Weihrauch reducibility and recursion theory

Arno Pauly

Université Libre de Bruxelles

Computability Theory, Dagstuhl Seminar 2017

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Weihrauch degrees and their structure

Classifying principles from recursion theory

Some open questions and speculations on computable model theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Weihrauch degrees and their structure

Classifying principles from recursion theory

Some open questions and speculations on computable model theory

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Represented spaces and computability

Definition

A *represented space* **X** is a pair (X, δ_X) where *X* is a set and $\delta_X :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ a surjective partial function.

Definition

 $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is a realizer of $f : \mathbf{X} \Rightarrow \mathbf{Y}$, iff $\delta_Y(F(p)) \in f(\delta_X(p))$ for all $p \in \delta_X^{-1}(\operatorname{dom}(F))$.

(日) (日) (日) (日) (日) (日) (日)

Definition

 $f : \mathbf{X} \Rightarrow \mathbf{Y}$ is called computable (continuous), iff it has a computable (continuous) realizer.

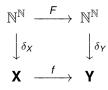
Represented spaces and computability

Definition

A *represented space* **X** is a pair (X, δ_X) where *X* is a set and $\delta_X :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ a surjective partial function.

Definition

 $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is a realizer of $f : \mathbf{X} \rightrightarrows \mathbf{Y}$, iff $\delta_Y(F(p)) \in f(\delta_X(p))$ for all $p \in \delta_X^{-1}(\operatorname{dom}(F))$.



(ロ) (同) (三) (三) (三) (○) (○)

Definition

 $f : \mathbf{X} \Rightarrow \mathbf{Y}$ is called computable (continuous), iff it has a computable (continuous) realizer.

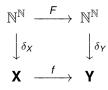
Represented spaces and computability

Definition

A *represented space* **X** is a pair (X, δ_X) where *X* is a set and $\delta_X :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ a surjective partial function.

Definition

 $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is a realizer of $f : \mathbf{X} \rightrightarrows \mathbf{Y}$, iff $\delta_Y(F(p)) \in f(\delta_X(p))$ for all $p \in \delta_X^{-1}(\operatorname{dom}(F))$.



Definition

 $f : \mathbf{X} \Longrightarrow \mathbf{Y}$ is called computable (continuous), iff it has a computable (continuous) realizer.

Weihrauch-reducibility

Definition For $f :\subseteq \mathbf{X} \Rightarrow \mathbf{Y}, g :\subseteq \mathbf{V} \Rightarrow \mathbf{W}$ say

 $f \leq_W g$

iff there are computable $H, K :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$, such that $K \langle \operatorname{id}_{\mathbb{N}^{\mathbb{N}}}, GH \rangle$ is a realizer of f for every realizer G of g.

Definition (Alternative)

For $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, say that $A \leq_W B$ if $A = \emptyset$ or $\exists n, m$ such that $\forall x \in \mathbb{N}^{\mathbb{N}}$, if $\exists y \in \mathbb{N}^{\mathbb{N}} \langle x, y \rangle \in A$, then

- 1. $\Phi_n(x) \downarrow \text{ and } \exists y \in \mathbb{N}^{\mathbb{N}} \langle \Phi_n(x), y \rangle \in B$)
- 2. If $\langle \Phi_n(x), y \rangle$ for some $y \in \mathbb{N}^{\mathbb{N}}$, then $\Phi_m \langle x, y \rangle \downarrow$ and $\langle x, \Phi_m \langle x, y \rangle \rangle \in A$.

Weihrauch-reducibility

Definition For $f :\subseteq \mathbf{X} \Rightarrow \mathbf{Y}, g :\subseteq \mathbf{V} \Rightarrow \mathbf{W}$ say

 $f \leq_W g$

iff there are computable $H, K :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$, such that $K \langle \operatorname{id}_{\mathbb{N}^{\mathbb{N}}}, GH \rangle$ is a realizer of f for every realizer G of g.

Definition (Alternative)

For $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, say that $A \leq_W B$ if $A = \emptyset$ or $\exists n, m$ such that $\forall x \in \mathbb{N}^{\mathbb{N}}$, if $\exists y \in \mathbb{N}^{\mathbb{N}} \langle x, y \rangle \in A$, then

- 1. $\Phi_n(x) \downarrow \text{ and } \exists y \in \mathbb{N}^{\mathbb{N}} \langle \Phi_n(x), y \rangle \in B$)
- 2. If $\langle \Phi_n(x), y \rangle$ for some $y \in \mathbb{N}^{\mathbb{N}}$, then $\Phi_m \langle x, y \rangle \downarrow$ and $\langle x, \Phi_m \langle x, y \rangle \rangle \in A$.

(日) (日) (日) (日) (日) (日) (日)

What we know about structure

Theorem (Brattka & Gherardi 2011; P. 2010) \mathfrak{W} is a distributive lattice. The cartesian product \times is an operation on \mathfrak{W} .

Theorem (Higuchi & P. 2013)

 \mathfrak{W} is not a Brouwer algebra.

Theorem (Higuchi & P. 2013)

non-trivial countable suprema and only some non-trivial countable infima.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

What we know about structure

Theorem (Brattka & Gherardi 2011; P. 2010) \mathfrak{W} is a distributive lattice. The cartesian product \times is an operation on \mathfrak{W} .

Theorem (Higuchi & P. 2013) *m* is not a Brouwer algebra.

Theorem (Higuchi & P. 2013)

non-trivial countable suprema and only some non-trivial countable infima.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

What we know about structure

Theorem (Brattka & Gherardi 2011; P. 2010) \mathfrak{W} is a distributive lattice. The cartesian product \times is an operation on \mathfrak{W} .

Theorem (Higuchi & P. 2013) *I is not a Brouwer algebra.*

Theorem (Higuchi & P. 2013)

 \mathfrak{W} has no non-trivial countable suprema and only some non-trivial countable infima.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Embeddings into \mathfrak{W}

Theorem (Brattka & Gherardi 2011; Higuchi & P. 2013) For $A \subseteq \mathbb{N}^{\mathbb{N}}$, let $d_A : A \to \{0\}$ and $c_A : \{0\} \Rightarrow A$. Then $d_A : \mathfrak{M}^{op} \to \mathfrak{W}$ is a lattice embedding and $c_A : \mathfrak{M} \to \mathfrak{W}$ is a meet-semilattice embedding.

Theorem

Let $p, q \in \mathbb{N}^{\mathbb{N}}$ be Turing-incomparable. For $A \subseteq \mathbb{N}$, let $e_A : \mathbb{N} \to \{p, q\}$ map $n \in A$ to p and $n \notin A$ to q. Then e. is an join-semilattice embedding of the many-one degrees into \mathfrak{W} .

(日) (日) (日) (日) (日) (日) (日)

Theorem (Brattka & Gherardi 2011; Higuchi & P. 2013) For $A \subseteq \mathbb{N}^{\mathbb{N}}$, let $d_A : A \to \{0\}$ and $c_A : \{0\} \Rightarrow A$. Then $d_A : \mathfrak{M}^{op} \to \mathfrak{W}$ is a lattice embedding and $c_A : \mathfrak{M} \to \mathfrak{W}$ is a meet-semilattice embedding.

Theorem

Let $p, q \in \mathbb{N}^{\mathbb{N}}$ be Turing-incomparable. For $A \subseteq \mathbb{N}$, let $e_A : \mathbb{N} \to \{p, q\}$ map $n \in A$ to p and $n \notin A$ to q. Then e is an join-semilattice embedding of the many-one degrees into \mathfrak{W} .

Weihrauch degrees and their structure

Classifying principles from recursion theory

Some open questions and speculations on computable model theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition (Brattka, Hendtlass & Kreuzer 2015) Call $f :\subseteq \mathbb{N}^{\mathbb{N}} \Rightarrow \mathbb{N}^{\mathbb{N}}$ densely realized, if:

 $\forall p \in \mathbb{N}^{\mathbb{N}} \; \forall w \in \mathbb{N}^* \; \exists q \in \mathbb{N}^{\mathbb{N}} \; wq \in f(p)$

A Weihrauch degree is densely realized, if it has a densely realized representative.

Observation Problems from recursion theory are typically densely realized.

(日) (日) (日) (日) (日) (日) (日)

Definition (Brattka, Hendtlass & Kreuzer 2015) Call $f :\subseteq \mathbb{N}^{\mathbb{N}} \Rightarrow \mathbb{N}^{\mathbb{N}}$ densely realized, if:

 $\forall p \in \mathbb{N}^{\mathbb{N}} \; \forall w \in \mathbb{N}^* \; \exists q \in \mathbb{N}^{\mathbb{N}} \; wq \in f(p)$

A Weihrauch degree is densely realized, if it has a densely realized representative.

Observation

Problems from recursion theory are typically densely realized.

(日) (日) (日) (日) (日) (日) (日)

The separation

Proposition

Let $f :\subseteq \mathbf{X} \Rightarrow \mathbb{N}$ and g be densely realized. If $f \leq_W g$, then f is computable.

Definition

Let $ACC_{\mathbb{N}} : \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ be defined via $n \in ACC_{\mathbb{N}}(p)$, iff n + 1 is not the first non-zero entry in p.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Observation

 $ACC_{\mathbb{N}}$ is reducible to every non-computable non-recursion theoretic theorem classified so far.

The separation

Proposition

Let $f :\subseteq \mathbf{X} \Rightarrow \mathbb{N}$ and g be densely realized. If $f \leq_W g$, then f is computable.

Definition

Let $ACC_{\mathbb{N}} : \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ be defined via $n \in ACC_{\mathbb{N}}(p)$, iff n + 1 is not the first non-zero entry in p.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Observation

 $ACC_{\mathbb{N}}$ is reducible to every non-computable non-recursion theoretic theorem classified so far.

The separation

Proposition

Let $f :\subseteq \mathbf{X} \Rightarrow \mathbb{N}$ and g be densely realized. If $f \leq_W g$, then f is computable.

Definition

Let $ACC_{\mathbb{N}} : \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ be defined via $n \in ACC_{\mathbb{N}}(\rho)$, iff n + 1 is not the first non-zero entry in ρ .

(日) (日) (日) (日) (日) (日) (日)

Observation

 $ACC_{\mathbb{N}}$ is reducible to every non-computable non-recursion theoretic theorem classified so far.

Some examples for connections

Theorem (Brattka & P. 2016) MLR $\equiv_W C_{\mathbb{N}} \rightarrow WWKL.$

Theorem (Brattka, Hendtlass & Kreuzer 2015)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1. COH \equiv_W lim \rightarrow WKL' 2. PA \equiv_W C'_N \rightarrow WKL

Some examples for connections

Theorem (Brattka & P. 2016) MLR $\equiv_W C_N \rightarrow WWKL.$

Theorem (Brattka, Hendtlass & Kreuzer 2015)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1. COH
$$\equiv_W \lim \to WKL'$$

2. PA
$$\equiv_W C'_{\mathbb{N}} \to WKL$$

Further reading

V. Brattka, M. Hendtlass and A. Kreuzer. On the Uniform Computational Content of Computability Theory. arXiv, 1501.00433, 2015.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Uniform low basis theorem

Definition Let $L :\subseteq \{0, 1\}^{\mathbb{N}} \to \{0, 1\}^{\mathbb{N}}$ be defined by q = L(p) iff $H^q = \lim p$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem (Brattka, de Brecht & P. 2012) $C_{\mathbb{R}} <_W L$

Uniform low basis theorem

Definition Let $L :\subseteq \{0, 1\}^{\mathbb{N}} \to \{0, 1\}^{\mathbb{N}}$ be defined by q = L(p) iff $H^q = \lim p$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem (Brattka, de Brecht & P. 2012) $C_{\mathbb{R}} <_{W} L$

Weihrauch degrees and their structure

Classifying principles from recursion theory

Some open questions and speculations on computable model theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

How does the local structure of the Weihrauch lattice look like? E.g.:

Question What can we say about the interval [WKL, lim]?

How does the local structure of the Weihrauch lattice look like? E.g.:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Question What can we say about the interval [WKL, lim]? A uniform view on computable model theory I

Observation

Given some finite signature \mathcal{L} , there is a represented space $\mathfrak{P}_{\mathcal{L}}$ of countable presentations of \mathcal{L} -structures.

Definition

Define $\operatorname{Iso}_{\mathcal{L}} :\subseteq \mathfrak{P}_{\mathcal{L}} \times \mathfrak{P}_{\mathcal{L}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ via $(A, B) \in \operatorname{dom}(\operatorname{Iso}_{\mathcal{L}})$ iff $A \cong B$, and $p \in \operatorname{Iso}_{\mathcal{L}}(A, B)$ if p is an \mathcal{L} -isomorphism from A to B. Let $\operatorname{Iso}_{\mathcal{L}}^{A}$ be the restriction to presentations of A.

(日) (日) (日) (日) (日) (日) (日)

A uniform view on computable model theory I

Observation

Given some finite signature \mathcal{L} , there is a represented space $\mathfrak{P}_{\mathcal{L}}$ of countable presentations of \mathcal{L} -structures.

Definition

Define $\operatorname{Iso}_{\mathcal{L}} :\subseteq \mathfrak{P}_{\mathcal{L}} \times \mathfrak{P}_{\mathcal{L}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ via $(A, B) \in \operatorname{dom}(\operatorname{Iso}_{\mathcal{L}})$ iff $A \cong B$, and $p \in \operatorname{Iso}_{\mathcal{L}}(A, B)$ if p is an \mathcal{L} -isomorphism from A to B. Let $\operatorname{Iso}_{\mathcal{L}}^{A}$ be the restriction to presentations of A.

(日) (日) (日) (日) (日) (日) (日)

A uniform view on computable model theory II

Claim: The Weihrauch degree of $Iso_{\mathcal{L}}^{\mathcal{A}}$ tells us (almost?) everything we want to know about the degree of categoricity of \mathcal{A} .

Observation

Iso $_{\mathcal{L}}^{A} \equiv_{W}$ lim is the uniform version of saying that A has strong degree of categoricity \emptyset' . Iso $_{\mathcal{L}}^{A} \equiv_{W}$ lim should capture having degree of categoricity \emptyset' .

Conjecture

 $\operatorname{Iso}_{\mathcal{L}}^{\overline{A}} \equiv_{W} (\operatorname{Iso}_{\mathcal{L}}^{A})^{n}$ iff the spectral dimension of A is at most n.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

A uniform view on computable model theory II

Claim: The Weihrauch degree of $Iso_{\mathcal{L}}^{\mathcal{A}}$ tells us (almost?) everything we want to know about the degree of categoricity of \mathcal{A} .

Observation

 $\operatorname{Iso}_{\mathcal{L}}^{\mathcal{A}} \equiv_{W} \lim \text{ is the uniform version of saying that } \mathcal{A} \text{ has strong}$ degree of categoricity \emptyset' . $\widehat{\operatorname{Iso}_{\mathcal{L}}^{\mathcal{A}}} \equiv_{W} \lim \text{ should capture having}$ degree of categoricity \emptyset' .

Conjecture

 $\operatorname{Iso}_{\mathcal{L}}^{\mathcal{A}} \equiv_{W} (\operatorname{Iso}_{\mathcal{L}}^{\mathcal{A}})^{n}$ iff the spectral dimension of \mathcal{A} is at most n.

▲□▶▲□▶▲□▶▲□▶ □ のへで

A uniform view on computable model theory II

Claim: The Weihrauch degree of $Iso_{\mathcal{L}}^{\mathcal{A}}$ tells us (almost?) everything we want to know about the degree of categoricity of \mathcal{A} .

Observation

 $\operatorname{Iso}_{\mathcal{L}}^{\mathcal{A}} \equiv_{W} \lim \text{ is the uniform version of saying that } \mathcal{A} \text{ has strong}$ degree of categoricity \emptyset' . $\widehat{\operatorname{Iso}_{\mathcal{L}}^{\mathcal{A}}} \equiv_{W} \lim \text{ should capture having}$ degree of categoricity \emptyset' .

Conjecture

 $\operatorname{Iso}_{\mathcal{L}}^{\mathcal{A}} \equiv_{W} (\operatorname{Iso}_{\mathcal{L}}^{\mathcal{A}})^{n}$ iff the spectral dimension of \mathcal{A} is at most n.