Three Theorems Between Computability and Diophantine Approximation

Theodore A. Slaman

University of California Berkeley

Joint work with Verónica Becher, Yann Bugeaud and Jan Reimann

Table of Contents

Part 1: Statements of Results

Part 2: Ingredients in the Proofs

Part 3: Speculation and Work in Progress

Part 1

Statements of Results

Émile Borel (1909): Normal Numbers

Definition

Let ξ be a real number.

- \triangleright ξ is simply normal to base b iff in its base-b expansion, $(\xi)_b$, each digit appears with limiting frequency equal to 1/b.
- \blacktriangleright ξ is normal to base b iff for all k, ξ is simply normal to base b^k .
- \blacktriangleright ξ is absolutely normal iff it is normal to every base b.

Normality to Different Bases

There is one readily-identified connection between normality to one base and normality to another.

Definition

For natural numbers b_1 and b_2 greater than 0, we say that b_1 and b_2 are multiplicatively dependent if they have a common power.

Theorem (Maxfield 1953)

If b_1 and b_2 are multiplicatively dependent bases, then, for any real ξ , ξ is normal to base b_1 iff it is normal to base b_2 .

Multiplicative independence

An early result due to Cassels (1959) is that almost every element of the Cantor Middle-Third Set is normal to every base which is multiplicatively independent of 3.

Theorem (Schmidt 1961/62)

Let R be a subset of the natural numbers greater than or equal to 2 which is closed under multiplicative dependence. There is a real number ξ such that ξ is normal to every base in R and not normal to any base in the complement of R.

Definability in Arithmetic

Normality

Remark

Suppose that ξ is a computable real number. Then, $\{b: \xi \text{ is normal to base } b\}$ is a Π_3^0 subset of \mathbb{N} .

Definability in Arithmetic

Normality

Remark

Suppose that ξ is a computable real number. Then, $\{b : \xi \text{ is normal to base } b\}$ is a Π^0_3 subset of \mathbb{N} .

The proof is by inspection: ξ is normal to base b iff

for every k and every rational number r > 0,

there exists ℓ_0 ,

for all $\ell > \ell_0$,

the discrepancy in the first ℓ digits of the base b^k representation of ξ is less than r.

Logical Independence Between Bases.

Let $\mathcal S$ be the set of minimal representatives of the multiplicative dependence classes.

Theorem (Becher and Slaman 2013)

Let R be a Π_3^0 subset of S. There is a real ξ such that ξ is normal to every base in R and not simply normal to any of the other elements of S. Furthermore, ξ is computable uniformly in the Π_3^0 formula which defines R.

Logical Independence Between Bases.

Let $\mathcal S$ be the set of minimal representatives of the multiplicative dependence classes.

Theorem (Becher and Slaman 2013)

Let R be a Π^0_3 subset of $\mathcal S$. There is a real ξ such that ξ is normal to every base in R and not simply normal to any of the other elements of $\mathcal S$. Furthermore, ξ is computable uniformly in the Π^0_3 formula which defines R.

An index set calculation:

Theorem (Becher and Slaman 2013)

The set of real numbers that are normal to at least one base is Σ_4^0 -complete.

Logical Independence Between Bases.

Let $\mathcal S$ be the set of minimal representatives of the multiplicative dependence classes.

Theorem (Becher and Slaman 2013)

Let R be a Π_3^0 subset of $\mathcal S$. There is a real ξ such that ξ is normal to every base in R and not simply normal to any of the other elements of $\mathcal S$. Furthermore, ξ is computable uniformly in the Π_3^0 formula which defines R.

An index set calculation:

Theorem (Becher and Slaman 2013)

The set of real numbers that are normal to at least one base is Σ_4^0 -complete.

A fixed point:

Theorem (Becher and Slaman 2013)

For any Π_3^0 formula φ there is a computable real ξ such that for all b in S, ξ is normal to base b iff $\varphi(\xi,b)$ is true.

An Application

Definition

A real number ξ is *rich* in base b iff every finite sequence of base-b digits appears as a block in the base-b representation of ξ .

Corollary

There is a computable real number ξ such that for every $b \in \mathcal{S}$, ξ is rich in base b and not normal in base b. In other words, ξ is an absolutely-abnormal lexicon.

Proof.

By the previous theorem, take ξ such that for all $b \in \mathcal{S}$,

 ξ is normal in base $b \Leftrightarrow \xi$ is not rich in base b.

9/23

What is the version of Schmidt's Theorem for simple normality?

Necessary Conditions:

Theorem

For any base b and real number ξ , the following hold.

- ► For any positive integers k and n, if ξ is simply normal to base b^{kn} then ξ is simply normal to base b^n .
- ▶ (Long 1957) If there are infinitely many positive integers m such that ξ is simply normal to base b^m , then ξ is simply normal to all powers of b.

What is the version of Schmidt's Theorem for simple normality?

Theorem (Hertling 2002)

Suppose that $s \in \mathcal{S}$ is not a perfect power and that m and n are such that n is not a divisor of m. There is a real number ξ such that ξ is simply normal to base s^m and not simply normal to base s^n .

What is the version of Schmidt's Theorem for simple normality?

Necessary and Sufficient Conditions:

Theorem (Becher, Bugeaud and Slaman 2013)

Let M be a set of natural numbers greater than or equal to 2 such that the following necessary conditions hold.

- ▶ For any b and positive integers k and m, if $b^{km} \in M$ then then $b^m \in M$.
- ▶ For any b, if there are infinitely many positive integers m such that $b^m \in M$, then all powers of b belong to M.

There is a real number ξ such that for every base b, ξ is simply normal to base b iff $b \in M$.

Part 2

Ingredients in the Proofs

Directly construct a real number ξ with the desired property. Go by recursion on stages t, at stage t define a closed interval $I_t \subset I_{t-1}$, and $\{\xi\} = \bigcap_t I_t$.

Intuitively, I_t specifies more digits than I_{t-1} .

Convergence to normality:

- ▶ For a finite set of bases r_1, \ldots, r_j , ensure that the digits determined by I_t beyond those determined by I_{t-1} have discrepancy less than ϵ_t .
 - The number of new digits cannot be too large compared to the number of digits already determined, so that the convergence to normal for bases r_1, \ldots, r_i is not disturbed.
 - This is an invariance condition: The number of digits needed to converge to within ε_t of normal should not depend on the number of digits already determined.
 - The number of iterations for r_1, \ldots, r_j and ϵ can be large enough for the cumulative effect on the discrepancy of an initial segment of the digits in each base r_i to be on the order of ϵ_t .

Directly construct a real number ξ with the desired property. Go by recursion on stages t, at stage t define a closed interval $I_t \subset I_{t-1}$, and $\{\xi\} = \bigcap_t I_t$.

Intuitively, I_t specifies more digits than I_{t-1} .

Bias away from simple normality:

- ▶ For a base s, ensure that the digits determined by l_t beyond those determined by l_{t-1} have discrepancy greater than ϵ_s , where ϵ_s depends on the base s and not on the stage t.
 - The number of iterations for s and ϵ_s must be large enough for the cumulative effect on the discrepancy of an initial segment of the digits in each base s to be on the order of ϵ_s .

Directly construct a real number ξ with the desired property. Go by recursion on stages t, at stage t define a closed interval $I_t \subset I_{t-1}$, and $\{\xi\} = \bigcap_t I_t$.

Intuitively, I_t specifies more digits than I_{t-1} .

Existence of such extensions:

- At each stage, find an appropriate subinterval I_t of I_{t-1} by considering the initial segment of a the base s expansion of a random element in an appropriate Cantor-like subfractal of I_{t-1} .
 - Show that the properties of normality for random elements of the subfractal are invariant under choice of enclosing interval.

Directly construct a real number ξ with the desired property. Go by recursion on stages t, at stage t define a closed interval $I_t \subset I_{t-1}$, and $\{\xi\} = \bigcap_t I_t$.

Intuitively, I_t specifies more digits than I_{t-1} .

Overall construction:

- ightharpoonup ϵ_t goes to 0 as t goes to infinity.
- ▶ Every base r for which ξ is supposed to be simply normal is eventually included in the list r_1, \ldots, r_j .
- ▶ Every base s for which ξ is supposed not to be simply normal is revisited infinitely often.

Specific Constructions

- To obtain an absolutely normal number, use Lebesgue measure to obtain convergence to normal.
- ▶ To obtain the logical theorems, combine these ingredients dynamically so as to reflect the satisfaction of an arbitrary Π_0^0 statement.
- ▶ To obtain Schmidt's Theorem, a number normal to all elements of R and not normal to any elements of S, use either the fractal that appeared in Schmidt's original proof or that used in a later adaptation by Pollington. Namely, for K appropriately large, use only the digits 0 and 1 in base s^K or omit the last digit or 2 in base s^K.
 - Schmidt's estimates apply in an invariant way.

Recall Hertling's theorem.

Theorem (Hertling 2002)

Suppose that $s \in \mathcal{S}$ and that m and n are such that n is not a divisor of m. There is a real number ξ such that ξ is simply normal to base s^m and not simply normal to base s^n .

Bugeaud gave an elegant proof of it.

- ▶ Consider two base s strings σ and τ of length nm: σ has an initial 1 and then is identically 0 and τ has a 1 at place m+1 and is 0 elsewhere.
 - Parsed as a set of size m blocks, they are equivalent.
 - Parsed as a set of size n blocks, they are not equivalent.
- ▶ Let γ be the sequence in base s obtained by concatenating all the base s sequences of length nm and then replacing the occurrence of σ with an occurrence of τ .
 - γ is perfectly normal in base s^m and biased in base s^n .
- ► Consider the fractal in base $s^{|\gamma|}$ obtained by omitting the digit corresponding to γ .
 - A random element will be simply normal in base s^m and not simply normal in base s^n .

Now suppose that we have $s \in \mathcal{S}$, a finite set of numbers M and a number n such that n does not divide any element of M.

Definition

M and n are fair iff every residue class mod n is equally represented within M.

We may assume fairness.

Theorem (Haiman)

There are more sums of an even number of elements from M that are equivalent to $0 \mod n$ than there are sums of odd numbers of elements from M that are equivalent to $0 \mod n$.

- ▶ For appropriate ℓ , consider two base s strings σ and τ : σ is the concatenation of all length ℓ strings which are identically 0 except for a 1 at the location of the sum of an even number of elements of M and τ is the same for sums of odd numbers of elements.
 - For m in M, when parsed as a set of size m blocks, σ and τ are equivalent.
 - Parsed as a set of size n blocks, they are not equivalent.

- ▶ For appropriate ℓ , consider two base s strings σ and τ : σ is the concatenation of all length ℓ strings which are identically 0 except for a 1 at the location of the sum of an even number of elements of M and τ is the same for sums of odd numbers of elements.
 - For m in M, when parsed as a set of size m blocks, σ and τ are equivalent.
 - Parsed as a set of size n blocks, they are not equivalent.
- ▶ Continue as in Bugeaud's argument to produce a string γ that is perfectly normal in bases s^m , for $m \in M$, and biased in base s^n and then produce the fractal which omits digit γ .
 - A random element of this fractal will be
 - ▶ simply normal in all bases s^m for $m \in M$ and not simply normal in base s^n .
 - ▶ normal in all bases which are multiplicatively independent to s.
 - Further, the convergence to normal is invariant in the earlier sense.

- ▶ For appropriate ℓ , consider two base s strings σ and τ : σ is the concatenation of all length ℓ strings which are identically 0 except for a 1 at the location of the sum of an even number of elements of M and τ is the same for sums of odd numbers of elements.
 - For m in M, when parsed as a set of size m blocks, σ and τ are equivalent.
 - Parsed as a set of size n blocks, they are not equivalent.
- ▶ Continue as in Bugeaud's argument to produce a string γ that is perfectly normal in bases s^m , for $m \in M$, and biased in base s^n and then produce the fractal which omits digit γ .
 - A random element of this fractal will be
 - ▶ simply normal in all bases s^m for $m \in M$ and not simply normal in base s^n .
 - ▶ normal in all bases which are multiplicatively independent to s.
 - Further, the convergence to normal is invariant in the earlier sense.
- ► Follow the heuristic pattern.

Part 3

Speculation and Work in Progress

Abnormal Distributions of Digits

Definition

A real number ξ is absolutely base stable iff for every base s and every digit $d \in \{0, \ldots, s-1\}$, the base s representation of ξ has a limiting frequency for the digit d.

Let ξ be absolutely base stable. When s is a base and d is a digit in base s, $Freq(d, s, \xi)$ is the asymptotic frequency of the digit d in the base s representation of ξ .

Abnormal Distributions of Digits

Definition

A real number ξ is absolutely base stable iff for every base s and every digit $d \in \{0, \dots, s-1\}$, the base s representation of ξ has a limiting frequency for the digit d.

Let ξ be absolutely base stable. When s is a base and d is a digit in base s, $Freq(d, s, \xi)$ is the asymptotic frequency of the digit d in the base s representation of ξ .

Example

- ▶ Absolutely normal numbers are absolutely base stable.
- As mentioned earlier, almost every element of the Cantor Middle-Third Set is absolutely base stable.
- ► The examples that we gave earlier to exhibit independence of normality with respect to multiplicatively-independent bases were not absolutely base stable.

Abnormal Distributions of Digits

Question

What are the possibilities for the functions $Freq(d, b, \xi)$ for absolutely base stable numbers ξ ?

Base Stability and Discrepancy

Definition

Suppose that ξ is absolutely base stable. $Disc(s,\xi)$, the discrepancy of ξ relative to base s, is the supremum over all digits d in base s of $|Freq(d,s,\xi)-1/s|$.

Note, $Disc(s, \xi)$ is less than or equal to 1 - 1/s.

Base Stability and Discrepancy

Definition

Suppose that ξ is absolutely base stable. $Disc(s,\xi)$, the discrepancy of ξ relative to base s, is the supremum over all digits d in base s of $|Freq(d,s,\xi)-1/s|$.

Note, $Disc(s, \xi)$ is less than or equal to 1 - 1/s.

Theorem (Becher, Reimann and Slaman (work in progress))

Suppose that $D: \mathcal{S} \to \mathbb{R}$ so that the following conditions hold.

$$\blacktriangleright \ \forall s \in \mathcal{S}\big(D(s) \in [0, 1 - 1/s]\big)$$

Then, there is an absolutely base stable number ξ such that for all $s \in S$, $Disc(s, \xi) = D(s)$.

The condition
$$\sum_{s \in \mathcal{S}} D(s) \cdot \frac{1}{1 - 1/s} \le 1$$

We construct ξ according to our heuristic.

- ▶ $D(s) \cdot \frac{1}{1 1/s} \le 1$ is the fraction of time sspent biasing the base s digits toward all zero.
 - Use Schmidt's original fractal with only digits 0 and 1 in base s^K , for K large.
- ▶ $\sum_{s \in S} D(s) \cdot \frac{1}{1 1/s} \le 1$ is the condition that the sum of the fractions of time spent biasing expansions is less than or equal to 1.
 - Unallocated time is filled with normality.

We do not have a method to bias the digits for two multiplicatively independent bases simultaneously.

Furstenberg's $2 \times, 3 \times \pmod{1}$ conjecture

Conjecture (Furstenberg 1967)

Suppose that μ is a continuous measure on [0,1] and that μ is invariant under multiplication by 2 (mod 1) and by multiplication by 3 (mod 1). Then μ is Lebesgue measure.

Furstenberg's conjecture and its supporting evidence suggest that there is no notion of randomness which implies biases for representations in bases 2 and 3 simultaneously and which is suitable for constructions of the type we have discussed.

Furstenberg's $2 \times, 3 \times \pmod{1}$ conjecture

Conjecture (Furstenberg 1967)

Suppose that μ is a continuous measure on [0,1] and that μ is invariant under multiplication by 2 (mod 1) and by multiplication by 3 (mod 1). Then μ is Lebesgue measure.

Furstenberg's conjecture and its supporting evidence suggest that there is no notion of randomness which implies biases for representations in bases 2 and 3 simultaneously and which is suitable for constructions of the type we have discussed.

Question

Is there an absolutely base stable irrational real number ξ such that ξ has discrepancy 1/2 in base 2 and discrepancy 2/3 in base 3?