A new result towards Fraïssé's conjecture conjecture.

Antonio Montalbán

University of California, Berkeley

February 2017 Dagstuhl, Germany *Reverse Mathematics* refers to the program whose original motivating question is

"What set-existence axioms are necessary to do mathematics?"

asked in the setting of second-order arithmetic.

After a few decades of many researchers working in this program,

the following phenomenon emerged:

After a few decades of many researchers working in this program,

the following phenomenon emerged:

There are 5 axioms systems such that *most* theorems in mathematics are equivalent to one of them.

After a few decades of many researchers working in this program,

the following phenomenon emerged:

There are 5 axioms systems such that *most* theorems in mathematics are equivalent to one of them.

- RCA₀: Recursive Comprehension + Σ_1^0 -induction + Semiring axioms
- WKL₀: Weak König's lemma
- ACA₀: Arithmetic Comprehension \iff "for every set X, X' exists".
- ATR₀: Arithmetic Transfinite recursion \iff " $\forall X, \forall$ ordinal $\alpha, X^{(\alpha)}$ exists".
- Π_1^1 -CA₀: Π_1^1 -Comprehension \iff " $\forall X$, the hyper-jump of X exists".

After a few decades of many researchers working in this program,

the following phenomenon emerged:

There are 5 axioms systems such that *most* theorems in mathematics are equivalent to one of them.

- RCA₀: Recursive Comprehension + Σ_1^0 -induction + Semiring axioms
- WKL₀: Weak König's lemma
- ACA₀: Arithmetic Comprehension \iff "for every set X, X' exists".
- ATR₀: Arithmetic Transfinite recursion \iff " $\forall X, \forall$ ordinal $\alpha, X^{(\alpha)}$ exists".
- Π_1^1 -CA₀: Π_1^1 -Comprehension \iff " $\forall X$, the hyper-jump of X exists".

In particular, :

After a few decades of many researchers working in this program,

the following phenomenon emerged:

There are 5 axioms systems such that *most* theorems in mathematics are equivalent to one of them.

- RCA₀: Recursive Comprehension + Σ_1^0 -induction + Semiring axioms
- WKL₀: Weak König's lemma
- ACA₀: Arithmetic Comprehension \iff "for every set X, X' exists".
- ATR₀: Arithmetic Transfinite recursion \iff " $\forall X, \forall$ ordinal $\alpha, X^{(\alpha)}$ exists".
- Π_1^1 -CA₀: Π_1^1 -Comprehension \iff " $\forall X$, the hyper-jump of X exists".

In particular, :

Most of mathematics can be proved in Π_1^1 -CA₀.

Example

The following sets are WQO under an embeddability relation:

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60];
- finite graphs [Robertson, Seymour];
- labeled transfinite sequences [Nash-Williams 65];
- scattered linear orderings [Laver 71];

Example

The following sets are WQO under an embeddability relation:

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60];
- finite graphs [Robertson, Seymour];
- labeled transfinite sequences [Nash-Williams 65];
- scattered linear orderings [Laver 71];

RCA

Example

The following sets are WQO under an embeddability relation:

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60];
- finite graphs [Robertson, Seymour];
- labeled transfinite sequences [Nash-Williams 65];
- scattered linear orderings [Laver 71];

RCA₀⊬ [Friedman] ATR∩⊬

Example

The following sets are WQO under an embeddability relation:

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60];
- finite graphs [Robertson, Seymour];
- labeled transfinite sequences [Nash-Williams 65];
- scattered linear orderings [Laver 71];

RCA₀⊬ [Friedman] ATR₀⊬

[Friedman, Robertson, Seymour] Π¹₁-CA₀⊬

Example

The following sets are WQO under an embeddability relation:

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60]; [Friedman] ATR₀ //
 finite graphs [Robertson, Seymour]; [Friedman, Robertson, Seymour] Π₁¹-CA₀ //
 - labeled transfinite sequences [Nash-Williams 65];
 - scattered linear orderings [Laver 71];

RCA₀⊬

 Π^1_1 -CA₀ \vdash ?

Example

The following sets are WQO under an embeddability relation:

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60];
 - finite graphs [Robertson, Seymour]; [Friedman, Robertson, Seymour] Π_1^1 -CA₀ $\not\vdash$
 - labeled transfinite sequences [Nash-Williams 65];
 - scattered linear orderings [Laver 71];

RCA₀⊬

[Friedman] ATR0H

¿Π₁¹-CA₀⊢?

¿Π¹₁-CA₀⊢?

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA: The countable linear orderings form a WQO with respect to embeddablity. (i.e., there are no infinite descending sequences and no infinite antichains.)

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA: The countable linear orderings form a WQO with respect to embeddablity. (i.e., there are no infinite descending sequences and no infinite antichains.)

Obs: Π_2^1 -CA₀ \vdash FRA. (By Laver's original proof.)

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA: The countable linear orderings form a WQO with respect to embeddablity. (i.e., there are no infinite descending sequences and no infinite antichains.)

Obs: Π_2^1 -CA₀ \vdash FRA. (By Laver's original proof.) Obs: FRA $\implies \Pi_1^1$ -CA₀. (No true Π_2^1 statement does.)

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA: The countable linear orderings form a WQO with respect to embeddablity. (i.e., there are no infinite descending sequences and no infinite antichains.)

Obs: Π_2^1 -CA₀ \vdash FRA. (By Laver's original proof.) Obs: FRA $\neq \Rightarrow \Pi_1^1$ -CA₀. (No true Π_2^1 statement does.) Theorem [Shore '93]: FRA \Longrightarrow ATR₀ over RCA₀.

Theorem [Fraïssé's Conjecture '48; Laver '71]
FRA: The countable linear orderings form a
WQO with respect to embeddablity.
(i.e., there are no infinite descending sequences
and no infinite antichains.)
Obs: Π¹₂-CA₀ ⊢FRA. (By Laver's original proof.) Π¹₂-CA₀

Obs: FRA $\neq \Rightarrow \Pi_1^1$ -CA₀. (No true Π_2^1 statement does.) Theorem [Shore '93]: FRA \implies ATR₀ over RCA₀.

Question: Is FRA provable in Π_1^1 -CA₀?

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA: The countable linear orderings form a WQO with respect to embeddablity. (i.e., there are no infinite descending sequences and no infinite antichains.)

Obs: Π_2^1 -CA₀ \vdash FRA.(By Laver's original proof.)Obs: FRA $\Rightarrow \Pi_1^1$ -CA₀.(No true Π_2^1 statement does.)Theorem [Shore '93]: FRA \Rightarrow ATR₀ over RCA₀.

Question: Is FRA provable in Π_1^1 -CA₀?

Conjecture: [Clote '90] [Simpson '99] [Marcone] FRA is equivalent to ATR₀ over RCA₀.

Theorem [Fraïssé's Conjecture '48; Laver '71] FRA: The countable linear orderings form a WQO with respect to embeddablity. (i.e., there are no infinite descending sequences and no infinite antichains.)

Obs: Π_2^1 -CA₀ \vdash FRA.(By Laver's original proof.)Obs: FRA $\Rightarrow \Pi_1^1$ -CA₀. (No true Π_2^1 statement does.)Theorem [Shore '93]: FRA \Rightarrow ATR₀ over RCA₀.

Question: ¿Is FRA provable in Π_1^1 -CA₀?

 $\label{eq:conjecture:Clote '90][Simpson '99][Marcone]} FRA is equivalent to ATR_0 over RCA_0.$

[M 05]

FRA is robust.

Claim[M 05]: RCA_0+FRA is the least system where it is possible to develop a reasonable theory of embeddability of linear orderings.

[M 05]

FRA is robust.

Claim[M 05]: RCA_0+FRA is the least system where it is possible to develop a reasonable theory of embeddability of linear orderings.

[M 05] FRA is robust.

Theorem: FRA is equivalent to the following statements over RCA₀:

 [Kach,Marcone,M,Weiermann 11] For every ctble L, there exists n_L ∈ N, such that: if L is colored with finitely many colors,

there is an embedding $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ many colors.

Claim[M 05]: RCA_0+FRA is the least system where it is possible to develop a reasonable theory of embeddability of linear orderings.

[M 05] FRA is robust.

Theorem: FRA is equivalent to the following statements over RCA₀:

• [Kach,Marcone,M,Weiermann 11] For every ctble \mathcal{L} , there exists $n_{\mathcal{L}} \in \mathbb{N}$, such that: if \mathcal{L} is colored with finitely many colors,

there is an embedding $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ many colors.

- [M 05] Every scattered linear order is a finite sum of indecomposables;
- [M 05] Indecomposable is either ω or ω^* -sum of indecomposables of smaller rank;
- [M 05] Jullien's characterization of extendible linear orderings;

etc.

Claim[M 05]: RCA_0+FRA is the least system where it is possible to develop a reasonable theory of embeddability of linear orderings.

[M 05] FRA is robust.

Theorem: FRA is equivalent to the following statements over RCA₀:

• [Kach,Marcone,M,Weiermann 11] For every ctble \mathcal{L} , there exists $n_{\mathcal{L}} \in \mathbb{N}$, such that: if \mathcal{L} is colored with finitely many colors,

there is an embedding $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ many colors.

- [M 05] Every scattered linear order is a finite sum of indecomposables;
- [M 05] Indecomposable is either ω or ω^* -sum of indecomposables of smaller rank;
- [M 05] Jullien's characterization of extendible linear orderings;
- etc.

Marcone and M. continued studying FRA in subsequent papers.

Antonio Montalbán (UC Berkeley)

Fraïssé's conjecture

Thm: [Laver 71] Scattered linear orderings are *Better quasi ordered*.

Thm: [Laver 71] Scattered linear orderings are *Better quasi ordered*.

BQOs enjoy better closure properties than WQOs.

Thm: [Laver 71] Scattered linear orderings are *Better quasi ordered*.

BQOs enjoy better closure properties than WQOs.

Definition: Given $X \in \omega^{\omega}$, let X^- be X without its least element.

Thm: [Laver 71] Scattered linear orderings are *Better quasi ordered*.

BQOs enjoy better closure properties than WQOs.

Definition: Given $X \in \omega^{\omega}$, let X^- be X without its least element. Definition: $(Q; \leq_Q)$ is a *Better-quasi-ordering (bqo)* if, for every continuous function $f: \omega^{\omega} \to Q$, there is an $X \in \omega^{\omega}$ such that $f(X) \leq_Q f(X^-)$.

Thm: [Laver 71] Scattered linear orderings are *Better quasi ordered*.

BQOs enjoy better closure properties than WQOs.

Definition: Given $X \in \omega^{\omega}$, let X^- be X without its least element. Definition: $(Q; \leq_Q)$ is a *Better-quasi-ordering (bqo)* if, for every continuous function $f: \omega^{\omega} \to Q$, there is an $X \in \omega^{\omega}$ such that $f(X) \leq_Q f(X^-)$.

BQO \implies WQO: Proof: If q_0, q_1, \dots is bad for WQO, $f(X) = q_{X(0)}$ is bad for BQO.

Thm: [Laver 71] Scattered linear orderings are *Better quasi ordered*.

BQOs enjoy better closure properties than WQOs.

Definition: Given $X \in \omega^{\omega}$, let X^- be X without its least element. Definition: $(Q; \leq_Q)$ is a *Better-quasi-ordering (bqo)* if, for every continuous function $f: \omega^{\omega} \to Q$, there is an $X \in \omega^{\omega}$ such that $f(X) \leq_Q f(X^-)$.

BQO \implies WQO: Proof: If q_0, q_1, \dots is bad for WQO, $f(X) = q_{X(0)}$ is bad for BQO.

[Simpson 85] One can use Borel functions in the definition of BQO.

Thm:[Laver 71] Scattered linear orderings are *Better quasi ordered*.

BQOs enjoy better closure properties than WQOs.

Definition: Given $X \in \omega^{\omega}$, let X^- be X without its least element. Definition: $(Q; \leq_Q)$ is a *Better-quasi-ordering (bqo)* if, for every continuous function $f: \omega^{\omega} \to Q$, there is an $X \in \omega^{\omega}$ such that $f(X) \leq_Q f(X^-)$.

BQO \implies WQO: Proof: If q_0, q_1, \dots is bad for WQO, $f(X) = q_{X(0)}$ is bad for BQO.

[Simpson 85] One can use Borel functions in the definition of BQO.

[Marcone 96] A key lemma in Laver's proof, the minimal bad array lemma, implies Π_1^1 -CA₀.

Theorem: [Kihara, M. 17] The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Theorem: [Kihara, M. 17] The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^{ω} is universal [Marks], they wanted to extend their result to that case.

Theorem: [Kihara, M. 17] The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^{ω} is universal [Marks], they wanted to extend their result to that case.

Thm: [Selivanov 07] The 3-labeled WF forests under week homomorphisms are in correspondence with the Wadge degrees of Δ_2^0 3-partitions.

Theorem: [Kihara, M. 17] The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^{ω} is universal [Marks], they wanted to extend their result to that case.

Thm: [Selivanov 07] The 3-labeled WF forests under week homomorphisms are in correspondence with the Wadge degrees of Δ_2^0 3-partitions.

Kihara and M. extended this theorem to Borel partitions

Theorem: [Kihara, M. 17] The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^{ω} is universal [Marks], they wanted to extend their result to that case.

Thm: [M. 05] The indecomposable linear orders under embeddability are in correspondence with 2-labeled WF trees under homomorphisms.

Thm: [Selivanov 07] The 3-labeled WF forests under week homomorphisms are in correspondence with the Wadge degrees of Δ_2^0 3-partitions.

Kihara and M. extended this theorem to Borel partitions

Theorem: [Kihara, M. 17] The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^{ω} is universal [Marks], they wanted to extend their result to that case.

Thm: [M. 05] The indecomposable linear orders under embeddability are in correspondence with 2-labeled WF trees under homomorphisms.

Thm: [Selivanov 07] The 3-labeled WF forests under week homomorphisms are in correspondence with the Wadge degrees of Δ_2^0 3-partitions.

Kihara and M. extended this theorem to Borel partitions

Thm: [Engelen-Miller-Steel 87] The Wadge degrees of Borel 3-partitions are BQO.

Theorem: [Kihara, M. 17] The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^{ω} is universal [Marks], they wanted to extend their result to that case.

Thm: [M. 05] The indecomposable linear orders under embeddability are in correspondence with 2-labeled WF trees under homomorphisms.

Thm: [Selivanov 07] The 3-labeled WF forests under week homomorphisms are in correspondence with the Wadge degrees of Δ_2^0 3-partitions.

Kihara and M. extended this theorem to Borel partitions

Thm: [Engelen-Miller-Steel 87] The Wadge degrees of Borel 3-partitions are BQO.

This is a new proof of FRA!

Theorem: [Kihara, M. 17] The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^{ω} is universal [Marks], they wanted to extend their result to that case.

Thm: [M. 05] The indecomposable linear orders under embeddability are in correspondence with 2-labeled WF trees under homomorphisms.

Thm: [Selivanov 07] The 3-labeled WF forests under week homomorphisms are in correspondence with the Wadge degrees of Δ_2^0 3-partitions.

Kihara and M. extended this theorem to Borel partitions

Thm: [Engelen-Miller-Steel 87] The Wadge degrees of Borel 3-partitions are BQO.

This is a new proof of FRA!

using Δ_2^0 -Determinacy, Π_1^1 -transfinite recursion.

Antonio Montalbán (UC Berkeley)

Fraïssé's conjecture

Theorem: [Kihara, M. 17] The uniform Turing- to many-one-degree invariant functions compared on a cone are in correspondence with the Wadge degree.

Since \equiv_m on 3^{ω} is universal [Marks], they wanted to extend their result to that case.

Thm: [M. 05] The indecomposable linear orders under embeddability are in correspondence with 2-labeled WF trees under homomorphisms.

Thm: [Selivanov 07] The 3-labeled WF forests under week homomorphisms are in correspondence with the Wadge degrees of Δ_2^0 3-partitions.

Kihara and M. extended this theorem to Borel partitions

Thm: [Engelen-Miller-Steel 87] The Wadge degrees of Borel 3-partitions are BQO.

¡This is a new proof of FRA!

using Δ_2^0 -Determinacy, Π_1^1 -transfinite recursion.

Antonio Montalbán (UC Berkeley)

Fraïssé's conjecture

After streamlining that argument...

After streamlining that argument...

Theorem: [M. 16] Fraïssé's conjecture is provable in Π_1^1 -CA₀.

After streamlining that argument...

Theorem: [M. 16] Fraïssé's conjecture is provable in Π_1^1 -CA₀.

Furthermore, we prove FRA from a combinatorial statement weaker than Π_1^1 -CA₀.

Antonio Montalbán (UC Berkeley)

Fraïssé's conjecture

Definition: $(Q; \leq_Q)$ is a Better-quasi-ordering (bqo) if, for every continuous function $f: \omega^{\omega} \to Q$, there is an $X \in \omega^{\omega}$ such that $f(X) \leq_Q f(X^-)$.

Definition: $(Q; \leq_Q)$ is a Borel-Better-quasi-ordering (bqo) if, for every Borel function $f: \omega^{\omega} \to Q$, there is an $X \in \omega^{\omega}$ such that $f(X) \leq_Q f(X^-)$.

Theorem [Simpson 85] (Π_1^1 -TR) BQOs \iff Borel BQOs.

Definition: $(Q; \leq_Q)$ is a Δ_2^0 -Better-quasi-ordering (bqo) if, for every Δ_2^0 function $f: \omega^\omega \to Q$, there is an $X \in \omega^\omega$ such that $f(X) \leq_Q f(X^-)$.

> Theorem [Simpson 85] (Π_1^1 -TR) BQOs \iff Borel BQOs. Theorem: [M] (Π_1^1 -CA₀) BQOs $\iff \Delta_2^0$ -BQOs.

Definition: $(Q; \leq_Q)$ is a Δ_2^0 -Better-quasi-ordering (bqo) if, for every Δ_2^0 function $f: \omega^\omega \to Q$, there is an $X \in \omega^\omega$ such that $f(X) \leq_Q f(X^-)$.

Theorem: [M.] ATR₀ + "3 is a Δ_2^0 -BQO" implies FRA. • • •

Definition: $(Q; \leq_Q)$ is a Δ_2^0 -Better-quasi-ordering (bqo) if, for every Δ_2^0 function $f: \omega^\omega \to Q$, there is an $X \in \omega^\omega$ such that $f(X) \leq_Q f(X^-)$.

Theorem: [M.] ATR₀ + "3 is a Δ_2^0 -BQO" implies FRA. • • •

 $\begin{array}{c} \mbox{Theorem [Simpson 85]} (\Pi_1^1\mbox{-}TR) \ \mbox{BQOs} \iff \ \mbox{Borel BQOs}. \\ & & & \\ \mbox{Theorem: [M]} & (\Pi_1^1\mbox{-}CA_0) \ \mbox{BQOs} \iff \Delta_2^0\mbox{-}BQOs. \\ \mbox{ATR}_0\mbox{+}3 \ \mbox{is } \Delta_2^0\mbox{-}bqo \ \mbox{Theorem: [Marcone 05]}(ATR_0) \ \mbox{3 is a BQO.} \\ & & & \\ \mbox{FRA} \\ \mbox{ATR}_0 \end{array}$

Definition: $(Q; \leq_Q)$ is a Δ_2^0 -Better-quasi-ordering (bqo) if, for every Δ_2^0 function $f: \omega^\omega \to Q$, there is an $X \in \omega^\omega$ such that $f(X) \leq_Q f(X^-)$.

Theorem: [M.] ATR₀ + "3 is a Δ_2^0 -BQO" implies FRA. • • •

 $\begin{array}{c} \mbox{Theorem [Simpson 85]} (\Pi_1^1 \mbox{-}TR) \ \mbox{BQOs} \iff \ \mbox{Borel BQOs}. \\ \mbox{Π_1^1-CA_0$} & & & & & & \\ \mbox{$\Pi_1^1$-CA_0$} & & & & & & & \\ \mbox{Π_1^1-CA_0$} & & & & & & & & \\ \mbox{Π_1^1-CA_0$} & & & & & & & & \\ \mbox{Π_1^1-CA_0$} & & & & & & & & \\ \mbox{Π_1^1-CA_0$} & & & & & & & & \\ \mbox{Π_1^1-CA_0$} & & & & & & & & \\ \mbox{Π_1^1-CA_0$} & & & & & & & \\ \mbox{Π_1^1-CA_0$} & & & & & & & \\ \mbox{Π_1^1-CA_0$} & & & & & & & \\ \mbox{Π_1^1-CA_0$} & & \\ \mbox{$\Pi_1^1$-CA_0$} & & & \\ \mbox{Π_1^1-CA_0$} & & \\ \mbobx{$\Pi_1^1$-CA_0$

Definition: $(Q; \leq_Q)$ is a Δ_2^0 -Better-quasi-ordering (bqo) if, for every Δ_2^0 function $f: \omega^\omega \to Q$, there is an $X \in \omega^\omega$ such that $f(X) \leq_Q f(X^-)$.

Theorem: [M.] ATR₀ + "3 is a Δ_2^0 -BQO" implies FRA. • • •

 $\begin{array}{c} \mbox{Theorem [Simpson 85]} (\Pi_1^1 - TR) \ BQOs \iff \mbox{Borel BQOs.} \\ \Pi_1^1 - CA_0 & & \\ \mbox{Theorem: [M]} & (\Pi_1^1 - CA_0) \ BQOs \iff \Delta_2^0 - BQOs. \\ \mbox{ATR}_0 + 3 \ is \ \Delta_2^0 - bqo & & \\ \mbox{Theorem: [Marcone 05]}(ATR_0) \ 3 \ is \ a \ BQO. \\ \mbox{Corollary:} & (\Pi_1^1 - CA_0) \ 3 \ is \ a \ \Delta_2^0 - BQO. \\ \mbox{Obs: ATR}_0 + 3 \ is \ \Delta_2^0 - BQO \ \not\vdash \Pi_1^1 - CA_0 \end{array}$

Definition: $(Q; \leq_Q)$ is a Δ_2^0 -Better-quasi-ordering (bqo) if, for every Δ_2^0 function $f: \omega^\omega \to Q$, there is an $X \in \omega^\omega$ such that $f(X) \leq_Q f(X^-)$.

Theorem: [M.] ATR₀ + "3 is a Δ_2^0 -BQO" implies FRA. • • •

 $\begin{array}{c} \mbox{Theorem [Simpson 85]} (\Pi_1^1 - TR) \ BQOs \iff \mbox{Borel BQOs.} \\ \Pi_1^1 - CA_0 & & \\ \mbox{Theorem: [M]} & (\Pi_1^1 - CA_0) \ BQOs \iff \Delta_2^0 - BQOs. \\ \mbox{ATR}_0 + 3 \ is \ \Delta_2^0 - bqo & & \\ \mbox{Theorem: [Marcone 05]}(ATR_0) \ 3 \ is \ a \ BQO. \\ \mbox{Corollary:} & (\Pi_1^1 - CA_0) \ 3 \ is \ a \ \Delta_2^0 - BQO. \\ \mbox{Obs: ATR}_0 + 3 \ is \ \Delta_2^0 - BQO \ \not/\Pi_1^1 - CA_0 \ because \ it's \ \Pi_2^1. \end{array}$