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Represented spaces and computability

Definition
A represented space X is a pair (X , δX ) where X is a set and
δX :⊆ NN → X a surjective partial function.

Definition
F :⊆ NN → NN is a realizer of f : X ⇒ Y, iff δY (F (p)) ∈ f (δX (p))
for all p ∈ δ−1

X (dom(F )).

NN F−−−−→ NNyδX

yδY

X f−−−−→ Y

Definition
f : X ⇒ Y is called computable (continuous), iff it has a
computable (continuous) realizer.
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Weihrauch-reducibility

Definition
For f :⊆ X ⇒ Y, g :⊆ V ⇒ W say

f ≤W g

iff there are computable H,K :⊆ NN → NN, such that
K 〈idNN ,GH〉 is a realizer of f for every realizer G of g.

Definition (Alternative)
For A,B ⊆ NN, say that A ≤W B if A = ∅ or ∃n,m such that
∀x ∈ NN, if ∃y ∈ NN 〈x , y〉 ∈ A, then

1. Φn(x) ↓ and ∃y ∈ NN 〈Φn(x), y〉 ∈ B)

2. If 〈Φn(x), y〉 for some y ∈ NN, then Φm〈x , y〉 ↓ and
〈x ,Φm〈x , y〉〉 ∈ A.
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What we know about structure

Theorem (Brattka & Gherardi 2011; P. 2010)
W is a distributive lattice. The cartesian product × is an
operation on W.

Theorem (Higuchi & P. 2013)
W is not a Brouwer algebra.

Theorem (Higuchi & P. 2013)
W has no non-trivial countable suprema and only some
non-trivial countable infima.
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Embeddings into W

Theorem (Brattka & Gherardi 2011; Higuchi & P. 2013)
For A ⊆ NN, let dA : A→ {0} and cA : {0}⇒ A. Then
d· : Mop →W is a lattice embedding and c· : M→W is a
meet-semilattice embedding.

Theorem
Let p,q ∈ NN be Turing-incomparable. For A ⊆ N, let
eA : N→ {p,q} map n ∈ A to p and n /∈ A to q. Then e· is an
join-semilattice embedding of the many-one degrees into W.
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Densely realized problems

Definition (Brattka, Hendtlass & Kreuzer 2015)
Call f :⊆ NN ⇒ NN densely realized, if:

∀p ∈ NN ∀w ∈ N∗ ∃q ∈ NN wq ∈ f (p)

A Weihrauch degree is densely realized, if it has a densely
realized representative.

Observation
Problems from recursion theory are typically densely realized.
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The separation

Proposition
Let f :⊆ X ⇒ N and g be densely realized. If f ≤W g, then f is
computable.

Definition
Let ACCN : NN ⇒ N be defined via n ∈ ACCN(p), iff n + 1 is not
the first non-zero entry in p.

Observation
ACCN is reducible to every non-computable non-recursion
theoretic theorem classified so far.
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Some examples for connections

Theorem (Brattka & P. 2016)
MLR ≡W CN →WWKL.

Theorem (Brattka, Hendtlass & Kreuzer 2015)

1. COH ≡W lim→WKL′

2. PA ≡W C′N →WKL
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Further reading

V. Brattka, M. Hendtlass and A. Kreuzer.
On the Uniform Computational Content of Computability
Theory.
arXiv, 1501.00433, 2015.



Uniform low basis theorem

Definition
Let L :⊆ {0,1}N → {0,1}N be defined by q = L(p) iff
Hq = lim p.

Theorem (Brattka, de Brecht & P. 2012)
CR <W L
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Local structure

How does the local structure of the Weihrauch lattice look like?
E.g.:

Question
What can we say about the interval [WKL, lim]?
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A uniform view on computable model theory I

Observation
Given some finite signature L, there is a represented space PL
of countable presentations of L-structures.

Definition
Define IsoL :⊆ PL ×PL ⇒ NN via (A,B) ∈ dom(IsoL) iff A ∼= B,
and p ∈ IsoL(A,B) if p is an L-isomorphism from A to B. Let
IsoA
L be the restriction to presentations of A.
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A uniform view on computable model theory II

Claim: The Weihrauch degree of IsoA
L tells us (almost?)

everything we want to know about the degree of categoricity of
A.

Observation
IsoA
L ≡W lim is the uniform version of saying that A has strong

degree of categoricity ∅′. ÎsoA
L ≡W lim should capture having

degree of categoricity ∅′.

Conjecture
ÎsoA
L ≡W (IsoA

L)n iff the spectral dimension of A is at most n.
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