally speaking, ALT deals with the question of how a
learner, provided with more and more data about some
environment, is eventually able to achieve systematic
knowledge about it.

Most work in ALT deals with two main paradigms: learning total
computable functions; learning formal languages. These
paradigms model the data to be learned as an unstructured
flow — what if one deals with data having some structural
content?
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Our framework

All our structures A have a relation signature, have domain N,
and are identified with their atomic diagrams (i.e., with reals in
2ω). All our families of structures are at most countable.

For a family K of nonisomorphic structures:

• The learning domain LD(K) is the collection of all isomorphic
copies of the structures from K.

• A learner L sees, by stages, all positive and negative data about
any structure from LD(K) and is required to output conjectures
about the isomorphism type of the observed structure.

• The learning is successful if, for each structure S ∈ LD(K), the
learner eventually stabilizes to a correct conjecture.

K is Ex-learnable (for explanatory), if some learner L
successfully learns K. 3



A few basic examples

• {ω, ω∗} is Ex-learnable
(although, at each finite stage, fragments of ω and ω∗ are
indistinguishable, any copy of either of the structures will
eventually show the true least or greatest element)

• {ω, ζ} is not Ex-learnable
(to diagonalize against a learner L, one constructs by stages a
copy of either ω or ζ that forces L to fail or to change mind
infinitely often)

• It’s easy to build a family K so that all finite sub-families
of K are Ex-learnable but K is not.
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Characterizing Ex-learning, I

It turns that the Ex-learnability (or, lack thereof) of a family K
depends on the existence of a suitable collection of
Lω1ω-formulas and has a natural descriptive set theoretic
interpretation.

Theorem (Bazhenov, Fokina, S.)
A family K := {Ai : i ∈ N} of structures is Ex-learnable iff there
are Σinf

2 formulas {ψi : i ∈ N} so that

Aj |= ψi ⇔ i = j,

for every i and j.
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Characterizing Ex-learning, II

Recall that E0 denotes the relation of eventual agreement on
reals, i.e.,

p E0 q⇔ (∃m)(∀n ≥ m)(p(n) = q(n)).

Theorem (Bazhenov, Cipriani, S.)
A family K of structures is Ex-learnable iff LD(K) is
continuously reducible E0, i.e., there is a continuous function Γ

so that
A ∼= B ⇔ Γ(A) E0 Γ(B),

for all A,B ∈ LD(K).
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Introducing the learning hierarchy

A natural hierarchy of learnability emerges by replacing E0 with
other Borel equivalence relations E, F:

• K is E-learnable, if LD(K) is continuously reducible to E;
• E is learning reducible to F (E ≤learn F), if every (countable)
family K which is E-learnable family is also F-learnable.

Clearly, if E is continuously reducible to F, then E ≤learn F. The
converse (fortunately) fails.
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Characterizing the learning power of equivalence relations

Now, the syntactic characterization of E0 suggests that the
learning power of other E’s can be similarily characterized by
appealing to the logical complexity of the separating formulas
of the E-learnable families.
A family K := {Ai : i ∈ N} is a:

• Σinf
n poset, if ThΣinf

n
(Ai) ̸= ThΣinf

n
(Aj), for all i ̸= j;

• Σinf
n antichain, if ThΣinf

n
(Ai)∖ ThΣinf

n
(Aj) ̸= ∅, for all i ̸= j;

• Σinf
n strong antichain, if there are Σinf

n formulas {ψi : i ∈ N} so
that Aj |= ψi ⇔ i = j.

Hence, K is E0-learnable iff K is a Σinf
2 strong antichain.
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Erange and Eset

The equivalence relations Erange and Eset are defined in the
same way (stay tuned) but they live in different spaces:

• for p,q ∈ NN,

p Erange q⇔ {p(n) : n ∈ N} = {q(n) : n ∈ N};

• for p,q ∈ (NN)N,

p Eset q⇔ {p(n) : n ∈ N} = {q(n) : n ∈ N}.

Proposition (Cipriani, Marcone, S.)

• K is Erange-learnable iff K is a Σinf
1 poset;

• K is Eset-learnable iff K is a Σinf
2 poset.

How to deal with all Σinf
n posets? Hint: Observe that Erange and

Eset are Friedman-Stanley jumps. 9



The Friedman-Stanley jump operator

Let E be on X. The FS-jump E+ of E is the equivalence relation
on XN given by

p E+ q⇔ {[p(n)]E : n ∈ N} = {[q(n)]E : n ∈ N}.

So, Erange is =+
N and Eset is =+

NN .

Remark: It’s known that the nth back-and-forth relation is
continuously reducible to (=NN)n+, so FS-jumps are natural
candidates for the task of learning Σinf

n posets. However, in the
learning setting these bounds are not sharp (observe that Erange is
smooth but doesn’t continuously reduce to =NN ).
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A tower of benchmark relations

Iterating the FS-jump operator on =+
N and =+

NN , we reach the
learning power needed for capturing all Σinf

n posets:

Theorem (Cipriani, Marcone, S.)

• K is (=N)
(n+1)+-learnable iff K is a Σinf

2n+1 poset;
• K is (=NN)(n+1)+-learnable iff K is a Σinf

2n+2 poset.

For both items, the left-to-right direction relies on computable
structure theoretic machinary (e.g., the Pullback lemma). The
converse direction relies on first proving, by a fairly combinatorial
inductive argument, that the result holds for all families of size 2,
and then showing that every FS-jump E is compact-for-learning (i.e.,
K is E-learnable iff every pair of structures from K is so).
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A quick glance beyond the FS-jumps

To gain further insights into the learning hierarchy, it’s natural
to investigate principles that are not equivalent to any
FS-jump. This is the case of Ex.

Such a study is facilitated by analyzing principles that are
well-established in classic ALT:

• In Fin-learning, the learner is not allowed to make any
mind-change;

• In PL-learning, the learner can produce infinitely many mistakes
as long as the only conjecture that is formulated infinitely often
is the correct one.

We collect some of our results about the first few levels of the
learning hierarchy into a concluding diagram.
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Eset (Σinf
2 -p.)

PL (Σinf
2 -a.)

Eω0

Erange (Σinf
1 -p.) Ex, E0, E1, E2 (Σinf

2 -s.a.)

nUs

=NN (Σinf
1 -a.)

Fin, =N (Σinf
1 -s.a.)



Thanks!
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