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Key Definition

Definition

An existentially closed group M is a group such that if there is a group
N ≥ M and quantifier-free φ(x ,m) with parameter from M such that

N |= ∃xφ(x ,m)

then
M |= ∃xφ(x ,m)
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Some history: A “bridge”

Theorem ([Neu73], [Mac72a], [Rip82])

For a finitely generated group G, the following are equivalent:

1 G has solvable word problem

2 G embeds in every existentially closed group

3 G is ∃1-isolated; i.e., there is a consistent ∃1-formula ψ(x) of group
theory such that for every quantifier-free φ(x), T ⊢ ∀x(ψ(x) → φ(x))
iff G |= φ(g)

Theorem ([Mac72a])

Let G and H be finitely generated groups with H ≰T G. Then there is an
e.c. group M which contains G and omits H.
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History, continued

Theorem ([Mac72a])

Let G and H be finitely generated groups with H ≰T G. Then there is an
e.c. group M which contains G and omits H.

Theorem ([Zie80])

For finitely generated groups G and H, the following are equivalent:

1 H embeds in every e.c. group that G does

2 H ≤∗ G
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First question

Question

How hard is it to build existentially closed groups?

Here, by “existentially closed group”, I will always mean its quantifier-free
diagram.
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First answer: the complexity of existentially closed groups

Theorem (S.)

The existence of an existentially closed group is equivalent to 0′.

Isabella Scott (University of Chicago +) Existentially closed groups May 17, 2024 6 / 21



Building an existentially closed group 1: Henkin
construction

Let C be a countable set of constants and let ⟨φi (x , c) : i < ω⟩ be an
enumeration of the quantifier-free formulas in L(C ). Build the diagram of
an existentially closed group as follows:

Let T0 consist of the axioms of group theory.

On odd stages s = 2t + 1, add φt(d , c) to Ts if consistent; otherwise
do nothing.

On even stages s = 2t, add tth sentence of L(C ) to Ts if consistent;
otherwise add negation.

Let T =
⋃

s Ts .
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Building existentially closed groups 2: Fräıssé’s Theorem

Theorem (Fräıssé’s Theorem)

Let A be a countable collection of isomorphism types of finitely generated
structures of some theory Tgroups satisfying:

1 A has the Hereditary Property (HP): for every B ≤ A ∈ A, B ∈ A.

2 A has the Joint Embedding Property (JEP): for every A,B ∈ A,
there is some C ∈ A with A,B ≤ C.

3 A has the Amalgamation Property (AP): for every A,B,C ∈ A, with
C ≤ A,B, there is a D ∈ A that contains A and B “amalgamated”
over C .

4 A has existential closure (EC) if for every quantifier-free formula
φ(x , g) with parameters from some G ∈ A, and which is solved in
some G ≥ G, there is some H ∈ A with G ≤ H and H |= ∃xφ(x , g).

Then there is a unique countable ω-homogeneous existentially closed
group M with Sk(M) = A.
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The complexity of constructing existentially closed groups

Theorem (S.)

The existence of an existentially closed group is exactly at the level of 0′.

Every ec group computes 0′.

Let M be an existentially closed group and F = ⟨f | r⟩ be a finitely
presented group whose word problem computes 0′. Define

φw (x) =
∧
i

r(x) = 1 ∧ w(x) ̸= 1

Note that φw (x) is satisfiable iff w /∈ W (F ).
Then W (F ) is c.e., so M-c.e. On the other hand, W (H) is M-c.e. by
listing the tuples of elements of M and checking if they satisfy φw .
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The picture so far

Isabella Scott (University of Chicago +) Existentially closed groups May 17, 2024 10 / 21



Second question

Question

Can one characterise the degrees which compute word problems of finitely
generated subgroups of every existentially closed group?
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Second answer: the complexity of the subgroups of an e.c.
group

Theorem ([Mil79], [Mac72b], [Zie80], S.)

X computes the word problem of some finitely generated group in every
existentially closed group iff X is a PA degree.

Proof Sketch that PA is enough.

Let S be a Scott set computed by X ; i.e., a collection of X -computable
sets that is closed under computability, joins, and “being PA in”.
Define AS = {G | G is finitely generated and W (G ) ∈ S}. This is an e.c.
Fräıssé class.
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The picture so far
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Relatively atomic e.c. groups

Theorem ([Mil79], [Mac72b], [Zie80], S.)

X computes the word problem of every finitely generated group in some
existentially closed group iff X is a PA degree.

Corollary

There are two existentially closed groups such that the only finitely
generated subgroups which embed into both have solvable word problem.

Recall: A finitely generated group has solvable word problem iff its
quantifier-free diagram is ∃1-isolated.

Theorem (S.)

Let A >T 0′ be 0′-ce. Then A computes two existentially closed groups
such that the only finitely generated subgroups which embed into both
have solvable word problem.
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Relatively atomic e.c. groups, continued

Theorem (S.)

Let A >T 0′ be 0′-ce. Then A computes two existentially closed groups
such that the only quantifier-free types realised in both are ∃1-isolated.

Proof sketch.

Fix 0′-computable N. Let C be a countable set of constant symbols. We
construct a theory TM by induction satisfying the following:

Group: “The structure determined by TM models the axioms of
group theory.” Group: “The structure determined by TM models the
axioms of group theory.”

ECm: “If ∃xφm(x) is consistent with TM , then TM |= φm(c) for
some set of constants c.” ECm: “If ∃xφm(x) is consistent with TM ,
then TM |= φm(c) for some set of constants c .”

R⟨c,d⟩: “If qftp
M(c) = qftpN(d), then this type is ∃1-isolated.”
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Relatively atomic e.c. groups, continued

Theorem (S.)

Let A >T 0′ be 0′-ce. Then A computes two existentially closed groups
such that the only quantifier-free types realised in both are ∃1-isolated.

Proof sketch.

R⟨c,d⟩: “If qftp
M(c) = qftpN(d), then this type is ∃1-isolated.”

Stage s: Look for a “splittings” θ(c) such that θ and ¬θ are consistent
with T ↿ r (where r is the max over higher priority restraints). If any
splittings are found, request permission for them.

Satisfy highest priority requirement that gets permission at this stage, and
reset lower priority requirements.
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The picture so far
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Third question: Relativisation of Theorem 1

Theorem (S.)

The existence of an existentially closed group is equivalent to 0′.

Question

Does the theorem above relativise?

Remark

We already know it does not relativise in the obvious way: the Fräıssé limit
of A0, the class of fg groups with computable presentations, is
0′-computable, but Craig’s trick implies the existence of a computably
presentable, 0′-computable fg group.
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Third answer

Definition

A ≤e B if “positive information about A can be determined from
positive information about B”; i.e., there is a c.e. We such that
n ∈ A if and only if ∃u(⟨n, u⟩ ∈ We ∧ Du ⊆ B)

Γe(B) := {n | ∃u(⟨n, u⟩ ∈ We ∧ Du ⊆ B)}
KB :=

⊕
e∈ω Γe(B)

The enumeration jump of B is given by Je(B) := KB ⊕ KB

Theorem (S.)

The existence of an existentially closed group containing a given finitely
generated group G is equivalent to Je(G ).

The proof involves Soskov’s jump inversion theorem for De ([Sos00])!
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Thank you!
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