Existentially closed groups

A bridge between computability theory, model theory, and algebra

Isabella Scott

University of Chicago +

May 17, 2024

Key Definition

Definition

An existentially closed group M is a group such that if there is a group $N \ge M$ and quantifier-free $\varphi(\overline{x}, \overline{m})$ with parameter from M such that

 $N \models \exists \overline{x} \varphi(\overline{x}, \overline{m})$

then

$$M \models \exists \overline{x} \varphi(\overline{x}, \overline{m})$$

Some history: A "bridge"

Theorem ([Neu73], [Mac72a], [Rip82])

For a finitely generated group G, the following are equivalent:

- **(**) *G* has solvable word problem
- If a contract of the second second
- S is ∃₁-isolated; i.e., there is a consistent ∃₁-formula ψ(x̄) of group theory such that for every quantifier-free φ(x̄), T ⊢ ∀x̄(ψ(x̄) → φ(x̄)) iff G ⊨ φ(ḡ)

Theorem ([Mac72a])

Let G and H be finitely generated groups with $H \not\leq_T G$. Then there is an e.c. group M which contains G and omits H.

History, continued

Theorem ([Mac72a])

Let G and H be finitely generated groups with $H \leq_T G$. Then there is an e.c. group M which contains G and omits H.

Theorem ([Zie80])

For finitely generated groups G and H, the following are equivalent:

- I embeds in every e.c. group that G does
- $\bigcirc H \leq^* G$

First question

Question

How hard is it to build existentially closed groups?

Here, by "existentially closed group", I will always mean its quantifier-free diagram.

First answer: the complexity of existentially closed groups

Theorem (S.)

The existence of an existentially closed group is equivalent to 0'.

Building an existentially closed group 1: Henkin construction

Let *C* be a countable set of constants and let $\langle \varphi_i(\overline{x}, \overline{c}) : i < \omega \rangle$ be an enumeration of the quantifier-free formulas in *L*(*C*). Build the diagram of an existentially closed group as follows:

- Let T_0 consist of the axioms of group theory.
- On odd stages s = 2t + 1, add $\varphi_t(\overline{d}, \overline{c})$ to T_s if consistent; otherwise do nothing.
- On even stages s = 2t, add tth sentence of L(C) to T_s if consistent; otherwise add negation.

Let $T = \bigcup_s T_s$.

Building existentially closed groups 2: Fraïssé's Theorem

Theorem (Fraïssé's Theorem)

Let A be a countable collection of isomorphism types of finitely generated structures of some theory T groups satisfying:

- A has the Hereditary Property (HP): for every $B \leq A \in A$, $B \in A$.
- ② *A* has the Joint Embedding Property (JEP): for every $A, B \in A$, there is some *C* ∈ *A* with $A, B \leq C$.
- A has the Amalgamation Property (AP): for every A, B, C ∈ A, with C ≤ A, B, there is a D ∈ A that contains A and B "amalgamated" over C.
- A has existential closure (EC) if for every quantifier-free formula $\varphi(\overline{x},\overline{g})$ with parameters from some $G \in A$, and which is solved in some $\overline{G} \ge G$, there is some $H \in A$ with $G \le H$ and $H \models \exists \overline{x} \varphi(\overline{x},\overline{g})$.

Then there is a unique countable ω -homogeneous existentially closed group M with Sk(M) = A.

The complexity of constructing existentially closed groups

Theorem (S.)

The existence of an existentially closed group is exactly at the level of 0'.

Every ec group computes 0'.

Let *M* be an existentially closed group and $F = \langle \overline{f} | \overline{r} \rangle$ be a finitely presented group whose word problem computes 0'. Define

$$\varphi_w(\overline{x}) = \bigwedge_i r(\overline{x}) = 1 \land w(\overline{x}) \neq 1$$

Note that $\varphi_w(\overline{x})$ is satisfiable iff $w \notin W(F)$. Then W(F) is c.e., so *M*-c.e. On the other hand, $\overline{W(H)}$ is *M*-c.e. by listing the tuples of elements of *M* and checking if they satisfy φ_w .

The picture so far

halting problem

E.c. group

Second question

Question

Can one characterise the degrees which compute word problems of finitely generated subgroups of every existentially closed group?

Second answer: the complexity of the subgroups of an e.c. group

Theorem ([Mil79], [Mac72b], [Zie80], S.)

X computes the word problem of some finitely generated group in every existentially closed group iff X is a PA degree.

Proof Sketch that PA is enough.

Let S be a Scott set computed by X; i.e., a collection of X-computable sets that is closed under computability, joins, and "being PA in". Define $\mathcal{A}_{S} = \{G \mid G \text{ is finitely generated and } W(G) \in S\}$. This is an e.c. Fraïssé class.

The picture so far

Relatively atomic e.c. groups

Theorem ([Mil79], [Mac72b], [Zie80], S.)

X computes the word problem of every finitely generated group in some existentially closed group iff X is a PA degree.

Corollary

There are two existentially closed groups such that the only finitely generated subgroups which embed into both have solvable word problem.

Recall: A finitely generated group has solvable word problem iff its quantifier-free diagram is \exists_1 -isolated.

Theorem (S.)

Let $A >_T 0'$ be 0'-ce. Then A computes two existentially closed groups such that the only finitely generated subgroups which embed into both have solvable word problem.

Relatively atomic e.c. groups, continued

Theorem (S.)

Let $A >_T 0'$ be 0'-ce. Then A computes two existentially closed groups such that the only quantifier-free types realised in both are \exists_1 -isolated.

Proof sketch.

Fix 0'-computable N. Let C be a countable set of constant symbols. We construct a theory T^M by induction satisfying the following:

- Group: "The structure determined by T^M models the axioms of group theory." Group: "The structure determined by T^M models the axioms of group theory."
- EC_m: "If ∃xφ_m(x) is consistent with T^M, then T^M ⊨ φ_m(c̄) for some set of constants c̄." EC_m: "If ∃xφ_m(x̄) is consistent with T^M, then T^M ⊨ φ_m(c̄) for some set of constants c̄."
- $R_{\langle \overline{c}, \overline{d} \rangle}$: "If $\operatorname{qftp}^{M}(\overline{c}) = \operatorname{qftp}^{N}(\overline{d})$, then this type is \exists_{1} -isolated."

Relatively atomic e.c. groups, continued

Theorem (S.)

Let $A >_T 0'$ be 0'-ce. Then A computes two existentially closed groups such that the only quantifier-free types realised in both are \exists_1 -isolated.

Proof sketch.

• $R_{\langle \overline{c}, \overline{d} \rangle}$: "If $\operatorname{qftp}^{M}(\overline{c}) = \operatorname{qftp}^{N}(\overline{d})$, then this type is \exists_{1} -isolated."

Stage s: Look for a "splittings" $\theta(\overline{c})$ such that θ and $\neg \theta$ are consistent with $T \upharpoonright r$ (where r is the max over higher priority restraints). If any splittings are found, request permission for them.

Satisfy highest priority requirement that gets permission at this stage, and reset lower priority requirements. $\hfill\square$

The picture so far

-

Third question: Relativisation of Theorem 1

Theorem (S.)

The existence of an existentially closed group is equivalent to 0'.

Question

Does the theorem above relativise?

Remark

We already know it does not relativise in the obvious way: the Fraissé limit of A_0 , the class of fg groups with computable presentations, is 0'-computable, but Craig's trick implies the existence of a computably presentable, 0'-computable fg group.

Third answer

Definition

- $A \leq_e B$ if "positive information about A can be determined from positive information about B"; i.e., there is a c.e. W_e such that $n \in A$ if and only if $\exists u(\langle n, u \rangle \in W_e \land D_u \subseteq B)$
- $\Gamma_e(B) := \{n \mid \exists u(\langle n, u \rangle \in W_e \land D_u \subseteq B)\}$

•
$$K_B := \bigoplus_{e \in \omega} \Gamma_e(B)$$

• The enumeration jump of B is given by $J_e(B) := K_B \oplus \overline{K_B}$

Theorem (S.)

The existence of an existentially closed group containing a given finitely generated group G is equivalent to $J_e(G)$.

The proof involves Soskov's jump inversion theorem for \mathcal{D}_e ([Sos00])!

Thank you!

References

Angus Macintyre.

Omitting quantifier-free types in generic structures. The Journal of Symbolic Logic, 37(3):512–520, 1972.

Angus Macintyre.

On algebraically closed groups. Annals of Mathematics, 96(1):53-97, 1972.

Charles F. Miller III.

The word problem in quotients of a group. In Aspects of effective algebra, pages 246–250, August 1979.

Bernhard Neumann

The isomorphism problem for algebraically closed groups.

In W.W. Boone, F.B. Cannonito, and R.C. Lyndon, editors, *Word Problems*, volume 71 of *Studies in Logic and the Foundations of Mathematics*, pages 553–562. Elsevier, 1973.

Eliyahu Rips.

Another characterization of finitely generated groups with a solvable word problem. *Bulletin of the London Mathematical Society*, 14(1):43–44, 01 1982.

I. N. Soskov.

A jump inversion theorem for the enumeration jump. Archive for Mathematical Logic, 39(6):417–437, 2000.

Martin Ziegler.

Algebraisch abgeschlossene Gruppen.

In Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), volume 95 of Studies in Logic and the Foundations of Mathematics, pages 449–576. North-Holland, Amsterdam-New York, 1980.