Turing, tt-, and m-reductions for functions in the Baire hierarchy

Linda Brown Westrick University of Connecticut Joint with Adam Day and Rod Downey

> February 21, 2017 Dagstuhl

Computable reducibility for Type 2 functions

Motivating question: Suppose $f, g: [0, 1] \to \mathbb{R}$.

What should $f \leq_T g$ mean?

When $f, g \in C([0, 1])$, relative computability is defined in terms of representations of functions via sequences in 2^{ω} . For cardinality reasons, we cannot do that.

Yet we do have some intuitive idea that, for example

- A step function which steps at 0 should compute a step function that steps at 1/2.
- Equivalence classes should be closed under pointwise multiplication and addition of (continuous) computable functions.
- Given f, g, the degree of $f \oplus g$ should include the function

$$h(x) = \begin{cases} f(3x) & \text{if } x \le 1/3\\ g(3x-2) & \text{if } x \ge 2/3\\ 0 & \text{otherwise.} \end{cases}$$

For technical convenience, consider now $f, g: 2^{\omega} \to \mathbb{R}$.

Definition 1. Say that $f \leq_T g$ if $f \leq_W \hat{g}$.

That is, $f \leq_T g$ if there are functionals Δ, Ψ such that, given $X \in 2^{\omega}$, the columns of $\Delta(X)$ are interpreted as an infinite sequence of inputs $\{Y_i\}$, and whenever $\{Z_i\}$ is a sequence of representations for $g(Y_i)$, then $\Psi(\bigoplus_i Z_i)$ is a representation for f(X).

$$\begin{array}{ccc} X & & \Delta & \bigoplus_i Y_i \\ & & \downarrow & \\ W \text{ (repr } f(X)) \xleftarrow{\Psi} & \bigoplus_i Z_i \text{ (repr } g(Y_i)) \end{array}$$

Parallelized Weihrauch reducibility

Definition 1. Say that $f \leq_T g$ if $f \leq_W \hat{g}$.

$$\begin{array}{ccc} X & & & & & & \bigoplus_i Y_i \\ & & & & \downarrow \\ W \text{ (repr } f(X)) & & & & \bigoplus_i Z_i \text{ (repr } g(Y_i)) \end{array}$$

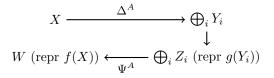
This satisfies the goals of the first slide, but:

Funny facts

- A step function which steps at a non-computable point does not compute a step function which steps at a computable point.
- There are continuous functions f, g such that f is reducible to g in the continuous degrees, but not under this reducibility.

Continuous Parallelized Weihrauch reducibility

Definition 2. Say that $f \leq_T g$ if there is some parameter $A \in 2^{\omega}$ relative to which $f \leq_W \hat{g}$.



This "fixes" both funny facts, but it is a big coarsening.

Recall the Baire hierarchy of functions: \mathcal{B}_0 is the continuous functions and \mathcal{B}_{α} is the set of pointwise limits of functions from $\bigcup_{\beta < \alpha} \mathcal{B}_{\beta}$.

Proposition

- When restricted to $\cup_n \mathcal{B}_n$, the \equiv_T classes are exactly the proper Baire classes $\mathcal{B}_{n+1} \setminus B_n$.
- This likely generalizes to all \mathcal{B}_{α} .

The spirits of tt- and m-reducibility are:

- Truth-table: Say in advance exactly what bit of the oracle you will use, and what you will do with them.
- Many-one: Specify in advance exactly one bit of the oracle, and use its answer as your answer.

Idea: Make Ψ^A a *tt*-reduction or an *m*-reduction. (That is, *A* computes a truth table to apply to $\bigoplus_i Z_i$, or decides what entry of $\bigoplus_i Z_i$ to use for what entry of *W*.)

Cauchy name representation of a real doesn't make much sense for this.

Definition. We say $X \in 2^{\omega}$ is a *separation name* for $x \in \mathbb{R}$ if for all $p < q \in \mathbb{Q}$, we have

$$X(\langle p,q\rangle) = 0 \implies x < q \text{ and } X(\langle p,q\rangle) = 1 \implies x > p.$$

(So if $x \in (p,q)$, there is no restriction on $X(\langle p,q \rangle)$.)

Definition. We say $f \leq_{tt} g$ if there is some A relative to which $f \leq_W \hat{g}$, where the reverse computation is an A-computable *tt*-reduction.

Definition. We say $f \leq_m g$ if there is some A relative to which $f \leq_W \hat{g}$, where the reverse computation is an A-computable *m*-reduction.

Landmarks in the Baire hierarchy

Definition. Let $j_n : 2^{\omega} \to \mathbb{R}$ be defined by

$$j_n(X) = \sum_{i \in \omega} \frac{X^{(n)}(i)}{2^{i+1}}.$$

Fact. For each n, we have $j_n \in \mathcal{B}_n$.

Theorem. (Day, Downey, W.)

• For each n and f, if f is Baire but $f \notin \mathcal{B}_n$, then either

$$j_{n+1} \leq_m f$$
 or $-j_{n+1} \leq_m f$.

• For each $f \in \mathcal{B}_n$, we have $f \leq_{tt} j_{n+1}$. (Probably holds for \leq_m also.) Proof: Uses $0^{(n)}$ priority argument. The Baire 1 functions support several ω_1 -length ranking functions.

Consider the α, β and γ ranks studied by Kechris-Louveau (1990), corresponding to three different characterizations of the Baire 1 functions.

The α rank is defined as follows. Given $f \in \mathcal{B}_1$ and $p < q \in \mathbb{Q}$, let

•
$$P^0 = 2^{\omega}$$
,

•
$$P^{\nu+1} = P^{\nu} \setminus \bigcup \{ U \text{ open } : f(U \cap P) \subseteq (p, \infty) \text{ or } f(U \cap P) \subseteq (-\infty, q) \}$$

• $P^{\nu} = \bigcap_{\mu < \nu} P^{\mu} \text{ for } \nu \text{ a limit.}$

Let $\alpha(f, p, q)$ be the least α such that $P^{\alpha} = \emptyset$. Let $\alpha(f) = \sup_{p < q \in \mathbb{Q}} \alpha(f, p, q)$.

The different ranks do not coincide generally, but:

Theorem. (Kechris, Louveau) If $f : 2^{\omega} \to \mathbb{R}$ is bounded, then for each ordinal ξ , we have $\alpha(f) \leq \omega^{\xi}$ iff $\beta(f) \leq \omega^{\xi}$ iff $\gamma(f) \leq \omega^{\xi}$.

For $f: 2^{\omega} \to \mathbb{R}$, let $\xi(f)$ be the least ξ such that $\alpha(f) \leq \omega^{\xi}$. **Theorem.** (Day, Downey, W.) For $f, g \in \mathcal{B}_1$, we have $f \leq_{tt} g$ iff $\xi(f) \leq \xi(g)$. **Corollary.** (Kechris-Louveau) If $f, g \in \mathcal{B}_1$ are bounded, then $\xi(f+g) \leq \max(\xi(f), \xi(g)).$

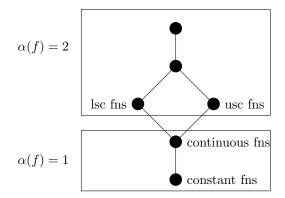
Proof: Observe that (using boundedness) $f + g \leq_{tt} f \oplus g$.

Characterization of the \leq_m -degrees in \mathcal{B}_1

Theorem. (Day, Downey, W.)

- If $\alpha(f) < \alpha(g)$, then $f <_m g$.
- If $\alpha(f) = \alpha(g)$ and this is a limit, then $f \equiv_m g$.
- If $\nu > 1$ is a successor, there are exactly 4 *m*-equivalence classes in $\{f : \alpha(f) = \nu\}.$

The initial segment of the m-degrees includes some recognizable classes.



Thank you.