Seven characterizations of the cototal enumeration degrees

Mariya I. Soskova¹

Sofia University

February 21, 2017

¹Supported by Sofia University Science Fund.

Motivation from symbolic dynamics

Definition

- A *subshift* is a nonempty closed set $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.

Given a minimal subshift X, we would like to characterize the set of Turing degrees that compute members of X.

Definition

The language of subshift X is the set

$$L_X = \{ \sigma \in 2^{<\omega} \mid \exists \alpha \in X (\sigma \text{ is a subword of } \alpha) \}.$$

- If X is minimal and $\sigma \in L_X$ then for every $\alpha \in X$, σ is a subword of α . So every element of X can enumerate the set L_X .
- ② If we can enumerate L_X then we can compute a member of X.

The enumeration degrees and cototal sets

Definition

 $A \leq_e B$ if every enumeration of B can compute an enumeration of A.

The *enumeration-cone* of a set A is the set of Turing degrees that can enumerate A.

The enumeration-cone of L_X is the set of Turing degrees that compute members of X.

(Jaendel:) If we can enumerate the set of forbidden words $\overline{L_X}$ then we can enumerate L_X .

So $L_X \leq_e \overline{L_X}$.

Definition

A set A is *cototal* if $A \leq_e \overline{A}$. An enumeration degree is cototal if it contains a cototal set.

Examples of cototal enumeration degrees

Proposition

Every total e-degree is cototal.

$$A \oplus \overline{A} \equiv_1 \overline{A \oplus \overline{A}} = \overline{A} \oplus A.$$

Proposition

Every Σ_2^0 e-degree is cototal.

Let A be Σ^0_2 . Consider the set $K_A = \bigoplus_{e < \omega} \Gamma_e(A)$. Then $A \equiv_e K_A$ and

$$\overline{K}_A = \bigoplus_{i} \overline{\Gamma_e(A)} \ge_e \overline{K} \ge_e A \equiv_e K_A.$$

Characterization I: The skip operator

Note, that $A \leq_e B$ if and only if $\overline{K_A} \leq_1 \overline{K_B}$.

Definition (AGKLMSS)

The *skip* of A is the set $A^{\Diamond} = \overline{K_A}$. The *skip* of a degree is $\mathbf{d}_e(A)^{\Diamond} = \mathbf{d}_e(A^{\Diamond})$.

Recall, that the *enumeration jump* of A is defined by $A' = K_A \oplus \overline{K_A}$. So for every enumeration degree \mathbf{a} we have that $\mathbf{a}' = \mathbf{a} \vee \mathbf{a}^{\lozenge}$.

Theorem (AGKLMSS)

Let $S \geq_e \emptyset'$. There is a set A such that $A^{\Diamond} \equiv_e S$.

Proposition (AGKLMSS)

A degree **a** is cototal if and only if $\mathbf{a} \leq \mathbf{a}^{\Diamond}$ (if and only if $\mathbf{a}^{\Diamond} = \mathbf{a}'$).

Characterization II: A topological perspective

Miller introduced the *continuous degrees* \mathcal{D}_r to compare the complexity of points in computable metric spaces.

The continuous degrees embed into \mathcal{D}_e . In fact, $\mathcal{D}_T \subset \mathcal{D}_r \subset \mathcal{D}_e$.

Proposition (AGKLMSS)

The every continuous enumeration degree is cototal.

Kihara and Pauly extend Miller's idea to points in arbitrary *represented* topological spaces. They define the *point degree spectrum* of a represented space.

- ② $Spec([0,1]^{\omega}) = Spec(C([0,1])) = \mathcal{D}_r;$

Theorem (Kihara)

The cototal e-degrees are the elements of the point degree spectra of all sufficiently effective second countable G_{δ} spaces. (Every closed set is G_{δ}).

Characterization III and IV: Graph theory

Definition (Carl von Jaenisch)

Let G=(V,E) be a graph. A set $M\subseteq V$ is *independent*, if no two members of M are edge related. M is *maximal* set, if every $v\in V$ is either in M or edge related to a vertex in M.

Theorem (AGKLMSS)

An enumeration degree is cototal if and only if it contains the complement of a maximal independent set for the graph $\omega^{<\omega}$.

Theorem (McCarthy)

An enumeration degree is cototal if and only if it contains the complement of a maximal antichain in $\omega^{<\omega}$.

Characterization V: E-pointed trees

Definition (Montalbán)

A tree $T \subseteq 2^{<\omega}$ is *enumeration pointed* if it has no dead ends and every infinite path $f \in [T]$ enumerates T.

Theorem (Montalbán)

A degree spectrum is never the Turing-upward closure of an F_{σ} set of reals in ω^{ω} , unless it is an enumeration-cone.

Theorem (McCarthy)

An enumeration degree is cototal if and only if it contains a (uniformly) enumeration pointed tree.

Corollary

A degree spectrum is the Turing-upward closure of an F_{σ} set of reals in ω^{ω} if and only if it is the enumeration-cone of a cototal e-degree.

Characterization VI: Minimal subshifts

The enumeration degree of the language L_X of a minimal subshift X characterizes the set of Turing degrees of members of X.

(Jaendel:) L_X is a cototal set.

Theorem (McCarthy)

Every cototal enumeration degree is the degree of the language of a minimal subshift.

Characterization VII: Good enumeration degrees

Definition (Lachlan, Shore)

A uniformly computable sequence of finite sets $\{A_s\}_{s<\omega}$ is a good approximation to a set A if:

G1
$$(\forall n)(\exists s)(A \upharpoonright n \subseteq A_s \subseteq A)$$

G2
$$(\forall n)(\exists s)(\forall t > s)(A_t \subseteq A \Rightarrow A \upharpoonright n \subseteq A_t)$$
.

An enumeration degree is *good* if it contains a set with a good approximation.

- Good e-degrees cannot be tops of empty intervals.
- $oldsymbol{\circ}$ Total enumeration degrees and enumeration degrees of n-c.e.a. sets are good.

Characterization VII: Good enumeration degrees

Theorem (Harris; Miller, S)

The good enumeration degrees are exactly the cototal enumeration degrees.

If A has a good approximation then

$$A \leq_e \{\langle x, s \rangle \mid (\forall t > s)(A_t \subseteq A \Rightarrow x \in A\} \leq_e A^{\lozenge}.$$

Every uniformly enumeration pointed tree has a good approximation.

Theorem (Miller, S)

The cototal enumeration degrees are dense.

If $V<_e U$ are cototal and U has a good approximation we can build Θ such that $\Theta(U)$ is the complement of a maximal independent set and

$$V <_e \Theta(U) \oplus V <_e U$$
.

The end

Thank you!