Randomness notions in Muchnik and Medvedev degrees

Kenshi Miyabe at Meiji University

Feb 24 2017 Dagstuhl Seminar on "Computability Theory"

Background

Question

Old answer

Mass problems

✤ Main results

Proof

Summary

Background

Question

What is computational power with random access?

Can we construct a more random set from a given random set?

Old answer

Theorem 1 (De Leeuwe, Moore, Shannon, Shapiro (1956), Sacks). If $A \in 2^{\omega}$ is not computable, then the class

$$\{X \in 2^{\omega} : A \leq_T X\}$$

has measure 0.

Thus, if *A* is computable with random access, then *A* is computable without random access. How about the case there are many answers?

Mass problems

Definition 2. Let $P, Q \subseteq 2^{\omega}$.

P is Muchnik reducible to Q ($P \leq_w Q$) if, for every $f \in Q$, there exists $g \in P$ such that $g \leq_T f$.

P is Medvedev reducible to Q ($P \leq_s Q$) if, there exists a Turing functional Φ such that $\Phi^f \in P$ for every $f \in Q$.

The difference is uniformity.

Main results

Randomness hierarchy

 $\mathrm{KR}\supset\mathrm{SR}\supset\mathrm{CR}\supset\mathrm{MLR}\supset\mathrm{DiffR}\stackrel{\supset}{\phantom{\scriptstyle{\cup}}} \mathrm{W2R} \quad \stackrel{\supset}{\phantom{\scriptstyle{\cup}}}_{\phantom{\scriptstyle{\cup}}} \mathrm{2R}$

Muchnik degrees

$$KR <_{w} SR \equiv_{w} CR <_{w} MLR \equiv_{w} DiffR \stackrel{<_{w}}{\underset{w}{=}} W2R \quad <_{w} 2R$$

Medvedev degrees

SR<_sCR, MLR<_sDiffR

Background

Proof

 $\mathbf{*}\mathrm{KR} <_w \mathrm{SR}$ $MLR <_s DiffR$ (1/2) $MLR <_s DiffR$ (2/2) $\texttt{SR} <_s \mathrm{CR}$ $\bigstar \mathrm{SR} \supsetneq \mathrm{CR}$ $\bigstar \mathrm{SR} \supseteq \mathrm{CR}$ $\texttt{SR} <_s \mathrm{CR}$ $\texttt{SR} <_s \mathrm{CR}$ $\texttt{SR} <_s \mathrm{CR}$ $\mathbf{OR}(\mu) \not\subseteq$ $\operatorname{CR}(\lambda)$ $CR(\mu) \subseteq$ $\operatorname{CR}(\lambda)$ $CR(\mu) \subseteq$ $\operatorname{CR}(\lambda)$ $CR(\mu) \subseteq$ $\operatorname{CR}(\lambda)$

Summary

Proof

 $\mathrm{KR} <_w \mathrm{SR}$

- Let a be a minimal degree below 0'.
- a is hyperimmune.
- Every hyperimmune degree contains $X \in KR \setminus SR$. Suppose $Y \leq_T X$ and $Y \in SR$.
- Since a is minimal, $Y \in \mathbf{a}$.
- No minimal degree below 0' can be high (Cooper '73), so Y is not high.
- Nonhigh Schnorr random Y should be ML-random. This contradicts to minimality of a by van Lambalgen's theorem.

MLR <_s DiffR (1/2)

The goal is

$\forall \Phi \exists X \in \mathrm{MLR}[\Phi(X) \notin \mathrm{DiffR}].$

We can assume that Φ is almost-everywhere computable.

Let μ be the induced measure from Φ and the fair-coin measure λ , that is $\mu(U) = \lambda(\Phi^{-1}(U))$. Note that μ is computable.

If $\mu(\{Z\}) > 0$, then $\lambda(\Phi^{-1}(\{Z\})) > 0$. Hence, $\Phi^{-1}(\{Z\})$ contains a ML-random set *X*. However, every atom of a computable measure is computable.

MLR <_s DiffR **(2/2)**

Levin-Kautz theorem says that, for a continuous measure ν and a > 0, a contains ML-random iff a contains ν -ML-random. Apply this to μ and 0' and get a μ -ML-random $Y \in 0'$. By no-randomness-from-nothing for ML-randomness,

there exists $X \in MLR$ such that $\Phi(X) = Y$.

The goal is

$\forall \Phi \exists X \in \mathrm{SR}[\Phi(X) \notin \mathrm{CR}].$

When $\Phi = id$, this means

$X \in \mathrm{SR} \setminus \mathrm{CR}.$

Thus, we extend the method separating ${\rm SR}$ and ${\rm CR}.$

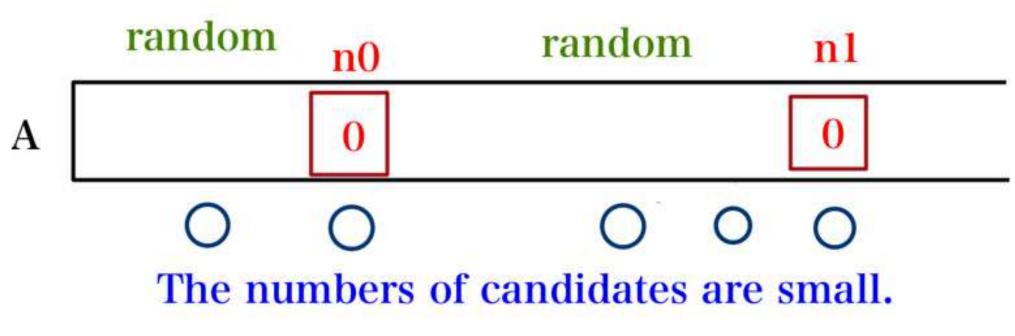
$\mathrm{SR} \supsetneq \mathrm{CR}$

id case

- Construct a random set A.
- Forcing $A(n_k) = 0$ in sparse positions \Rightarrow too sparse not to be Schnorr random
- The number of candidates of n_k is small
 ⇒ so small that some computable martingale succeeds on it.

 $SR \supseteq CR$

The positions forcing 0 are sparse.



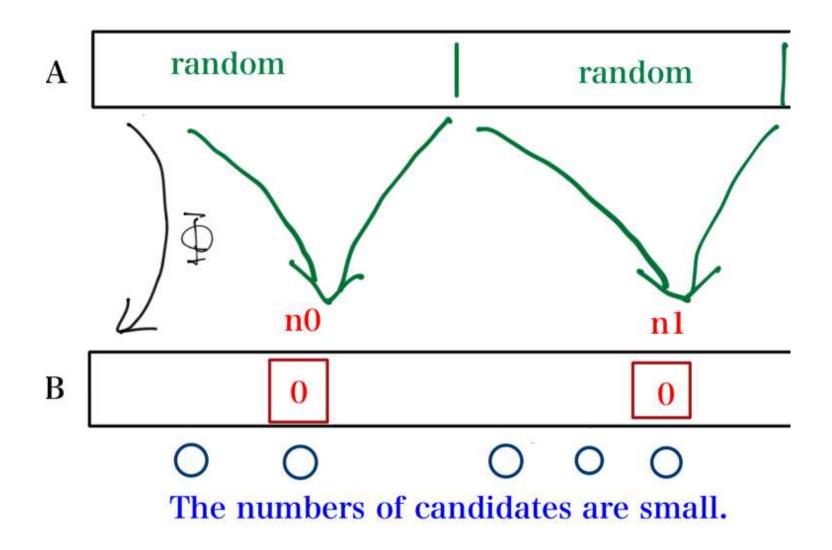
general case

- Construct $A \in SR$ and $B = \Phi(A) \notin CR$.
- Forcing $B(n_k) = 0$ in some positions (*)
- The number of candidates of n_k should be small $\Rightarrow B \notin CR$.

The requirement (*) may be strong because

$$\lambda(\{X \in 2^{\omega} : \Phi(X)(n_k) = 0\})$$

may be too small (even empty).



We divide the case into two by the induced measure μ .

- μ is "close to" uniform measure ($CR(\mu) \subseteq CR(\lambda)$) \Rightarrow the same method can be applied
- μ is "far from" uniform measure ($CR(\mu) \not\subseteq CR(\lambda)$) \Rightarrow we can show it by a different reason

$\operatorname{CR}(\mu) \not\subseteq \operatorname{CR}(\lambda)$

$\exists Y \in \operatorname{CR}(\mu) \setminus \operatorname{CR}(\lambda)$ By no-randomness-from-nothing for CR ,

 $\exists X \in \operatorname{CR} \ [\Phi(X) = Y].$ Then, $X \in \operatorname{SR}$ and $\Phi(X) \notin \operatorname{CR}$.

$\operatorname{CR}(\mu) \subseteq \operatorname{CR}(\lambda)$

Lemma 3 (essentially Bienvenu-Merkle). Let μ , ν be computable measures.

 $\operatorname{CR}(\mu) \subseteq \operatorname{CR}(\nu) \Rightarrow \operatorname{MLR}(\mu) \subseteq \operatorname{MLR}(\nu) \Rightarrow \mu \ll \nu$

« means absolute continuity.

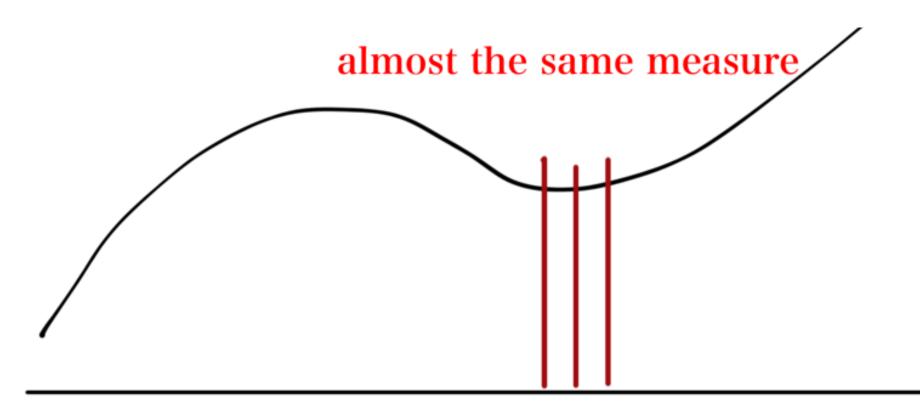
$\operatorname{CR}(\mu) \subseteq \operatorname{CR}(\lambda)$

Lemma 4. Let Φ be an a.e. computable function. Let μ be the induced measure from Φ and λ . Assume $\lambda \ll \mu$. For each $\sigma \in 2^{<\omega}$,

$$\lim_{n \to \infty} \lambda \{ X \in [\sigma] : \Phi(X)(n) = 0 \} = \frac{1}{2} \lambda(\sigma).$$

Proof. By the Radon-Nikodym theorem and Lévy's zero-one law.

$\operatorname{CR}(\mu) \subseteq \operatorname{CR}(\lambda)$



Background

Proof

Summary

Question

Summary

Summary

Question

Question 5. Does there exist $X \in SR$ such that, if $Y \leq_{tt} X$ then $Y \notin CR$. How about wtt?

I conjecture that we can not tt-compute (or wtt-compute) a computably random from a Schnorr random even nonuniformly.

Summary

- We found two problems that is possible non-uniformly but not possible uniformly.
- Analytical tools are useful to show results in computability. In particular, a.e. computable functions can be studied more from the measure-theoretic perspective.