Weak truth table degrees of categoricity

Selwyn Ng

Nanyang Technological University, Singapore

Feb 2017

E

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigoplus \bullet \right\} & \left\{ \begin{array}{ccc} \square & \bullet \end{array} \right. \end{array} \right.$

する

- Study how computation interacts with various mathematical concepts.
- Complexity of constructions and objects we use in mathematics (how to calibrate?)
- Can formalize this more syntactically (reverse math, etc).
- Or more model theoretically...

∢ ロ ▶ ∢ 何 ▶ ∢ ヨ ▶

- Study how computation interacts with various mathematical concepts.
- Complexity of constructions and objects we use in mathematics (how to calibrate?)
- Can formalize this more syntactically (reverse math, etc).
- Or more model theoretically...

COLLECT

 $\left\{ \left\vert \left\{ \mathbf{F}\right\} \right\vert \times \left\{ \left\vert \mathbf{F}\right\vert \right\} \right\}$

• In computable model / structure theory, we place different effective (i.e. algorithmic) restrictions

- presentations of a structure,
- complexity of isomorphisms within an isomorphism type, $\hskip 4pt \Box$
- In this talk we want to focus on (Turing) degrees and interactions with these.
- For instance, classically, given any structure A, a *copy* or a *presentation* is simply $\mathcal{B} = (\text{dom}(\mathcal{B}), R^{\mathcal{B}}, f^{\mathcal{B}}, \cdots)$ such that $\mathcal{B} \cong \mathcal{A}.$
- \bullet If $\mathcal A$ is countable and the language is computable, then this allows us to talk about deg(\mathcal{B}).

• In computable model / structure theory, we place different effective (i.e. algorithmic) restrictions

- presentations of a structure,
- complexity of isomorphisms within an isomorphism type,
- In this talk we want to focus on (Turing) degrees and interactions with these.
- For instance, classically, given any structure A, a *copy* or a *presentation* is simply $\mathcal{B} = (\text{dom}(\mathcal{B}), R^{\mathcal{B}}, f^{\mathcal{B}}, \cdots)$ such that $\mathcal{B} \cong \mathcal{A}.$
- \bullet If $\mathcal A$ is countable and the language is computable, then this allows us to talk about deg(\mathcal{B}).

重

• In computable model / structure theory, we place different effective (i.e. algorithmic) restrictions

- presentations of a structure,
- complexity of isomorphisms within an isomorphism type,
- In this talk we want to focus on (Turing) degrees and interactions with these.
- For instance, classically, given any structure A, a *copy* or a *presentation* is simply $\mathcal{B} = (\text{dom}(\mathcal{B}), R^{\mathcal{B}}, f^{\mathcal{B}}, \cdots)$ such that $\mathcal{B} \cong \mathcal{A}.$
- \bullet If $\mathcal A$ is countable and the language is computable, then this allows us to talk about deg(\mathcal{B}).

重

- In computable model / structure theory, we place different effective (i.e. algorithmic) restrictions
	- presentations of a structure,
	- complexity of isomorphisms within an isomorphism type,
	- In this talk we want to focus on (Turing) degrees and interactions with these.
- For instance, classically, given any structure A, a *copy* or a *presentation* is simply $\mathcal{B} = (\text{dom}(\mathcal{B}), \mathcal{B}^\mathcal{B}, f^\mathcal{B}, \cdots)$ such that $\mathcal{B} \cong \mathcal{A}.$
- \bullet If A is countable and the language is computable, then this allows us to talk about deg(\mathcal{B}).

œ.

• So one way of measuring precisely the complexity of a (non-computable) structure $\mathcal A$ might be to look at

$$
Spec(\mathcal{A}) = \{deg(\mathcal{B}) \mid \mathcal{B} \cong \mathcal{A}\}.
$$

- This gives a finer analysis (of the classically indistinguishable).
- Extensive study of degree spectra.
- \bullet Difficulty: A countable A can have presentations of different Turing degrees, so it's not easy to define the "Turing degree" of a (class of) structures.

∢ ロ ▶ ∢ 何 ▶ ∢ ヨ ▶

Motivating questions II: Complexity of Isomorphisms

- Let's look at another approach.
- Classically A and B are considered the same if $A \cong B$.
- \bullet However, from an effective point of view, even if $\mathcal{A} \cong \mathcal{B}$ are computable, they may have very different "hidden" effective properties.

Example $(\omega, <)$

- **•** Build a computable copy $A \cong (ω, <)$ where you arrange for 2*n* and 2*n* + 2 to be adjacent in $\mathcal A$ iff $n \not\in \emptyset'$.
- "Successivity" was a hidden property that is made non-computable in some computable copy.

- This is rigid in a very uniform way.
- **The entire structure is known once we fix 0.**

∢ ロ ▶ ∢ 何 ▶ ∢ ヨ ▶

Example $(\omega, <)$

- **•** Build a computable copy $A \cong (ω, <)$ where you arrange for 2*n* and 2*n* + 2 to be adjacent in $\mathcal A$ iff $n \not\in \emptyset'$.
- "Successivity" was a hidden property that is made non-computable in some computable copy.

Example (ω, *Succ*)

- This is rigid in a very uniform way.
- **The entire structure is known once we fix 0.**

∢ ロ ▶ ∢ 何 ▶ ∢ ヨ ▶

Motivating questions II: Complexity of Isomorphisms

- Since all definable properties are preserved by an isomorphism, it takes ∅ to (Turing) compute an isomorphism between any two copies of $(\omega, <)$.
- \bullet However, (ω , *Succ*) is computably categorical.
- So $(\omega, <)$ appears to be more complicated than $(\omega, Succ)$, since accessing categoricity seems to require a more powerful oracle.
- This suggests another way of defining precisely the complexity of a structure:

The degree of categoricity of a computable structure $\mathcal A$ is the least degree *d* such that *d* computes an isomorphism between any two computable copies of A.

Motivating questions II: Complexity of Isomorphisms

- Since all definable properties are preserved by an isomorphism, it takes ∅ to (Turing) compute an isomorphism between any two copies of $(\omega, <)$.
- \bullet However, (ω , *Succ*) is computably categorical.
- So $(\omega, <)$ appears to be more complicated than $(\omega, Succ)$, since accessing categoricity seems to require a more powerful oracle.
- This suggests another way of defining precisely the complexity of a structure:

Definition (Fokina, Kalimullin, Miller)

The degree of categoricity of a computable structure $\mathcal A$ is the least degree *d* such that *d* computes an isomorphism between any two computable copies of A.

- $(\omega, <)$ has degree of categoricity $\emptyset'.$
- ∅ is a degree of categoricity (for any c.c. structure).
- (Fokina, Kalimullin, Miller) Every d.c.e. degree (in and above ∅ (*m*)) is a degree of categoricity.
- (Csima, Franklin, Shore) Every d.c.e. degree (in and above $\emptyset^{(\alpha+1)})$ is a degree of categoricity.
- (Csima, N) Every Δ^0_2 degree is a degree of categoricity.
- (Csima, Franklin, Shore) All degrees of categoricity are hyperarithmetical.

∢ ロ ▶ ∢ 何 ▶ ∢ ヨ ▶

- (Anderson, Csima) No 2-generic degree is a degree of categoricity.
- (Anderson, Csima) No hyperimmune-free degree is a degree of categoricity except ∅.
- (Anderson, Csima) Some Σ^0_2 degree is not a degree of categoricity.

∢ ロ ▶ ∢ 何 ▶ ∢ ヨ ▶

Fact: Weak truth table (wtt) degrees are interesting/important. So, we want to look at...

wtt-degrees of categoricity.

A weak truth table degree *a* is a wtt-degree of categoricity for a structure $\mathcal A$ if it is the least wtt-degree with the property that given any computable $A_0 \cong A_1 \cong A$, there is an isomorphism $f : A_0 \mapsto A_1$ such that "*f* is wtt-reducible from *a*".

 $\left\{ \left\vert \left\{ \mathbf{F}\right\} \right\vert \times \left\{ \left\vert \mathbf{F}\right\vert \right\} \right\}$

Fact: Weak truth table (wtt) degrees are interesting/important. So, we want to look at...

wtt-degrees of categoricity.

Definition

A weak truth table degree *a* is a wtt-degree of categoricity for a structure $\mathcal A$ if it is the least wtt-degree with the property that given any computable $A_0 \cong A_1 \cong A$, there is an isomorphism $f : A_0 \mapsto A_1$ such that "*f* is wtt-reducible from *a*".

 \leftarrow \leftarrow \leftarrow

What does "*f* is wtt-reducible from *a*" mean? One possible interpretation is:

> *the output f*(*n*) *can be computed from a with recursively bounded use.*

> > ∢ ロ ▶ ∢ 何 ▶ ∢ ヨ ▶

Proposition (Belanger, N)

Let X ∈ 2 ^ω *be any set and and* A *be any computable equivalence structure or computable linear order. Then* A *is not X -categorical with respect to the above definition unless* A *is computably categorical.*

• Likely true in many other natural classes.

• So we adopt the following definition:

Definition

A weak truth table degree *a* is a wtt-degree of categoricity for a structure $\mathcal A$ if it is the least wtt-degree with the property that given any computable $\mathcal{A}_0 \cong \mathcal{A}_1 \cong \mathcal{A}$, there is an isomorphism $f : \mathcal{A}_0 \mapsto \mathcal{A}_1$ such that "*f* is wtt-reducible from *a*".

Every c.e. r -degree is a r -degree of categoricity (for a graph), where $r = \text{b}tt$, *tt*, *wtt*,

Weak truth tables

• So we adopt the following definition:

Definition

A weak truth table degree *a* is a wtt-degree of categoricity for a structure $\mathcal A$ if it is the least wtt-degree with the property that given any computable $\mathcal{A}_0 \cong \mathcal{A}_1 \cong \mathcal{A}$, there is an isomorphism $f : \mathcal{A}_0 \mapsto \mathcal{A}_1$ such that "*Graph* $(f) \leq_{wtt} a$ ".

Every c.e. r -degree is a r -degree of categoricity (for a graph), where $r = \text{b}tt, \text{tt}, \text{w}tt$.

• So we adopt the following definition:

Definition

A weak truth table degree *a* is a wtt-degree of categoricity for a structure $\mathcal A$ if it is the least wtt-degree with the property that given any computable $\mathcal{A}_0 \cong \mathcal{A}_1 \cong \mathcal{A}$, there is an isomorphism $f : \mathcal{A}_0 \mapsto \mathcal{A}_1$ such that "*Graph* $(f) <$ _{wtt} **a**".

Fact

Every c.e. r -degree is a r -degree of categoricity (for a graph), where $r = \textit{btt}, \textit{tt}, \textit{wtt}.$

Weak truth tables

• So we adopt the following definition:

Definition

A weak truth table degree *a* is a wtt-degree of categoricity for a structure $\mathcal A$ if it is the least wtt-degree with the property that given any computable $\mathcal{A}_0 \cong \mathcal{A}_1 \cong \mathcal{A}$, there is an isomorphism $f : \mathcal{A}_0 \mapsto \mathcal{A}_1$ such that "*Graph* $(f) <$ _{wtt} **a**".

Fact

Every c.e. r -degree is a r -degree of categoricity (for a graph), where $r = \textit{btt}, \textit{tt}, \textit{wtt}.$

Question

- We investigate which natural (classes of) structures have wtt-degrees of categoricity:
	- Restrict to linear orders, equivalence structures.
- We find that (unsurprisingly?) *very few* structures have wtt-degrees of categoricity, in contrast to T-degrees of categoricity.
- Everything from now is joint work with David Belanger.

COLLECT

 $\left\{ \left\vert \left\{ \mathbf{F}\right\} \right\vert \times \left\{ \left\vert \mathbf{F}\right\vert \right\} \right\}$

- We investigate which natural (classes of) structures have wtt-degrees of categoricity:
	- Restrict to linear orders, equivalence structures.
- We find that (unsurprisingly?) *very few* structures have wtt-degrees of categoricity, in contrast to T-degrees of categoricity.
- Everything from now is joint work with David Belanger.

Linear orders: let's investigate $(\omega, <)$

Lemma

Let **a** be a wtt-degree. Then $(\omega, <)$ is **a**-categorical iff **a** $\geq_{\sf wtt}$ D for each Δ^0_2 set *D.*

Lemma

Given any Δ^0_2 set D there is a Δ^0_2 set A such that A \leq_{wtt} D.

(ω, <) *has no wtt -degree of categoricity.*

Any set of high Turing degree relative to \emptyset' can wtt-compute every Δ^0_2 set. Relativize the construction of a pair of high Turing degrees to \emptyset' .

 4 O \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow 4

Linear orders: let's investigate $(\omega, <)$

Lemma

Let **a** be a wtt-degree. Then $(\omega, <)$ is **a**-categorical iff **a** $\geq_{\sf wtt}$ D for each Δ^0_2 set *D.*

Lemma

Given any Δ^0_2 set D there is a Δ^0_2 set A such that A \leq_{wtt} D.

Theorem

(ω, <) *has no wtt -degree of categoricity.*

Proof.

Any set of high Turing degree relative to \emptyset' can wtt-compute every Δ^0_2 set. Relativize the construction of a pair of high Turing degrees to \emptyset' .

Question

Can we generalize to any computable well-ordering?

The above example can be generalized to cover $\omega+{\cal L}$ for any Δ^0_2 categorical L.

Theorem

Shuffle sums of finite linear orders do not have a wtt-degree of categoricity.

Does any computable linear order have a wtt-degree of categoricity?

イロト イ母 トイヨ トイ

Question

Can we generalize to any computable well-ordering?

The above example can be generalized to cover $\omega+{\cal L}$ for any Δ^0_2 categorical \mathcal{L} .

Theorem

Shuffle sums of finite linear orders do not have a wtt-degree of categoricity.

Question

Does any computable linear order have a wtt-degree of categoricity?

イロト イ母 トイヨト

- Now let's look at computable equivalence structures.
- (Csima, N) The Turing degrees of categoricity for computable equivalence structures are exactly $deg_T(\emptyset),\, deg_T(\emptyset')$ and $deg_T(\emptyset'')$ (what you expect).
- For wtt-degrees, the situation is less trivial.
- **•** Trivial upperbounds:
	- Each computable equivalence structure *E* is Ø"-tt-categorical.
	- A computable equivalence structure is Ø"-m-categorical if and only if *E* is Δ^0 -categorical.

イロト イ母 トイヨト

Theorem

The following classes of computable equivalence structures E do not have a non-zero wtt-degree of categoricity:

- (i) *There is some m* ∈ ω *and some infinite limitwise monotonic set W such that for every n* ∈ *W, there are exactly m many E -classes of size n.*
- (ii) *Every class in E has infinitely many E -classes of the same size.*
	- The proof in each case is quite different.

COLLECT

Theorem

Let E be a computable equivalence structure where all classes are finite. Suppose that

 $n \mapsto$ *number of E-classes of size n.*

 $x \mapsto$ *the least n such that for every m* $>$ *n there are more than x many E -classes of size m,*

are both total and computable.

Then E has wtt-degree of categoricity deg $wt(\emptyset')$.

4 000 16

- Characterize the \emptyset' -wtt-categorical structures.
- Find more examples of structures with wtt-degrees of categoricity.
- Thank you.

KON KON K

∋⇒

∍

- Characterize the \emptyset' -wtt-categorical structures.
- Find more examples of structures with wtt-degrees of categoricity.
- Thank you.

4 0 8

 \leftarrow \leftarrow \leftarrow

÷

∍