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Part 1

Statements of Results
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Émile Borel (1909): Normal Numbers

Definition

Let ξ be a real number.

◮ ξ is simply normal to base b iff in its base-b expansion, (ξ)b, each digit
appears with limiting frequency equal to 1/b.

◮ ξ is normal to base b iff for all k, ξ is simply normal to base bk .

◮ ξ is absolutely normal iff it is normal to every base b.
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Normality to Different Bases

There is one readily-identified connection between normality to one base and
normality to another.

Definition

For natural numbers b1 and b2 greater than 0, we say that b1 and b2 are
multiplicatively dependent if they have a common power.

Theorem (Maxfield 1953)

If b1 and b2 are multiplicatively dependent bases, then, for any real ξ, ξ is
normal to base b1 iff it is normal to base b2.

5/23



Multiplicative independence

An early result due to Cassels (1959) is that almost every element of the
Cantor Middle-Third Set is normal to every base which is multiplicatively
independent of 3.

Theorem (Schmidt 1961/62)

Let R be a subset of the natural numbers greater than or equal to 2 which is
closed under multiplicative dependence. There is a real number ξ such that ξ is
normal to every base in R and not normal to any base in the complement of R.
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Definability in Arithmetic
Normality

Remark

Suppose that ξ is a computable real number. Then, {b : ξ is normal to base b}
is a Π0

3 subset of N.

The proof is by inspection: ξ is normal to base b iff

for every k and every rational number r > 0,
there exists ℓ0,
for all ℓ > ℓ0,
the discrepancy in the first ℓ digits of the base bk representation of ξ is
less than r .
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Logical Independence Between Bases.

Let S be the set of minimal representatives of the multiplicative dependence
classes.

Theorem (Becher and Slaman 2013)

Let R be a Π0
3 subset of S. There is a real ξ such that ξ is normal to every

base in R and not simply normal to any of the other elements of S.
Furthermore, ξ is computable uniformly in the Π0

3 formula which defines R.

An index set calculation:

Theorem (Becher and Slaman 2013)

The set of real numbers that are normal to at least one base is Σ0
4-complete.

A fixed point:

Theorem (Becher and Slaman 2013)

For any Π0
3 formula ϕ there is a computable real ξ such that for all b in S, ξ is

normal to base b iff ϕ(ξ, b) is true.
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An Application

Definition

A real number ξ is rich in base b iff every finite sequence of base-b digits
appears as a block in the base-b representation of ξ.

Corollary

There is a computable real number ξ such that for every b ∈ S, ξ is rich in base
b and not normal in base b. In other words, ξ is an absolutely-abnormal lexicon.

Proof.

By the previous theorem, take ξ such that for all b ∈ S,

ξ is normal in base b ⇔ ξ is not rich in base b.
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Simple Normality

What is the version of Schmidt’s Theorem for simple normality?

Necessary Conditions:

Theorem

For any base b and real number ξ, the following hold.

◮ For any positive integers k and n, if ξ is simply normal to base bkn then ξ
is simply normal to base bn.

◮ (Long 1957) If there are infinitely many positive integers m such that ξ is
simply normal to base bm, then ξ is simply normal to all powers of b.
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Simple Normality

What is the version of Schmidt’s Theorem for simple normality?

Theorem (Hertling 2002)

Suppose that s ∈ S is not a perfect power and that m and n are such that n is
not a divisor of m. There is a real number ξ such that ξ is simply normal to
base sm and not simply normal to base sn.
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Simple Normality

What is the version of Schmidt’s Theorem for simple normality?

Necessary and Sufficient Conditions:

Theorem (Becher, Bugeaud and Slaman 2013)

Let M be a set of natural numbers greater than or equal to 2 such that the
following necessary conditions hold.

◮ For any b and positive integers k and m, if bkm ∈ M then then bm ∈ M.

◮ For any b, if there are infinitely many positive integers m such that
bm ∈ M, then all powers of b belong to M.

There is a real number ξ such that for every base b, ξ is simply normal to base
b iff b ∈ M.

10/23



Part 2

Ingredients in the Proofs
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Heuristics

Directly construct a real number ξ with the desired property. Go by recursion

on stages t, at stage t define a closed interval It ⊂ It−1, and {ξ} =
󰊯

t

It .

Intuitively, It specifies more digits than It−1.

Convergence to normality:

◮ For a finite set of bases r1, . . . , rj , ensure that the digits determined by It
beyond those determined by It−1 have discrepancy less than 󰃷t .

– The number of new digits cannot be too large compared to the
number of digits already determined, so that the convergence to
normal for bases r1, . . . , rj is not disturbed.

◮ This is an invariance condition: The number of digits needed to
converge to within 󰃦t of normal should not depend on the number of
digits already determined.

– The number of iterations for r1, . . . , rj and 󰃷 can be large enough for
the cumulative effect on the discrepancy of an initial segment of the
digits in each base ri to be on the order of 󰃷t .
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t

It .

Intuitively, It specifies more digits than It−1.

Bias away from simple normality:

◮ For a base s, ensure that the digits determined by It beyond those
determined by It−1 have discrepancy greater than 󰃷s , where 󰃷s depends on
the base s and not on the stage t.
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Heuristics

Directly construct a real number ξ with the desired property. Go by recursion

on stages t, at stage t define a closed interval It ⊂ It−1, and {ξ} =
󰊯

t

It .

Intuitively, It specifies more digits than It−1.

Existence of such extensions:

◮ At each stage, find an appropriate subinterval It of It−1 by considering the
initial segment of a the base s expansion of a random element in an
appropriate Cantor-like subfractal of It−1.

– Show that the properties of normality for random elements of the
subfractal are invariant under choice of enclosing interval.
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Heuristics

Directly construct a real number ξ with the desired property. Go by recursion

on stages t, at stage t define a closed interval It ⊂ It−1, and {ξ} =
󰊯

t

It .

Intuitively, It specifies more digits than It−1.

Overall construction:

◮ 󰃷t goes to 0 as t goes to infinity.

◮ Every base r for which ξ is supposed to be simply normal is eventually
included in the list r1, . . . , rj .

◮ Every base s for which ξ is supposed not to be simply normal is revisited
infinitely often.
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Specific Constructions

◮ To obtain an absolutely normal number, use Lebesgue measure to obtain
convergence to normal.

◮ To obtain the logical theorems, combine these ingredients dynamically so
as to reflect the satisfaction of an arbitrary Π0

3 statement.

◮ To obtain Schmidt’s Theorem, a number normal to all elements of R and
not normal to any elements of S , use either the fractal that appeared in
Schmidt’s original proof or that used in a later adaptation by Pollington.
Namely, for K appropriately large, use only the digits 0 and 1 in base sK

or omit the last digit or 2 in base sK .

– Schmidt’s estimates apply in an invariant way.
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Simple Normality

Recall Hertling’s theorem.

Theorem (Hertling 2002)

Suppose that s ∈ S and that m and n are such that n is not a divisor of m.
There is a real number ξ such that ξ is simply normal to base sm and not
simply normal to base sn.
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Simple Normality

Bugeaud gave an elegant proof of it.

◮ Consider two base s strings σ and τ of length nm: σ has an initial 1 and
then is identically 0 and τ has a 1 at place m + 1 and is 0 elsewhere.

– Parsed as a set of size m blocks, they are equivalent.
– Parsed as a set of size n blocks, they are not equivalent.

◮ Let γ be the sequence in base s obtained by concatenating all the base s
sequences of length nm and then replacing the occurence of σ with an
occurence of τ .

– γ is perfectly normal in base sm and biased in base sn.

◮ Consider the fractal in base s |γ| obtained by omitting the digit
corresponding to γ.

– A random element will be simply normal in base sm and not simply
normal in base sn.
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Simple Normality

Now suppose that we have s ∈ S, a finite set of numbers M and a number n
such that n does not divide any element of M.

Definition

M and n are fair iff every residue class mod n is equally represented within M.

We may assume fairness.

Theorem (Haiman)

There are more sums of an even number of elements from M that are
equivalent to 0 mod n than there are sums of odd numbers of elements from M
that are equivalent to 0 mod n.
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Simple Normality

◮ For appropriate ℓ, consider two base s strings σ and τ : σ is the
concatenation of all length ℓ strings which are identically 0 except for a 1
at the location of the sum of an even number of elements of M and τ is
the same for sums of odd numbers of elements.

– For m in M, when parsed as a set of size m blocks, σ and τ are
equivalent.

– Parsed as a set of size n blocks, they are not equivalent.

◮ Continue as in Bugeaud’s argument to produce a string γ that is perfectly
normal in bases sm, for m ∈ M, and biased in base sn and then produce
the fractal which omits digit γ.

– A random element of this fractal will be
◮ simply normal in all bases sm for m ∈ M and not simply normal in

base sn,
◮ normal in all bases which are multiplicatively independent to s.

– Further, the convergence to normal is invariant in the earlier sense.

◮ Follow the heuristic pattern.
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Part 3

Speculation and Work in Progress
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Abnormal Distributions of Digits

Definition

A real number ξ is absolutely base stable iff for every base s and every digit
d ∈ {0, . . . , s − 1}, the base s representation of ξ has a limiting frequency for
the digit d .

◮ Let ξ be absolutely base stable. When s is a base and d is a digit in base
s, Freq(d , s, ξ) is the asymptotic frequency of the digit d in the base s
representation of ξ.

Example

◮ Absolutely normal numbers are absolutely base stable.

◮ As mentioned earlier, almost every element of the Cantor Middle-Third
Set is absolutely base stable.

◮ The examples that we gave earlier to exhibit independence of normality
with respect to multiplicatively-independent bases were not absolutely
base stable.
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Abnormal Distributions of Digits

Question

What are the possibilities for the functions Freq(d , b, ξ) for absolutely base
stable numbers ξ?
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Base Stability and Discrepancy

Definition

Suppose that ξ is absolutely base stable. Disc(s, ξ), the discrepancy of ξ
relative to base s, is the supremum over all digits d in base s of
|Freq(d , s, ξ)− 1/s|.

Note, Disc(s, ξ) is less than or equal to 1− 1/s.

Theorem (Becher, Reimann and Slaman (work in progress))

Suppose that D : S → R so that the following conditions hold.

◮ ∀s ∈ S
󰉓
D(s) ∈ [0, 1− 1/s]

󰉔

◮
󰊫

s∈S
D(s) · 1

1− 1/s
≤ 1

Then, there is an absolutely base stable number ξ such that for all s ∈ S,
Disc(s, ξ) = D(s).
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The condition
󰁦

s∈S
D(s) · 1

1− 1/s
≤ 1

We construct ξ according to our heuristic.

◮ D(s) · 1

1− 1/s
≤ 1 is the fraction of time sspent biasing the base s digits

toward all zero.

– Use Schmidt’s original fractal with only digits 0 and 1 in base sK , for
K large.

◮
󰊫

s∈S
D(s) · 1

1− 1/s
≤ 1 is the condition that the sum of the fractions of

time spent biasing expansions is less than or equal to 1.

– Unallocated time is filled with normality.

We do not have a method to bias the digits for two multiplicatively
independent bases simultaneously.
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Furstenberg’s 2×, 3× (mod 1) conjecture

Conjecture (Furstenberg 1967)

Suppose that µ is a continuous measure on [0, 1] and that µ is invariant under
multiplication by 2 (mod 1) and by multiplication by 3 (mod 1). Then µ is
Lebesgue measure.

Furstenberg’s conjecture and its supporting evidence suggest that there is no
notion of randomness which implies biases for representations in bases 2 and 3
simultaneously and which is suitable for constructions of the type we have
discussed.

Question

Is there an absolutely base stable irrational real number ξ such that ξ has
discrepancy 1/2 in base 2 and discrepancy 2/3 in base 3?
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