Pinned Distance Sets Using Effective Dimension

Don Stull Joint with Jacob Fiedler

University of Chicago

D. M. Stull (University of Chicago) **[Pinned Distance Sets](#page-11-0)** 1/12

4 D.K.

Fix a (universal) Turing machine U. Let $x \in \mathbb{R}$ and $r \in \mathbb{N}$. The **Kolmogorov complexity of** x at precision r is

 $K_r(x) = \text{minimum length input } \pi \in \{0,1\}^* \text{ such that } U(\pi) = x \mid r,$

where $x\upharpoonright r$ is the first r bits in the binary representation of x.

Let $x \in \mathbb{R}^n$. The (effective Hausdorff) dimension of x is

$$
\dim(x) = \liminf_{r \to \infty} \frac{K_r(x)}{r}.
$$

The (effective) packing dimension of x is

$$
\mathsf{Dim}(x)=\limsup_{r\to\infty}\frac{\mathsf{K}_r(x)}{r}.
$$

Problem: Let $x, y \in \mathbb{R}^2$. Give a lower bound on dim($|x - y|$) depending on dim(x), dim(y) and dim $(x | y)$.

- It is not hard to show that, if $\dim(x) = 2$, and $\dim^x(y) = 2$, then $\dim(|x y|) = 1$.
	- Given x as an oracle, and given a 2^{-r} approximation of $|x y|$, it takes at most r bits to describe y
	- $K_r^{\times}(y) \leq K_r(|x-y|) + r + O(\log r)$, i.e., $K_r(|x-y|) \gtrsim r O(\log r)$.
- A much harder question: Suppose $\dim(x)$, $\dim(y) > 1$ and x, y are independent (share no information). Is it true that dim($|x - y|$) = 1?
- Any progress on this question, by the point-to-set principle, would lead to progress on Falconer's distance set problem, an important open question in geometric measure theory.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 『할 → 9 Q Q

For every set $E \subseteq \mathbb{R}^n$,

$$
\dim_H(E) = \min_{A \subseteq \mathbb{N}} \sup_{x \in E} \dim^A(x)
$$

$$
\dim_P(E) = \min_{A \subseteq \mathbb{N}} \sup_{x \in E} \dim^A(x).
$$

- The Hausdorff dimension of a set is characterized by the (effective) dimension of the points in the set.
- Allows us to use computability to attack problems in geometric measure theory.

Let $E \subseteq \mathbb{R}^n$. The distance set of E is

$$
\Delta E = \{|x - y| \mid x, y \in E\}.
$$

More generally, if $x \in \mathbb{R}^n$, the pinned distance of E w.r.t. x is

$$
\Delta_x E = \{|x-y| \mid y \in E\}.
$$

Problem: Give a lower bound on the sizes of ΔE and ΔE in terms of the size of E.

When E is a finite set, Erdös conjectured that $|\Delta E|$ is at least (almost) linear in terms of $|E|$.

- In a breakthrough paper, Guth and Katz proved this in the plane.
- Still an important open problem for \mathbb{R}^n with $n \geq 3$.

Falconer posed an analogous question for the case that E is infinite, known as Falconer's distance set problem.

- If $E \subseteq \mathbb{R}^n$ has dim $H(E) > n/2$, then ΔE has positive measure.
- Still open in all dimensions.
- Guth, losevich, Ou and Wang, proved that if $E \subseteq \mathbb{R}^2$ and $\mathsf{dim}_H(E) > 5/4$, then $\mu(\Delta E) > 0.$

Substantial progress has been made in a slightly different direction, on the Hausdorff dimension of *pinned distance sets* in the plane. We always assume E is analytic.

- Shmerkin proved that, if dim $H(E) > 1$ and dim $H(E) = \dim_P(E)$, then $\sup_{x \in F}$ dim_H($\Delta_x F$) = 1.
- Liu showed that, if $\mathsf{dim}_H(E) = s \in (1,5/4)$, then $\mathsf{sup}_{x \in E} \mathsf{dim}_H(\Delta_x E) \geq \frac{4}{3}$ $\frac{4}{3}$ s – $\frac{2}{3}$ $\frac{2}{3}$.
- Shmerkin improved this bound when dim $H(E) = s \in (1, 1.04)$, by proving that $\sup_{x\in E}$ dim_H($\Delta_x E$) > 2/3 + 1/42 ≈ 0.6904

• S. proved that

$$
\sup\nolimits_{x\in E} \text{dim}_H(\Delta_x E) \geq \frac{\dim_H(E)}{4} + \frac{1}{2} > \frac{3}{4}
$$

- K @ → K 호 → K 호 → C 호

Our results

Theorem (Fiedler, S.)

Let $X, Y \subseteq \mathbb{R}^2$ such that Y is analytic, with $\dim_H(Y)$, $\dim_H(X) > 1$. Then,

$$
\sup_{x \in X} \dim_H(\Delta_x Y) \ge d \left(1 - \frac{(D-1)(D-d)}{2(D^2+D-1)-2d(2D-1)}\right),
$$

where $d = \min\{\dim_H(X), \dim_H(Y)\}\$ and $D = \max\{\dim_P(X), \dim_P(Y)\}\$. Moreover, if $D < \frac{d(3+\sqrt{5})-1-\sqrt{5}}{2}$ $\frac{2^{(n-1)/2}}{2}$, then dim_H(Δ_x Y) = 1.

Key points:

- Gives a lower bound on the pinned distance sets based on both the Hausdorff and packing dimension of the set.
- Strengthens the regularity result of Shmerkin: The packing dimension only needs to be sufficiently close to the Hausdorff dimension to prove the distance set conjecture.

メ御 ドメ きょくほう こぼ

Theorem (Fiedler, S.)

Suppose that $x, y \in \mathbb{R}^2$, $e = \frac{y - x}{|y - x|}$ $\frac{y-x}{|y-x|}$ satisfy the following. $(C1)$ dim (x) , dim $(y) > 1$ $(C2)$ $K_r^x(e) \approx r$ for all r. $(C3)$ $K_r^x(y) \approx K_r(y)$ for all sufficiently large r. $(C4) K_r(e | y) \approx r$ for all r. Then $\dim^{x}(|x-y|) \ge d\left(1 - \frac{(D-1)(D-d)}{2(D^2+D-1)-2d(2D-1)}\right)$, where $d = \min{\dim(x), \dim(y)}$ and $D = \max\{Dim(x), Dim(y)\}.$

Most of the work is in proving this theorem. We then use the point-to-set principle to conclude the classical theorem on the Hausdorff dimension of pinned distance sets.

Summarizing our results

Let $E\subseteq \mathbb{R}^2$ be analytic and $1< d <$ dim $_{{\mathcal H}}(E).$ sup $_{\mathsf{x}\in E}$ dim $_{\mathsf{H}}(\Delta_{\mathsf{x}}E)\geq \frac{d(d-4)}{d-5}$ d−5 • This improves the best known bounds when $\dim_H (E) \in (1, 1.127)$.

$$
\bullet \ \sup\nolimits_{x\in E} \dim_H(\Delta_x E) \geq \frac{\dim_P(E)+1}{2\dim_P(E)}.
$$

• If
$$
\dim_P(E) < \frac{d(3+\sqrt{5})-1-\sqrt{5}}{2}
$$
, then $\sup_{x \in E} \dim_H(\Delta_x E) = 1$.

• There is a point $x \in E$ such that

$$
\dim_P(\Delta_x E) \ge \frac{12-\sqrt{2}}{8\sqrt{2}} \approx 0.9356
$$

• Improves (slightly) the Keleti-Shermkin bound for packing dimension of pinned distance sets.

Regularity results

Theorem (Fiedler, S.)

Let $Y\subseteq \mathbb{R}^2$ be analytic with $\dim_H(Y)>1$ and $\dim_P(Y)< 2\dim_H(Y)-1$. Let $X\subseteq \mathbb{R}^2$ be any set such that $\dim_H(X) > 1$. Then for all $x \in X$ outside a set of (Hausdorff) dimension one,

 $\dim_H(\Delta_Y Y) = 1.$

Theorem (Fiedler, S.)

Let $Y \subseteq \mathbb{R}^2$ be analytic with $\dim_H(Y) > 1$. Let $X \subseteq \mathbb{R}^2$ be any set such that $\dim_H(X) = \dim_P(X) > 1$. Then there is a subset $F \subset X$ such that,

 $dim_H(\Delta_x Y) = 1$,

for all $x \in F$. Moreover, $\dim_H(X \setminus F) < \dim_H(X)$.

Thank you!

重

メロト メタト メミト メミト