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Question

What is computational power with random access?

Can we construct a more random set from a given
random set?

3/23



Old answer

Theorem 1 (De Leeuwe, Moore, Shannon, Shapiro
(1956), Sacks). If A € 2¥ is not computable, then the
class

{X c2¥Y . A<y X}
has measure (.
Thus, if A is computable with random access, then A is

computable without random access.
How about the case there are many answers?
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Mass problems

Definition 2. Let P, () C 2¢,

P is Muchnik reducible to Q) (P <,, Q) If, for every f € @,
there exists ¢ € P such that ¢ <7 f.

P is Medvedev reducible to @ (P <, Q) If, there exists a
Turing functional ® such that ®/ € P for every f € Q.

The difference is uniformity.
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Main results

Randomness hierarchy

. > W2R D
KR D SR D CR D MLR D DiffR S DemR 32R

Muchnik degrees

KR <., SR=,CR <, MLR=, Diffg, ~@ V2R <wop
<, DemR <,

Medvedev degrees

SR<,CR, MLR<DiffR
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Background

*KR <4 SR

*MLR <5 DiffR

(1/2)

+MLR < DiffR

(2/2)

#SR <5 CR
#SR D CR
#SR D CR
#SR <5 CR
#SR <5 CR
+#SR <5 CR

+CR(pn) £
CR(\)

*CR(u) C
CR(\)

+CR(p) C
CR(\)

+CR(p) C
CR()\)

Summary

Proof

7123



KR <, SR

Let a be a minimal degree below 0'.

a IS hyperimmune.

Every hyperimmune degree contains X € KR \ SR.
Suppose Y <r X andY € SR.

Since a is minimal, Y € a.

No minimal degree below 0’ can be high (Cooper '73),
SO Y Is not high.

Nonhigh Schnorr random Y should be ML-random.
This contradicts to minimality of a by van Lambalgen’s

theorem.
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MLR < DiftR (1/2)

The goal is
VedX € MLR|®(X) ¢ DiffR).

We can assume that ¢ is almost-everywhere
computable.

Let 1. be the induced measure from & and the fair-coin
measure), that is p(U) = A(®~1(U)). Note that p is
computable.

If u({Z}) > 0, then A\(®~1({Z})) > 0. Hence, @ }({Z})
contains a ML-random set X. However, every atom of a
computable measure is computable.
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MLR < DiftR (2/2)

Levin-Kautz theorem says that, for a continuous
measure v and a > 0, a contains ML-random iff a
contains v-ML-random. Apply this to 1 and 0’ and get a

u-ML-random Y € 0.
By no-randomness-from-nothing for ML-randomness,

there exists X € MLR such that $(X) =Y.
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SR <. CR

The goal is
VedX € SR|®(X) ¢ CRJ.

When & = id, this means
X € SR\ CR.

Thus, we extend the method separating SR and CR.
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SR 2 CR

Id case

Construct a random set A.

Forcing A(nx) = 0 in sparse positions

= too sparse not to be Schnorr random

The number of candidates of n, i1s small

=- s0 small that some computable martingale
succeeds on it.
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SR 2 CR

The positions forcing 0 are sparse.

random 10 random nl

G O O O O

The numbers of candidates are small.
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SR <. CR

general case

e Construct Ae SRand B =®(A) € CR.

e Forcing B(n;) = 0in some positions (*)

e The number of candidates of n; should be small
= B ¢ CR.

The requirement (*) may be strong because
A{X €2¥ @ &(X)(ng) =0})

may be too small (even empty).
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oR <, CR

random ‘ random

n( nl

;

O O O O O

The numbers of candidates are small.
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SR <. CR

We divide the case into two by the induced measure .

e . is close to” uniform measure (CR(u) € CR(N))
= the same method can be applied

e . is “far from” uniform measure (CR(u) € CR()))
=- we can show it by a different reason
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CR(u) € CR(A)

1Y € CR(u) \ CR(M)
By no-randomness-from-nothing for CR,

1X € CR [¢(X) =Y.
Then, X € SR and (X)) £ CR.
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CR(p) € CR(A)

Lemma 3 (essentially Bienvenu-Merkle). Let i, v be
computable measures.

CR(p) € CR(rv) = MLR(u) € MLR(v) = p < v

< means absolute continuity.
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CR(p) € CR(A)

Lemma 4. Let & be an a.e. computable function. Let 1
be the induced measure from & and . Assume \ < L.
For each o € 2<%,

lim MX € [o] : &(X)(n) =0} ==X (o).

nN—r00

Proof. By the Radon-Nikodym theorem and Lévy’s
zero-one law.
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almost the same measure

0101010101010101010101010101010101010101
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Question

Question 5. Does there exist X € SR such that, if
Y <, X thenY ¢ CR.
How about witt?

| conjecture that we can not tt-compute (or wtt-compute)
a computably random from a Schnorr random even
nonuniformly.
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Summary

e We found two problems that is possible

non-uniformly but not possible uniformly.
Analytical tools are useful to show results in
computability. In particular, a.e. computable
functions can be studied more from the
measure-theoretic perspective.
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