A new result towards Fraïssé's conjecture conjecture.

Antonio Montalbán

University of California, Berkeley

February 2017 Dagstuhl, Germany

Reverse Mathematics refers to the program whose original motivating question is

"What set-existence axioms are necessary to do mathematics?"

asked in the setting of second-order arithmetic.

After a few decades of many researchers working in this program,

the following phenomenon emerged:

After a few decades of many researchers working in this program,

the following phenomenon emerged:

There are 5 axioms systems such that most theorems in mathematics are equivalent to one of them.

After a few decades of many researchers working in this program,

the following phenomenon emerged:

There are 5 axioms systems such that most theorems in mathematics are equivalent to one of them.

- RCA₀: Recursive Comprehension $+ \Sigma_{1}^{0}$ -induction $+$ Semiring axioms
- WK L_0 : Weak König's lemma
- ACA₀: Arithmetic Comprehension \iff "for every set X, X' exists".
- ATR₀: Arithmetic Transfinite recursion \iff " $\forall X, \forall$ ordinal $\alpha,$ $X^{(\alpha)}$ exists".
- Π^1_1 -CA₀: Π^1_1 -Comprehension \iff "∀X, the hyper-jump of X exists".

After a few decades of many researchers working in this program,

the following phenomenon emerged:

There are 5 axioms systems such that most theorems in mathematics are equivalent to one of them.

- RCA₀: Recursive Comprehension $+ \Sigma_{1}^{0}$ -induction $+$ Semiring axioms
- WK L_0 : Weak König's lemma
- ACA₀: Arithmetic Comprehension \iff "for every set X, X' exists".
- ATR₀: Arithmetic Transfinite recursion \iff " $\forall X, \forall$ ordinal $\alpha,$ $X^{(\alpha)}$ exists".
- Π^1_1 -CA₀: Π^1_1 -Comprehension \iff "∀X, the hyper-jump of X exists".

In particular, :

After a few decades of many researchers working in this program,

the following phenomenon emerged:

There are 5 axioms systems such that most theorems in mathematics are equivalent to one of them.

- RCA₀: Recursive Comprehension $+ \Sigma_{1}^{0}$ -induction $+$ Semiring axioms
- WKL₀: Weak König's lemma
- ACA₀: Arithmetic Comprehension \iff "for every set X, X' exists".
- ATR₀: Arithmetic Transfinite recursion \iff " $\forall X, \forall$ ordinal $\alpha,$ $X^{(\alpha)}$ exists".
- Π^1_1 -CA₀: Π^1_1 -Comprehension \iff "∀X, the hyper-jump of X exists".

In particular, :

Most of mathematics can be proved in Π^1_1 -CA₀.

Example

- **•** finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60]; \bullet
- **finite graphs [Robertson, Seymour];**
- **· labeled transfinite sequences** [Nash-Williams 65];
- **•** scattered linear orderings [Laver 71];

Example

- finite strings over a finite alphabet $[H]$ [Higman 52]; RCA₀
- finite trees [Kruskal 60]; ۰
- **finite graphs [Robertson, Seymour];**
- **I** labeled transfinite sequences [Nash-Williams 65];
- **•** scattered linear orderings [Laver 71];

Example

- finite strings over a finite alphabet $[Higman 52]$; RCA₀b
- **finite trees** [Kruskal 60]; $[Freedman] ATR₀F₀F₀F₀$ ۰
- **finite graphs [Robertson, Seymour];**
- **I** labeled transfinite sequences [Nash-Williams 65];
- **•** scattered linear orderings [Laver 71];

Example

The following sets are WQO under an embeddability relation:

- finite strings over a finite alphabet $[H]$ [Higman 52]; RCA₀
- **finite trees** [Kruskal 60]; $[Freedman] ATR₀F$ ۰
- **The finite graphs [Robertson, Seymour];**
- **I** labeled transfinite sequences [Nash-Williams 65];
- **•** scattered linear orderings [Laver 71];

 $\frac{1}{1}$ -CA₀ \forall

Example

- finite strings over a finite alphabet $[H]$ [Higman 52]; RCA₀ \neq
- **finite trees** [Kruskal 60]; $[Freedman] ATR₀F$ ۰ $\frac{1}{1}$ -CA₀ \forall **The finite graphs [Robertson, Seymour];** Π_1^1 -CA₀ \vdash ? labeled transfinite sequences [Nash-Williams 65]; Π_1^1 -CA₀ \vdash ? **•** scattered linear orderings [Laver 71];

Example

- finite strings over a finite alphabet $[H]$ [Higman 52]; RCA₀ \neq
- **finite trees** [Kruskal 60]; $[Freedman] ATR₀F$ ۰ $\frac{1}{1}$ -CA₀ \forall **The finite graphs [Robertson, Seymour];** ${}^{1}_{1}$ -CA₀ \vdash ? \bullet labeled transfinite sequences [Nash-Williams 65]; ${}^{1}_{1}$ -CA₀ \vdash ? **•** scattered linear orderings [Laver 71];

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA: The countable linear orderings form a WQO with respect to embeddablity. (i.e., there are no infinite descending sequences and no infinite antichains.)

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA: The countable linear orderings form a WQO with respect to embeddablity. (i.e., there are no infinite descending sequences and no infinite antichains.) Obs: Π_2^1 -CA₀ \vdash FRA. (By Laver's original proof.)

 Π_2^1 -CA₀ $^{\prime}$ $\overline{}$ Π_1^1 -CA₀ \int FRA w $ATR₀$ ľ $ACA₀$ ľ $WKL₀$ ľ $RCA₀$

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA: The countable linear orderings form a WQO with respect to embeddablity. (i.e., there are no infinite descending sequences and no infinite antichains.)

Obs: Π_2^1 -CA₀ \vdash FRA. (By Laver's original proof.) $Obs: FRA ≠ ∑ Π₁¹−_CA₀.$ (No true Π¹₂ statement does.)

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA: The countable linear orderings form a WQO with respect to embeddablity. (i.e., there are no infinite descending sequences and no infinite antichains.)

Obs: Π_2^1 -CA₀ \vdash FRA. (By Laver's original proof.) $Obs: FRA ≠ ∑ Π₁¹−_CA₀.$ (No true Π¹₂ statement does.) Theorem [Shore '93]: FRA \implies ATR₀ over RCA₀.

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA: The countable linear orderings form a WQO with respect to embeddablity. (i.e., there are no infinite descending sequences and no infinite antichains.) Obs: Π_2^1 -CA₀ \vdash FRA. (By Laver's original proof.) $Obs: FRA ≠ ∑ Π₁¹−_CA₀.$ (No true Π¹₂ statement does.) Π_2^1 -CA₀

Theorem [Shore '93]: FRA \implies ATR₀ over RCA₀.

Question: Is FRA provable in Π_1^1 -CA₀?

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA: The countable linear orderings form a WQO with respect to embeddablity. (i.e., there are no infinite descending sequences and no infinite antichains.) Obs: Π_2^1 -CA₀ \vdash FRA. (By Laver's original proof.)

 $Obs: FRA ≠ ∑ Π₁¹−_CA₀.$ (No true Π¹₂ statement does.) Theorem [Shore '93]: FRA \implies ATR₀ over RCA₀.

Question: Is FRA provable in Π_1^1 -CA₀?

Conjecture:[Clote '90][Simpson '99][Marcone] FRA is equivalent to ATR_0 over RCA₀.

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA: The countable linear orderings form a WQO with respect to embeddablity. (i.e., there are no infinite descending sequences and no infinite antichains.) Obs: Π_2^1 -CA₀ \vdash FRA. (By Laver's original proof.)

 $Obs: FRA ≠ ∑ Π₁¹−_CA₀.$ (No true Π¹₂ statement does.) Theorem [Shore '93]: FRA \implies ATR₀ over RCA₀.

Question: *i* ls FRA provable in Π_1^1 -CA₀?

Conjecture:[Clote '90][Simpson '99][Marcone] FRA is equivalent to ATR_0 over RCA₀.

[M 05] **FRA** is robust.

Claim $[M \ 05]$: RCA₀+FRA is the least system where it is possible to develop a reasonable theory of embeddability of linear orderings.

 $[M \ 05]$ FRA is robust.

Claim $[M \ 05]$: RCA₀+FRA is the least system where it is possible to develop a reasonable theory of embeddability of linear orderings.

 $[M\ 05]$ FRA is robust.

Theorem: FRA is equivalent to the following statements over $RCA₀$:

• [Kach, Marcone, M, Weiermann 11] For every ctble \mathcal{L} , there exists $n_{\mathcal{L}} \in \mathbb{N}$, such that: if $\mathcal L$ is colored with finitely many colors,

there is an embedding $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ many colors.

Claim $[M \ 05]$: RCA₀+FRA is the least system where it is possible to develop a reasonable theory of embeddability of linear orderings.

 $[M\ 05]$ FRA is robust.

Theorem: FRA is equivalent to the following statements over $RCA₀$:

• [Kach, Marcone, M, Weiermann 11] For every ctble \mathcal{L} , there exists $n_{\mathcal{L}} \in \mathbb{N}$, such that: if $\mathcal L$ is colored with finitely many colors,

there is an embedding $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ many colors.

- [M 05] Every scattered linear order is a finite sum of indecomposables;
- [M 05] Indecomposable is either ω or ω^* -sum of indecomposables of smaller rank;
- [M 05] Jullien's characterization of extendible linear orderings;

• etc.

Claim $[M \ 05]$: RCA₀+FRA is the least system where it is possible to develop a reasonable theory of embeddability of linear orderings.

 $[M\ 05]$ FRA is robust.

Theorem: FRA is equivalent to the following statements over $RCA₀$:

- [Kach, Marcone, M, Weiermann 11] For every ctble \mathcal{L} , there exists $n_{\mathcal{L}} \in \mathbb{N}$, such that: if $\mathcal L$ is colored with finitely many colors, there is an embedding $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ many colors.
	-
- [M 05] Every scattered linear order is a finite sum of indecomposables;
- [M 05] Indecomposable is either ω or ω^* -sum of indecomposables of smaller rank;
- [M 05] Jullien's characterization of extendible linear orderings;
- \bullet etc.

Marcone and M. continued studying FRA in subsequent papers.

Thm: [Laver 71] Scattered linear orderings are Better quasi ordered.

Thm:[Laver 71] Scattered linear orderings are Better quasi ordered.

BQOs enjoy better closure properties than WQOs.

Thm:[Laver 71] Scattered linear orderings are Better quasi ordered.

BQOs enjoy better closure properties than WQOs.

Definition: Given $X \in \omega^{\omega}$, let X^- be X without its least element.

Thm:[Laver 71] Scattered linear orderings are Better quasi ordered.

BQOs enjoy better closure properties than WQOs.

Definition: Given $X \in \omega^{\omega}$, let X^- be X without its least element. Definition: $(Q; \leq_Q)$ is a Better-quasi-ordering (bqo) if, for every continuous function $f: \omega^\omega \to Q$, there is an $X \in \omega^\omega$ such that $f(X) \leq_Q f(X^{-})$.

Thm: [Laver 71] Scattered linear orderings are Better quasi ordered.

BQOs enjoy better closure properties than WQOs.

Definition: Given $X \in \omega^{\omega}$, let X^- be X without its least element. Definition: $(Q; \leq_Q)$ is a Better-quasi-ordering (bqo) if, for every continuous function $f: \omega^\omega \to Q$, there is an $X \in \omega^\omega$ such that $f(X) \leq_Q f(X^{-})$.

BQO \Longrightarrow WQO: Proof: If q_0, q_1, \dots is bad for WQO, $f(X) = q_{X(0)}$ is bad for BQO.

Thm: [Laver 71] Scattered linear orderings are Better quasi ordered.

BQOs enjoy better closure properties than WQOs.

Definition: Given $X \in \omega^{\omega}$, let X^- be X without its least element. Definition: $(Q; \leq_Q)$ is a Better-quasi-ordering (bqo) if, for every continuous function $f: \omega^\omega \to Q$, there is an $X \in \omega^\omega$ such that $f(X) \leq_Q f(X^{-})$.

BQO \Longrightarrow WQO: Proof: If q_0, q_1, \dots is bad for WQO, $f(X) = q_{X(0)}$ is bad for BQO.

[Simpson 85] One can use Borel functions in the definition of BQO.

Thm:[Laver 71] Scattered linear orderings are Better quasi ordered.

BQOs enjoy better closure properties than WQOs.

Definition: Given $X \in \omega^{\omega}$, let X^- be X without its least element. Definition: $(Q; \leq_Q)$ is a Better-quasi-ordering (bqo) if, for every continuous function $f: \omega^\omega \to Q$, there is an $X \in \omega^\omega$ such that $f(X) \leq_Q f(X^{-})$.

BQO \Longrightarrow WQO: Proof: If q_0, q_1, \dots is bad for WQO, $f(X) = q_{X(0)}$ is bad for BQO.

[Simpson 85] One can use Borel functions in the definition of BQO.

[Marcone 96] A key lemma in Laver's proof, the minimal bad array lemma, implies Π_1^1 -CA₀.

Theorem: [Kihara, M. 17]The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Theorem: [Kihara, M. 17]The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^ω is universal [Marks], they wanted to extend their result to that case.

Theorem: [Kihara, M. 17]The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^ω is universal [Marks], they wanted to extend their result to that case.

Thm: [Selivanov 07] The 3-labeled WF forests under week homomorphisms are in correspondence with the Wadge degrees of Δ^0_2 3-partitions.

Theorem: [Kihara, M. 17]The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^ω is universal [Marks], they wanted to extend their result to that case.

Thm: [Selivanov 07] The 3-labeled WF forests under week homomorphisms are in correspondence with the Wadge degrees of Δ^0_2 3-partitions.

Kihara and M. extended this theorem to Borel partitions

Theorem: [Kihara, M. 17]The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^ω is universal [Marks], they wanted to extend their result to that case.

Thm: [M. 05] The indecomposable linear orders under embeddability are in correspondence with 2-labeled WF trees under homomorphisms.

Thm: [Selivanov 07] The 3-labeled WF forests under week homomorphisms are in correspondence with the Wadge degrees of Δ^0_2 3-partitions.

Kihara and M. extended this theorem to Borel partitions

Theorem: [Kihara, M. 17]The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^ω is universal [Marks], they wanted to extend their result to that case.

Thm: [M. 05] The indecomposable linear orders under embeddability are in correspondence with 2-labeled WF trees under homomorphisms.

Thm: [Selivanov 07] The 3-labeled WF forests under week homomorphisms are in correspondence with the Wadge degrees of Δ^0_2 3-partitions.

Kihara and M. extended this theorem to Borel partitions

Thm: [Engelen–Miller–Steel 87] The Wadge degrees of Borel 3-partitions are BQO.

Theorem: [Kihara, M. 17]The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^ω is universal [Marks], they wanted to extend their result to that case.

Thm: [M. 05] The indecomposable linear orders under embeddability are in correspondence with 2-labeled WF trees under homomorphisms.

Thm: [Selivanov 07] The 3-labeled WF forests under week homomorphisms are in correspondence with the Wadge degrees of Δ^0_2 3-partitions.

Kihara and M. extended this theorem to Borel partitions

Thm: [Engelen–Miller–Steel 87] The Wadge degrees of Borel 3-partitions are BQO.

This is a new proof of FRA!

Theorem: [Kihara, M. 17]The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^ω is universal [Marks], they wanted to extend their result to that case.

Thm: [M. 05] The indecomposable linear orders under embeddability are in correspondence with 2-labeled WF trees under homomorphisms.

Thm: [Selivanov 07] The 3-labeled WF forests under week homomorphisms are in correspondence with the Wadge degrees of Δ^0_2 3-partitions.

Kihara and M. extended this theorem to Borel partitions

Thm: [Engelen–Miller–Steel 87] The Wadge degrees of Borel 3-partitions are BQO.

This is a new proof of FRA!

using Δ^0_2 -Determinacy, Π^1_1 -transfinite recursion.

Theorem: [Kihara, M. 17]The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^ω is universal [Marks], they wanted to extend their result to that case.

Thm: [M. 05] The indecomposable linear orders under embeddability are in correspondence with 2-labeled WF trees under homomorphisms.

Thm: [Selivanov 07] The 3-labeled WF forests under week homomorphisms are in correspondence with the Wadge degrees of Δ^0_2 3-partitions.

Kihara and M. extended this theorem to Borel partitions

Thm: [Engelen–Miller–Steel 87] The Wadge degrees of Borel 3-partitions are BQO.

¡This is a new proof of FRA!

using Δ^0_2 -Determinacy, Π^1_1 -transfinite recursion.

After streamlining that argument...

After streamlining that argument...

Theorem: [M. 16] Fraïssé's conjecture is provable in $\Pi^1_1\text{-}\mathsf{CA}_0$.

After streamlining that argument...

Theorem: [M. 16] Fraïssé's conjecture is provable in $\Pi^1_1\text{-}\mathsf{CA}_0$.

Furthermore, we prove FRA from a combinatorial statement weaker than $\Pi^1_1\textsf{-CA}_0$.

Definition: $(Q; \leq_Q)$ is a Better-quasi-ordering (bqo) if, for every continuous function $f: \omega^{\omega} \to Q$, there is an $X\in\omega^\omega$ such that $f(X)\leq_Q f(X^-).$

Definition: $(Q; \leq_Q)$ is a Borel-Better-quasi-ordering (bqo) if, for every Borel function $f: \omega^{\omega} \to Q$, there is an $X\in\omega^\omega$ such that $f(X)\leq_Q f(X^-).$

Theorem [Simpson 85] $(\Pi_1^1$ -TR) BQOs \iff Borel BQOs.

Definition: $(Q; \leq_Q)$ is a Δ_2^0 -Better-quasi-ordering (bqo) if, for every Δ_2^0 function $f: \omega^{\omega} \to Q$, there is an $X\in\omega^\omega$ such that $f(X)\leq_Q f(X^-).$

> Theorem [Simpson 85] $(\Pi_1^1$ -TR) BQOs \iff Borel BQOs. Theorem: [M] $(\Pi_1^1$ -CA₀) BQOs $\iff \Delta_2^0$ -BQOs.

Definition: $(Q; \leq_Q)$ is a Δ_2^0 -Better-quasi-ordering (bqo) if, for every Δ_2^0 function $f: \omega^{\omega} \to Q$, there is an $X\in\omega^\omega$ such that $f(X)\leq_Q f(X^-).$

Theorem: [M.] $ATR_0 + "3$ is a Δ_2^0 -BQO" implies FRA. •••••

ATR $_0+$ $\stackrel{\vee}{3}$ is Δ^0_2 -bqo FRA $ATR₀$ Theorem [Simpson 85] $(\Pi_1^1$ -TR) BQOs \iff Borel BQOs. Theorem: [M] $(\Pi_1^1$ -CA₀) BQOs $\iff \Delta_2^0$ -BQOs.

Definition: $(Q; \leq_Q)$ is a Δ_2^0 -Better-quasi-ordering (bqo) if, for every Δ_2^0 function $f: \omega^{\omega} \to Q$, there is an $X\in\omega^\omega$ such that $f(X)\leq_Q f(X^-).$

Theorem: [M.] $ATR_0 + "3$ is a Δ_2^0 -BQO" implies FRA. •••••

 $\overline{\text{ATR}}_0+$ $\overline{3}$ is Δ^0_2 -bqo $\overline{\text{Theorem:}}$ $_{\text{[Marcone O5]}}(\text{ATR}_0)$ 3 is a BQO. FRA $ATR₀$ Theorem [Simpson 85] $(\Pi_1^1$ -TR) BQOs \iff Borel BQOs. Theorem: [M] $(\Pi_1^1$ -CA₀) BQOs $\iff \Delta_2^0$ -BQOs.

Definition: $(Q; \leq_Q)$ is a Δ_2^0 -Better-quasi-ordering (bqo) if, for every Δ_2^0 function $f: \omega^{\omega} \to Q$, there is an $X\in\omega^\omega$ such that $f(X)\leq_Q f(X^-).$

Theorem: [M.] $ATR_0 + "3$ is a Δ_2^0 -BQO" implies FRA. •••••

 Π_1^1 -CA₀ ATR $_0+$ $\stackrel{\vee}{3}$ is Δ^0_2 -bqo FRA $ATR₀$ Theorem [Simpson 85] $(\Pi_1^1$ -TR) BQOs \iff Borel BQOs. Theorem: [M] $(\Pi_1^1$ -CA₀) BQOs $\iff \Delta_2^0$ -BQOs. Theorem: $M_{\text{Marcone } 05}$ (ATR₀) 3 is a BQO. Corollary: $(\Pi_1^1$ -CA₀) 3 is a Δ_2^0 -BQO.

Definition: $(Q; \leq_Q)$ is a Δ_2^0 -Better-quasi-ordering (bqo) if, for every Δ_2^0 function $f: \omega^{\omega} \to Q$, there is an $X\in\omega^\omega$ such that $f(X)\leq_Q f(X^-).$

Theorem: [M.] $ATR_0 + "3$ is a Δ_2^0 -BQO" implies FRA. •••••

 Π_1^1 -CA₀ ATR $_0+$ $\stackrel{\vee}{3}$ is Δ^0_2 -bqo FRA $ATR₀$ Theorem [Simpson 85] $(\Pi_1^1$ -TR) BQOs \iff Borel BQOs. Theorem: [M] $(\Pi_1^1$ -CA₀) BQOs $\iff \Delta_2^0$ -BQOs. Theorem: $M_{\text{Marcone } 05}$ (ATR₀) 3 is a BQO. Corollary: $(\Pi_1^1$ -CA₀) 3 is a Δ_2^0 -BQO. Obs: ATR₀ + 3 is Δ_2^0 -BQO $\not\vdash \Pi_1^1$ -CA₀

Definition: $(Q; \leq_Q)$ is a Δ_2^0 -Better-quasi-ordering (bqo) if, for every Δ_2^0 function $f: \omega^{\omega} \to Q$, there is an $X\in\omega^\omega$ such that $f(X)\leq_Q f(X^-).$

Theorem: [M.] $ATR_0 + "3$ is a Δ_2^0 -BQO" implies FRA. •••••

 Π_1^1 -CA₀ ATR $_0+$ $\stackrel{\vee}{3}$ is Δ^0_2 -bqo FRA $ATR₀$ Theorem [Simpson 85] $(\Pi_1^1$ -TR) BQOs \iff Borel BQOs. Theorem: [M] $(\Pi_1^1$ -CA₀) BQOs $\iff \Delta_2^0$ -BQOs. Theorem: $M_{\text{Marcone } 05}$ (ATR₀) 3 is a BQO. Corollary: $(\Pi_1^1$ -CA₀) 3 is a Δ_2^0 -BQO. Obs: ATR₀ + 3 is Δ_2^0 -BQO $\not\vdash \Pi_1^1$ -CA₀ because it's Π_2^1 .