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Kenneth Kunen (1943–2020) made deep and wide-
ranging contributions to mathematics: to topology, analy-
sis, theoretical computer science, and algebra, but first and
foremost, to set theory. Ken supervised over thirty doctoral
students, several of whom havemathematical descendants
of their own. The topologist Mary Ellen Rudin, in her note
for the 2011 Topology and its Applications tribute to Ken, ob-
served that “he didn’tmakewaves, but hemade bothmath-
ematics and mathematicians.” Another close colleague,
the set-theorist Arnie Miller, wrote that Ken was “not just a
brilliant and productive mathematician but what we really
admire most about him is his generosity with his math-
ematical ideas, conjectures, and problems.” And he per-
fectly captured Ken’s personality, by describing him as “al-
ways affable and always unflappable.” Ken did what he
enjoyed: even after retiring, he still thought about inter-
esting problems and discussed them with colleagues, and
continued to publish results.

We thank the AMS for the opportunity to edit the fol-
lowing compilation of personal recollections and techni-
cal accounts of Ken’s work. We are also grateful to all
who participated in this project for their enthusiastic re-
sponses and insightful contributions: Alan Dow, Michael
Hrušák, Stephen Jackson, István Juhász, H. Jerome Keisler,
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Figure 1. Ken at the Kunenfest in 2009.

Steffen Lempp, Donald Martin, Adrian Mathias,1 Jan van
Mill, Arnold W. Miller, Justin Moore, Dilip Raghavan,
John Steel, Frank Tall, and Hugh Woodin. In particular,
István was the first to propose this idea, and Steffen made
it possible for us, as Ken’s students and colleagues, to vol-
unteer for this job. As our long (but still not exhaustive)
list of contributors suggests, thanks to Ken and the scope
of his work, keeping our tribute within the prescribed lim-
its was yet another nontrivial problem.

István Juhász
I was deeply shocked by the death of Ken Kunen, because
I was unaware that my old friend had any health prob-
lems. In fact, a relatively short time before learning this,
for me, completely unexpected news, we corresponded via
email concerning amath problem that I had turned to him
about, as I had done so often. Also, he was younger than

1The contribution of Mathias is included in the section by Steel and Woodin.
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I, by exactly one month, and in my eyes he had “a profes-
sor’s head on an athlete’s body.” His devotion to physical
fitness was well-known. I remember how, sometime in the
70s, Paul Erdős greeted Ken not by asking aboutmathemat-
ics, as he usually did, but with “How is your cycling?”

Our acquaintance and friendship goes back a long time.
I first heard his name mentioned in 1969, at a memorable
ASL summer meeting in Manchester, England. That was
just after he proved that there is no non-trivial elemen-
tary embedding of 𝑉 , the set-theoretic universe, into itself.
Though technically relatively simple, this result was com-
pletely unexpected, so it was perhaps the biggest sensation
there. (I remember how excitedly Jan Mycielski tried to
convince us at the previous ASL meeting in Italy that as-
suming the existence of such an elementary embedding is
intuitively obvious.)

Another sensation, at least for me, at this meeting was
the appearance of Martin’s Axiom. After the meeting,
Dana Scott, who had been Ken’s PhD advisor and, like me,
was visiting Amsterdam that year, proudly told me that the
axiom could just as well be called Kunen’s Axiom because
Ken invented it independently of Tony Martin. This initi-
ated my correspondence with Ken about topological appli-
cations of Martin’s Axiom and his advice helped me a lot
in writing the chapter on Martin’s Axiom in my tract on
cardinal functions in topology.

We firstmet in person at the Cambridge Set Theory Sum-
mer School in 1971, and that was when we worked on our
first joint paper [JK73]. I’ll omit the mathematical details
of this as well as our later joint work because in my article
for the 2011 special issue of Topology and its Applications, I
wrote in detail about Ken’s decisive and plentiful contribu-
tions to set-theoretic topology.

We really got close in the academic year 1974/75 that I
spent at the UW–Madison. Although Mary Ellen Rudin ar-
ranged my invitation to Madison, Ken was also a gracious
host. For instance, he took care of finding a place for us to
stay in the same building where he then lived.

My professional benefits from this visit were enormous,
mainly due to my connection with Ken. Our numerous
exchanges about our common interests resulted, for ex-
ample, in the triple paper [JKR76], one of the most cited
works in our field. More importantly, these exchanges
taught me an awful lot. In addition, I had the good for-
tune to attend a recursion theory course that Ken taught
and that opened up a completely new chapter of logic for
me.

This visit of mine to Madison and Ken was followed by
uncountably many others. I even visited him in Austin in
1980, when he temporarily left Madison. My last visit to
Ken in Madison took place in 2009, at his retirement meet-
ing. After that we only kept in frequent touch by email.

In contrast, Ken visited Hungary just four times. The
first time was in the summer of 1978 at a topology confer-
ence in Budapest. In his talk he presented his very deep
result on the existence of weak 𝑃-points in 𝜔∗, [Kun80a].
Just recently, this result played an essential role in a result
of ours that is to appear in a volume of Topology and its Appli-
cations commemorating Ken. His second visit to us was for
the August 1998 summer topology conference, where he
presented results on Bohr topologies. His many papers on
Bohr topologies include one with Walter Rudin. So, given
the earlier triple paper [JKR76] that he, Mary Ellen, and I
published, the question Ken and Walter answered makes
Ken the only person to have published results jointly with
each of the Rudins. Following TOPOSYM2001 in Prague,
where he was an invited speaker, Ken visited Budapest
again, when 9/11 had just occurred. His last visit was in
2003, to a meeting that was organized on the occasion of
my 60th birthday.

I hoped to convince Ken to take advantage of the Hun-
garian Academy of Sciences distinguished visitor program,
but it turned out that before I could lure Ken back to Bu-
dapest he ran out of time.

H. Jerome Keisler
I first met Ken in 1968, when he was in his last year as
a graduate student at Stanford, and he gave a lecture at
UCLA, where I was visiting for the logic year. I had just
been promoted to Professor at Wisconsin. The logic group
atWisconsin then consisted of Stephen Kleene and Barkley
Rosser, who were late in their illustrious careers, and my-
self. In 1968, Ken was universally recognized as a budding
star, and was probably the most sought after new PhD in
the world of logic. It was a major coup for Wisconsin to
add Ken to our department. Although Ken worked mainly
in set theory and I worked mainly in model theory, our re-
search was closely related. Throughout our careers we had
a common interest in properties of ultrafilters. For the next
34 years, I had the incredible luxury of having Ken in the
office next door to mine. He was always available to ex-
change ideas and answer any questions I had in set theory.
There was no one better to ask. Ken would get to the heart
of a question and explain things in the clearest possible
way. He was a superb teacher whose courses were highly
popular. His graduate textbook on set theory is widely re-
garded as the best. During our careers, I worked closely
with several of Ken’s PhD students, and Kenworked closely
with several of mine, where model theory and set theory
overlapped.

H. Jerome Keisler is a professor emeritus of mathematics at the University of
Wisconsin–Madison. His email address is keisler@math.wisc.edu.
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Ken had an immediate and profound influence on the
logic program at Wisconsin. His arrival made Wisconsin
one of the few programs that covered all of computabil-
ity theory, model theory, and set theory. That gave grad-
uate students the option to learn all of them and then
choose a research area. Ken had a great influence on the
research of others. Ken’s work as a graduate student and
his seminar in set theory in his first year at Wisconsin in-
spired Rosser to write his book “Simplified Independence
Proofs.” When Ken arrived, Mary Ellen Rudin joined the
Wisconsin logic seminar, and from then on much of her
research was on the borderline between topology and set
theory. Early in his career, in 1971–72, after spending the
academic year at Berkeley, Ken returned with three Berke-
ley graduate students, William Fleissner, Judith Roitman,
and Aki Kanamori. Each of them added much to the Wis-
consin logic group as visiting students and then went on
to have distinguished careers. For the next forty years, Ken
attracted many of the top people in the field as visitors to
Wisconsin, and some visited several times.

During the 1970s, Ken, Jon Barwise, and I worked to-
gether on the logic program at Wisconsin and on many
other things, such as theHandbook ofMathematical Logic,
and the Kleene Symposium in honor of Kleene’s 70th
birthday. I was extremely fortunate to have had the op-
portunity to work with Ken for so many years.

Steffen Lempp
When I arrived in Madison in 1988, twenty years after Ken,
I felt like a very junior colleague among senior giants (in-
cludingmy current coauthors Jerry Keisler and ArnieMiller
as well as Terry Millar, who unfortunately passed away two
years ago). Each of them had his own unique style. The
three things I remember themost about Ken are his bound-
less energy, his uncanny ability to attract very good stu-
dents with a fairly hands-off approach, and his truly amaz-
ing ability to generate interesting qualifying exam prob-
lems.

During my first 25 years at UW, we almost always had
our semesterly logic picnic at Devil’s Lake State Park, and
we always scaled East Bluff from the south shore. It was
hard to keep up with Ken running up the steep path; in
fact, most of the time, Ken didn’t even bother with the path
but just climbed up the boulder field in between, with the
rest of us panting behind him (or taking the path instead).

He was immensely popular with students, many of
whom went on to highly distinguished careers of their
own, and almost all of whom finished their degree and

Steffen Lempp is a professor of mathematics at the University of Wisconsin–
Madison. His email address is lempp@math.wisc.edu.

found their niche; in fact, Ken’s last student graduated
the summer Ken passed away! He was very conscientious
about meeting with his students, but especially after his
retirement, they had to come in early, since Ken arrived in
the department at 7 AM and was gone by 10 AM!

Finally, each semester when we had to make up the
qualifying exam, and even long after Ken retired, he con-
tributed a lot of problems. My problem with this was that
I had a hard time even solving the ones he labeled as for
the “elementary” section! Fortunately, Ken gave the solu-
tions for later publication along with the problems, so I
could check if the problems were doable for our students
without spending hours trying to solve them!

Arnold W. Miller
I want to say something about Ken’s teaching. Some time
ago one of our graduate students made a very astute ob-
servation about Ken’s style of lecture. He said “Professor
Kunen never gives the proof of anything; he just makes
remarks.” I attended a great many of Ken’s lectures and
can explain what the student meant. Here is how a typical
Kunen lecture went.

First he states the Theorem and its relevant definitions.
Then he explains what the Theorem says, maybe illustrates
a few consequences, special cases, Corollaries, and prob-
lems it doesn’t settle. Then he begins remarking about
how the proof might go. “You might think” he says “that
we could prove it this way—but that wouldn’t work.” But
then he says “or you might prove it this way—but that
doesn’t work. But maybe something similar does.” After
discussing several false starts and why they don’t work, he
discusses strategies and how to handle various problems
and details. He says “let’s consider the following strategy.
Prove Lemma 1 -, 2 -, 3-.” He explains how Lemmas 1,
2, and 3 would give us the Theorem. Then he says “Now
to prove 1 you might think we could do this—but that
wouldn’t work.” And then he says “Well a possible proof
of Lemma 1 would be a, b, then c.” After a while he starts
to discuss Lemma 2. “Now” he says “Lemma 2 is false, and
here’s why. . .but maybe we could prove Lemma 2′”. . .

So by the end of the hour the whole class sees the par-
ticular path the proof must take and how to take care of
the problems and details along the way. And then finally
Ken says “OK ah ah that’s enough discussion, let’s give the
proof of the Theorem.” So he writes on the board:

“Proof—see above remarks—K.”

Arnold W. Miller is a professor emeritus of mathematics at the University of
Wisconsin–Madison. His email address is miller@math.wisc.edu.
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Justin Tatch Moore
Unfortunately, I arrived too late to know Ken well. I re-
member meeting him on only two occasions: once as the
external examiner of my 2000 PhD thesis at the University
of Toronto and later when I visited Madison in 2006. In-
stead, I was part of a generation of set-theorists educated
through his book [Kun80b].

In 1995 while an undergraduate at Miami University, I
worked on a summer research project with Dennis Burke
funded through the college. There was a budget for “ma-
terials” and Dennis picked three books for me: Open Prob-
lems in Topology, The Handbook of Set-theoretic Topology, and
Ken’s Set Theory. All are still on my bookshelf; the last is
by far the most worn. I still recommend “Kunen” to any
student who expresses an interest in studying set theory.
From transfinite recursion to combinatorial set theory to
constructibility to iterated forcing, it gives a complete foun-
dation for further reading in the subject. The treatment is
timeless. The exercises are legendary. The tone is both pre-
cise and conversational.

Above all, it is a study in discipline. At the time the book
was written, set theory was rapidly developing in many
different directions. It must have been extremely tempt-
ing to include more, but Ken somehow knew the correct
boundaries and kept within them. As a result, the book
has stood the test of time extremely well. It is still the place
I send students to learn about forcing or how to construct
a Souslin tree. Even Chapter V on defining definability—
which seemed somewhat obscure back in the 1990s—was
prescient in light of the role that HOD plays in modern
inner model theory.

Of course Ken’s research itself was transformative and
inspirational: the nonexistence of a nontrivial elementary
𝑗 ∶ 𝑉𝜆+2 → 𝑉𝜆+2, the inner model for a measurable cardi-
nal, his work on random reals and RVMs, saturated ideals
on small cardinals, and his S and L spaces. Most of these
have had a significant influence on my own work. Still, his
book stands out as an extremely important contribution to
set theory and surely a lasting part of his legacy.

Frank Tall
I’ve written my reminiscences of Ken in my contribution
to the forthcoming memorial issue of Topology and its Ap-
plications. I’ll just repeat one item here. Ken had a genius
for providing clear answers to murky questions. You could
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go to his office with a vaguely formulated question and he
would divine its essence and answer it. Furthermore, he
knew “everything” known about set theory.

I only really learned set theory when I started teaching
from Ken’s book [Kun80b]. Many of my students who seri-
ously worked through the exercises became accomplished
set theorists. His innovation of teaching Martin’s Axiom
before forcing was revolutionary at the time. For a discus-
sion of Ken’s expository talents, see Kanamori’s article in
the upcoming special issue of Annals of Pure and Applied
Logic.

My most-cited article with Ken, and Ken’s third most
cited joint paper is Between Martin’s axiom and Souslin’s hy-
pothesis [KT79]. I had noticed that most consequences of
Martin’s Axiom fell into two natural categories: combina-
torial propositions about the real line or sets of natural
numbers and propositions implying Souslin’s Hypothesis.
I asked Ken if these two could be distinguished. He had al-
ready done so! Ken had a habit of jotting down 4-page
handwritten notes containing proofs of interesting facts
that were too small to be an actual paper, but that he could
pull out of his filing cabinet when the occasion called for
them. One of these was that property 𝐾 forcing preserved
Souslin trees. It immediately followed that Martin’s Ax-
iom restricted to property 𝐾 partial orders plus the nega-
tion of the ContinuumHypothesis did not imply Souslin’s
Hypothesis, although it did imply all the usual combina-
torial consequences. This paper spawned many others; its
terminology has become so commonplace that its origin
is often not cited. A survey on this topic by Bagaria, enti-
tled The relative strength of fragments of Martin’s Axiom, will
appear in the issue of Annals of Pure and Applied Logicmen-
tioned above.

My second-most cited article with Ken, [KST86], pro-
vided an unexpected strong connection between saturated
ideals and a problem Russian topologists were interested
in—the existence of Baire irresolvable spaces.

Ken had high standards concerning what was publish-
able. Several topologists, e.g. Wis Comfort, had asked me
about whether our Baire irresolvable results applied at sin-
gular cardinals, so I thought we should publish the fact
that they did as a short note. Ken didn’t want to, because
it was essentially the same proof as in the regular case, so
we posted it on Topology Atlas with the title On the consis-
tency of the non-existence of Baire irresolvable spaces.

I had two other papers with Ken: [BGKT78] and [KT00].
The first was the usual story—the other authors couldn’t
solve a central problem in their work, so asked Ken. The
secondwas a true collaboration, answering the question of
whether an uncountable elementary submodel containing
the real line as a member actually includes all of it. Not
surprisingly, the answer depends on your set theory.

NOVEMBER 2022 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1761



Figure 2. A group picture from the Kunenfest, including many of the contributors and editors of this article.

Ken and 𝛽ℕ
Alan Dow, Michael Hrušák,
and Jan van Mill
Ken’s enormous contribution to the study of the space of
ultrafilters 𝛽ℕ, and dually the Boolean algebras 𝒫(ℕ) and
𝒫(ℕ)/fin, cannot be overstated. Dealing with the difficult
task of deciding which of his many fundamental results
we should highlight, we have decided to focus almost ex-
clusively on his 𝖹𝖥𝖢 theorems leaving aside his many im-
portant consistency proofs such as (1) the non-existence
of selective ultrafilters, (2) the early results on cardinal in-
variants of the continuum (𝔱 < 𝔠, 𝔲 < 𝔠 and 𝔞 < 𝔠), (3) his
joint work with Bell that every point in 𝛽ℕ has 𝜋-character
ℵ1 < 𝔠 and there is a point with 𝜋-character at least 𝑐𝑓(𝔠),
(4) the non-existence of gaps other than Hausdorff and
Rothberger together with 𝖬𝖠 + ¬𝖢𝖧 while inventing the
technique of “freezing” a gap, and (5) along with some

Alan Dow is a professor of mathematics at the University of North Carolina at
Charlotte. His email address is adow@uncc.edu.
Michael Hrušák is a professor of mathematics at the Universidad Nacional
Autónoma de México. His email address is michael@matmor.unam.mx.
Jan van Mill is a professor of mathematics at the University of Amsterdam. His
email address is j.vanMill@uva.nl.

more “topological sounding” statements, e.g., the fact that
ℕ∗ = 𝛽ℕ ⧵ ℕ cannot be covered by nowhere dense closed
𝑃-sets under 𝖢𝖧, the consistency of the statement that ℕ∗

does not map onto all compact spaces of weight 𝔠, and
the consistency of ℕ∗ ⧵ {𝑝} is 𝐶∗-embedded in ℕ∗ for every
𝑝 ∈ ℕ∗, to mention but a few.

In the presence of 𝖢𝖧, information about 𝒫(ℕ) and
𝒫(ℕ)/fin can often be found by a transfinite procedure
dealing essentially with countable structures. This is no
longer true in the absence of 𝖢𝖧 if one’s aim is to get re-
sults in 𝖹𝖥𝖢, since regardless of additional set theoretic as-
sumptions one can, for example, run into a Hausdorff gap.
It was Kunen [Kun72] who found in 1972 a remedy for
this seemingly insurmountable barrier by creating before-
hand enough “space” to make sure that a recursive process
does not prematurely terminate. This is what we now call
a “guided transfinite recursion.” We shall briefly outline this
brilliant innovative idea that turned out to be extremely
powerful in solving open problems dealing with ultrafil-
ters in 𝒫(ℕ). One first identifies an “independent” matrix
of subsets ofℕwith 𝔠-many rows. The cofinite filter is inde-
pendent modulo the matrix in the sense that every mem-
ber of it intersects an arbitrary finite collection of sets, each
chosen from a different row of the matrix, in an infinite
set. Suppose that the tranfinite process allows for steps in
which only a finite number of rows of the matrix is used.
Then at every intermediate step of the process, only fewer
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than 𝔠-many rows of thematrix are used and there are still 𝔠-
many left for future use, hence the transfinite process does
not terminate until it reaches its successful end.

Kunen applied it in two papers, solving major open
problems. In [Kun72], motivated by the work of Frolı́k
and M. E. Rudin, he used it to prove the existence of in-
comparable ultrafilters in the Rudin-Keisler order. Kunen’s
result which was generalized by Shelah and Rudin, had
a very high impact. In the same paper [Kun72], moti-
vated by problems from Model Theory, Kunen used the
new method to prove the existence of so-called good ul-
trafilters in 𝖹𝖥𝖢, which improved a well-known result of
Keisler who proved it earlier using 𝖢𝖧. The Rudin-Keisler
incomparability of ultrafilters also had definitive topolog-
ical applications. In [Kun90], Kunen used it to show that
no infinite compact 𝐹-space (and more generally, no prod-
uct of compact 𝐹-spaces at least one of which is infinite)
is (topologically) homogeneous, which greatly improved
an earlier result by Frolı́k for extremally disconnected com-
pacta.

Kunen’s second main, and still more striking, appli-
cation of his method [Kun80a] that there are weak 𝑃-
points in ℕ∗ gave the ultimate proof of non-homogeneity
of ℕ∗. W. Rudin showed that 𝑃-points exist in ℕ∗ under
𝖢𝖧, thereby demonstrating thatℕ∗ is not homogeneous by
producing two points with obviously distinct topological
behavior (recall that a 𝑃-point is a point with the property
that the intersection of any countable family of its neigh-
borhoods is again a neighborhood). That some set theo-
retic hypothesis is essential in Rudin’s result was shown by
Shelah, while a 𝖹𝖥𝖢 proof of non-homogeneity ofℕ∗ is due
to Frolı́k. However, Frolı́k’s proof is based on a cardinality
argument, and does not yield two points with obvious dif-
ferent topological behavior. A point is a weak 𝑃-point if it
is not in the closure of any countable subset contained in
its complement. Every 𝑃-point is a weak 𝑃-point (but not
vice-versa). Kunen’s result about weak 𝑃-points in ℕ∗ not
only gives an “honest” proof of the nonhomogeneity of
ℕ∗, but also shows that the Shelah 𝑃-point independence
theorem is in a certain sense sharp. The matrix of sets
needed for the proof is much more complicated than the
one from [Kun72]. Indeed the matrix discussed above had
only two elements in each row and was shown to exist by
Hausdorff; however for the results on weak 𝑃-points each
row had 𝔠-many elements and proving such a structure ex-
ists in 𝖹𝖥𝖢 is in itself a major result. The ideas in [Kun80a]
had again enormous impact. Several other major open
problems on ℕ∗ were solved by applying Kunen’s method:
Simon’s result that there is a separable closed subspace of
ℕ∗ that is not a retract of ℕ∗, van Mill’s results on weak 𝑃-
points in general Čech-Stone remainders and construction
of many other special points of ℕ∗, and Dow’s solution to

Figure 3. Ken at UC Berkeley in 1972.

van Douwen’s problem that there is a nontrivial copy of
ℕ∗ in ℕ∗ (the latter result was recently generalized by Dow
and van Mill that there even exists a nowhere dense weak
𝑃-set copy of ℕ∗ in ℕ∗).

Kunen’s Work on Determinacy
and Descriptive Set Theory

Stephen Jackson and Donald A. Martin
Kunen’s work in the early 70s in descriptive set theory, and
particularly in the development of determinacy theory, de-
serves to be considered a fundamental and groundbreak-
ing achievement.
Background for Kunen’s work in determinacy. The axiom of
determinacy, 𝖠𝖣, which states that every two-player game
on 𝜔 (or equivalently on 2 = {0, 1}) has a winning strat-
egy, was introduced by Mycielski and Steinhaus in 1962.
They proposed using this axiom to develop a theory of the
sets of reals, as this axiom avoids pathological sets con-
structed from 𝖠𝖢. Although 𝖠𝖣 contradicts 𝖠𝖢, it was un-
derstood that this axiom was meant to apply to a more
restricted universe, such as 𝐿(ℝ), in which the sets of re-
als have a more explicitly definable structure. However, it
wasn’t until much later through the work of Martin, Steel,
and Woodin in the late 80s that it was shown that large
cardinals imply 𝖠𝖣𝐿(ℝ). The early researchers realized,
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though, that 𝖠𝖣, and even weaker forms such as projective
determinacy, 𝖯𝖣, might be enough to develop a theory of
the projective sets and beyond similar to the theory of the
Borel and analytic sets developed by the classical descrip-
tive set theorists of the early 20th century (see Kechris’s
textbook).

In the late 60s, just prior to Kunen’s main work in this
area, several important developments occurred. Martin
and Moschovakis (1968) independently proved the first
periodicity theorem for propagating the prewellordering
property under ∀𝜔𝜔

assuming a determinacy hypothesis.
This was followed byMoschovakis’s second periodicity the-
orem for propagating scales and the scale property under
the same determinacy hypothesis (see Moschovakis’s text-
book for more history). The periodicity theorems give a
structural representation for the projective sets, but the the-
ory that emerges is largely in terms of the so-called projec-
tive ordinals. By definition,

𝜹1𝑛 = sup{∣⪯∣∶ ⪯∈ 𝚫1
𝑛 is a prewellordering of 𝜔𝜔},

that is, it is the supremum of the lengths of the 𝚫1
𝑛

prewellorderings of 𝜔𝜔. As we will discuss shortly, the ini-
tiation of a program for computing the 𝜹1𝑛 would be an
important contribution of Kunen’s.

A second development in the late 60s which helps to
set the stage for Kunen’s work was Martin’s proof of𝚷1

1 de-
terminacy from a measurable cardinal. Aside from forging
a connection between determinacy hypotheses and large
cardinal axioms, implicit in this proof was the notion of
a homogeneous tree. This notion also implicitly appears in
the 1969 paper of Martin and Solovay [MS69]. What we
now call the Martin-Solovay construction shows how to
construct a scale/Suslin representation for 𝜔𝜔 ⧵ 𝐴 from a
scale on 𝐴 given that the tree 𝑇 giving the Suslin represen-
tation for 𝐴 is weakly homogeneous. The modern notion
of a homogeneous tree and weakly homogeneous tree was
formulated independently by Martin and Kechris in 1981,
but arose implicitly earlier as just mentioned.

Kunen’s work. With this as background, in 1971 Kunen
began producing a series of remarkable results which
would shape the future of descriptive set theory and deter-
minacy theory. During this time, Kunen (and others) com-
municated their results through handwritten notes which
were circulated to the other researchers in the area. While
Kunen’s work in determinacy became well-known, he did
not publish this work.

In the same time period, Kunen and Martin inde-
pendently proved what we now call the Kunen-Martin
theorem. This theorem states that a 𝜅-Suslin well-
founded relation ≺ has length ∣≺∣ < 𝜅+. This result has
immediate ramifications for computing the 𝜹1𝑛. It shows
that 𝜹12𝑛+2 = (𝜹12𝑛+1)+ and that 𝜹12𝑛+1 = 𝜆+2𝑛+1, where 𝜆2𝑛+1

is the cardinal where 𝚺12𝑛+1 sets and 𝚷1
2𝑛 sets admit scales.

Kunen then developed a plan for computing the projective
ordinals. Roughly speaking, if we assume 𝜹12𝑛−1 is known,
and this is where the 𝚺12𝑛 sets admit weakly homogeneous
scales, and if we can transfer the scales on the 𝚺12𝑛 sets to
the 𝚷1

2𝑛 sets (something akin to the Martin-Solovay con-
struction) then we would compute 𝜆2𝑛+1 and thus 𝜹12𝑛+1,
and thus complete the induction.

A central part of Kunen’s plan for carrying out the above
program is to establish partition properties of the projective
ordinals. If one assumes the strong partition property at
𝜹12𝑛−1, and the tree 𝑇2𝑛−1 of a scale on a complete 𝚷1

2𝑛−1
set is homogeneous then the Martin-Solovay construction
will propagate the tree 𝑇2𝑛−1 to a homogeneous Suslin
representation for a complete 𝚷1

2𝑛 set which will be on
the ordinal sup𝜇 𝑗𝜇(𝜹12𝑛−1) where 𝜇 ranges over the mea-
sures in the homogeneous tree for 𝑇2𝑛−1, and 𝑗𝜇 is the ul-
trapower embedding. Thus we would compute 𝜆2𝑛+1 =
sup𝜇 𝑗𝜇(𝜹12𝑛−1) and thereby compute 𝜹12𝑛+1.

The above program of Kunen’s depends on two key
points. First, we must be able to prove the partition prop-
erties of the 𝜹12𝑛+1, and second we must be able to analyze
the homogeneity measures 𝜇 well enough to be able to
compute the ultrapowers 𝑗𝜇(𝜹12𝑛−1). Concerning the parti-
tion properties, Martin showed that 𝜹11 = 𝜔1 has the strong
partition property, and established a general framework
for proving partition results from determinacy. In a re-
markable result which contained several important ideas,
Kunen showed that 𝜹13 had the weak partition property
𝜹13 → (𝜹13)𝜆 for all 𝜆 < 𝜹13 . Kunen’s proof went by show-
ing that there is a𝚫1

3 coding of the subsets of 𝜆3 = 𝜔𝜔, and
then quoting the Martin framework (see Jackson’s chap-
ter in the Handbook of Set Theory for an exact statement).
In particular, Kunen came up with a short but very clever
argument that to analyze the subsets of 𝜅, it suffices to ana-
lyze the measures on 𝜅. Using the theory of indiscernibles,
Kunen analyzed the measures on the 𝜔𝑛, which then al-
lowed him to show the weak partition relation on 𝜹13 (see
[Sol78] for a presentation of Kunen’s argument). A similar
elegant result proved by Kunen is that under 𝖠𝖣 the set of
measures on any ordinal 𝛼 < Θ is wellordered.

An important technical ingredient in the analysis of
measures on the 𝜔𝑛 under 𝖠𝖣 is the notion of the Kunen
tree. This concept, introduced by Kunen, plays a central
role in almost all arguments involving the 𝜔𝑛 under 𝖠𝖣.
The Kunen tree 𝑇 is a tree 𝑇 ⊆ (𝜔 × 𝜔1)<𝜔 on 𝜔 × 𝜔1 such
that for all 𝑓∶ 𝜔1 → 𝜔1 there is an 𝑥 ∈ 𝜔𝜔 with the section
𝑇𝑥 = {𝑠 ∈ 𝜔<𝜔1 ∶ (𝑥 ↾ |𝑠|, 𝑠) ∈ 𝑇} of 𝑇 wellfounded, such
that for all 𝛼 < 𝜔 in a c.u.b. set we have

𝑓(𝛼) < |𝑇𝑥 ↾ 𝛼|
(the rank of the 𝑇𝑥 restricted to ordinals less that 𝛼). An
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immediate consequence of the Kunen tree, for example,
is a bound for the ultrapower 𝑗𝑊1𝑛(𝜔1) ≤ 𝜔𝑛+1 where
𝑊 1
𝑛 denotes the 𝑛-fold product of the normal measure on

𝜔1. From the perspective of Kunen’s program, this can be
viewed as computing an upper bound for 𝜹13 as we have
𝜹13 = (𝜆3)+ ≤ sup𝑛 𝑗𝑊1𝑛(𝜔1) ≤ (𝜔𝜔)+ = 𝜔𝜔+1.

The program of computing the projective ordinals via
Kunen’s program stalled after the results mentioned above.
It turns out that Kunen’s overall plan was still sound, but
several important ingredients were missing for extending
the program to higher levels. One of the missing ingredi-
ents was a generalization of the Kunen tree to higher cofi-
nalities above 𝜔. For functions on the higher 𝜹12𝑛+1, one
needs theMartin tree, an appropriate generalization of the
Kunen tree introduced by Martin in the early 80s. A sec-
ond ingredient necessary for extending the program is the
notion of a description. These are hereditarily finite objects
which “describe” how to generate functions via certain it-
erated ultrapowers (in Jackson’s chapter in the Handbook
of Set Theory the earlier theory is redone from this perspec-
tive). Although the description analysis does not rely on
the theory of indiscernibles, it is important to note that
Kunen’s idea of analyzing the sets of ordinals by analyzing
the measures is still a key component in the analysis. Us-
ing the Martin tree and the description analysis, Jackson
computed 𝜹15 and proved the strong partition relation on
𝜹13 in the early to mid 80s [Jac99], and then extended this
analysis to complete Kunen’s program of computing all of
the 𝜹1𝑛 and establishing the strong partition relation at all
of the odd projective ordinals. Extending the results of the
projective analysis throughout the cardinal structure of a
determinacy model below Θ remains an elusive goal.

Kunen on the Product
Measure Extension Axiom
and on S- and L-spaces

Peter Nyikos
As a good friend and colleague of Mary Ellen Rudin at
the University of Wisconsin, Kunen could hardly avoid
becoming interested in some of the problems in set-
theoretic topology about which Mary Ellen wrote in her
tremendously influential booklet Lectures on Set Theoretic
Topology. But his most valuable contribution may have
been a result that he never bothered to publish.
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This was his generalization of a 1971 theorem of Solo-
vay [Sol71] which, by sacrificing translation-invariance, ex-
tended Lebesgue measure to a countably additive measure
defined on all subsets of [0, 1]. For this, Solovay had to as-
sume the consistency of there being a measurable cardinal.
This is an especially bold large cardinal axiom: measurable
cardinals are so large that there were serious suspicions
back then that their existence is inconsistent. Their con-
sistency has stood the test of time long enough for these
suspicions to have quieted down, but there is still good rea-
son to avoid relying on their consistency when possible.

Kunen needed an even larger cardinal, known as
“strongly compact,” to extend Solovay’s theorem to a
whole class of countably additive measures. He did this
by way of the Product Measure Extension Axiom (𝖯𝖬𝖤𝖠),
which can be succinctly described as extending, for all
cardinals 𝜅, the Haar measure on the product of 𝜅-many
copies of the 2-element group to a measure on all subsets
of these groups.

This axiom turned out to be the key to the first of two
breakthroughs that settled the Normal Moore Space Prob-
lem, a problem of great interest to set-theoretic topologists
since 1937, when F. Burton Jones published a proof, as-
suming 2ℵ0 < 2ℵ1 , that every normal Moore space with
a countable dense subset is metrizable. In her booklet,
Rudin devotes a whole chapter “strictly to the normal
Moore space conjecture.” The 𝖯𝖬𝖤𝖠 was exactly what I
needed to get a complete generalization of Jones’s topolog-
ical theorem under a different axiom: every normal Moore
space is metrizable.

Kunen’s proof was finally published in 1984 by Bill
Fleissner, in his chapter in the Handbook of Set-theoretic
Topology, where he also presented the general result in the
opposite direction. This was his construction of a non-
metrizable normal Moore space using an axiom that is so
weak, that to negate it entails the consistency of there being
a proper class of measurable cardinals!

Kunen made several significant contributions to an-
other topic to which Mary Ellen devoted a chapter (and
hefty parts of two others) in her booklet: the theme of
S- and L-spaces. An S-space is a regular hereditarily sepa-
rable2 space that is not hereditarily Lindelöf; to define L-
space, switch “separable” and “Lindelöf.”

Early on, the conventional wisdom was that the exis-
tence of an S-space is equivalent to that of an L-space. This
was refuted by J. T. Moore’s sensational construction of
an L-space from 𝖹𝖥𝖢 combined with an earlier result by
S. Todorčević showing the consistency of there being no
S-spaces.

2The word “hereditarily” refers to all subspaces having the stated property. A
separable space is one with a countable dense subset, and a Lindelöf space is one
for which every open cover has a countable subcover.
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One of Kunen’s best papers on this topic [Kun77] con-
tributed to the conventional wisdom long before Moore’s
breakthrough. It has to do with spaces whose finite pow-
ers are all S-spaces or all L-spaces, known as strong S-spaces,
resp. strong L-spaces. Zenor had shown that if there is a
strong S-space, there is a strong L-space, and vice versa. Un-
der 𝖢𝖧, there aremany constructions of strong S-spaces (in-
cluding some by Kunen) and, by Zenor’s theorem, strong L-
spaces. Kunen’s big breakthrough in [Kun77] was to show
that 𝖬𝖠 + ¬𝖢𝖧 implies that there are no strong S-spaces,
and the proof itself dualized easily to imply that there are
no strong L-spaces, without invoking Zenor’s theorem.

The “Kunen line” [JKR76] is probably the best known of
Kunen’s contributions in this area. It is a refinement of the
topology of the real line under 𝖢𝖧 to a locally countable
and locally compact, perfectly normal S-space. Kunen also
constructed various examples of compact L-spaces under
various axioms. Some, like his Corson compact L-space
using 𝖢𝖧, are relevant to functional analysis.

A very different construction was in a joint article with
Eric van Douwen. They showed that the following are
equivalent: (1) a combinatorial principle that they des-
ignated ↓; (2) 𝒫(𝜔) with the Vietoris topology has an L-
subspace; (3) 𝒫(𝜔) with the Vietoris topology has an S-
subspace. The equivalence of (2) and (3) is obtained
by taking complements of the respective subsets of 𝜔,
as are the proofs that each statement is equivalent to ↓,
again in line with the illusion of S- and L- duality. They
also showed that these statements follow from 𝖢𝖧, via a
stronger principle designated ↑ [mnemonic: What goes up
must come down.] and are negated by 𝖬𝖠 + ¬𝖢𝖧.

Kunen and Forcing

Dilip Raghavan
Kunen made seminal contributions to all of the principal
threads in the study of forcing, forcing axioms, and their
applications. Here are some of the greatest hits.

Iterated forcing was invented by Solovay and Tannen-
baum to prove the consistency of Suslin’s Hypothesis.
Several people realized that the details of Solovay and Tan-
nenbaum’s argument could be carried out with all c.c.c.
partial orders, leading to the formulation of Martin’s Ax-
iom (𝖬𝖠), the first example of a forcing axiom. Kunen,
who had independently formulated 𝖬𝖠, began exploring
its consequences in his thesis of 1968. In Section 14 of
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his thesis, Kunen showed that 𝖬𝖠 implies that every set of
reals of cardinality less than 2ℵ0 is of strong measure zero.
He went on to observe that if 𝜅 ≤ 2ℵ0 is real-valued mea-
surable, then because of 𝚺12 indescribability, there is a set
of reals of cardinality less than 𝜅 which is not Lebesgue
measurable, thereby proving that 𝖬𝖠 is incompatible with
the assertion that the continuum is real-valuedmeasurable.
Section 14 also contains the first construction of a general-
ized Luzin set under𝖬𝖠. In Section 12 of his thesis, Kunen
showed that 𝖬𝖠 implies that every subset of ℝ×ℝ belongs
to the 𝜎-algebra generated by arbitrary rectangles, while
showing that this is not the case in the Cohen model. Sec-
tion 13 contains a proof that the cardinal characteristic 𝔟
equals 2ℵ0 under 𝖬𝖠.

Kunen was the first to investigate the gap structure of
𝒫(𝜔)/fin under forcing axioms. Introducing the pivotal
technique of freezing a gap in his handwritten notes from
August 1975, Kunen was able to show that 𝖬𝖠ℵ1 alone is
not sufficient to determine the gap structure of 𝒫(𝜔)/fin.
Although they were never published, the mimeographed
notes of 1975 were widely circulated and attracted a great
deal of attention, featuring inWoodin’s solution to Kaplan-
sky’s conjecture. The idea of freezing gaps went on to play
a crucial role in the eventual complete characterization of
the gap structure of𝒫(𝜔)/fin under 𝖯𝖥𝖠, which in turn, was
vital to the proof that 2ℵ0 = ℵ2 under 𝖯𝖥𝖠. The reader may
consult Todorčević’s 1989 monograph for more details of
this. Kunen went on to publish most of the key ideas from
his 1975 notes in [Kun88], where using the technique of
freezing gaps once again, he was able to show that the car-
dinal characteristic 𝔪, which marks the place where 𝖬𝖠
first fails, could consistently be equal to ℵ𝜔1 . In [Kun88],
Kunen asked if it is possible for𝔪 to be a singular cardinal
of cofinality other than 𝜔1. Kunen’s question is yet to be
fully resolved.

A major application of 𝖬𝖠 to general topology is pre-
sented in [Kun77] where Kunen proved that strong 𝑆 and
𝐿 spaces do not exist under 𝖬𝖠. More recently, Kunen and
his collaborators have investigated the effect of forcing ax-
ioms on continua and differentiable functions in ℝ𝑛. In
2011, Hart and Kunen proved that 𝖯𝖥𝖠 implies that every
uncountable subset of ℝ𝑛 meets some 𝐶1 arc in an un-
countable set and that this is not provable from 𝖬𝖠ℵ1 . In
[Kun12], Kunen showed that 𝖯𝖥𝖠 implies that if 𝐸 is any
subset of ℝ of size at most ℵ1, then 𝐸2 can be covered by
countably many graphs of 𝐶1 functions and their inverses.

Kunen pioneered techniques for obtaining consistency
results from large cardinals through iterated forcing. What
is now known as the Kunen-Paris forcing was introduced
by Kunen and Paris [KP70] in 1970 to show that it is con-
sistent for a measurable cardinal 𝜅 to have 22𝜅 normal mea-
sures on it. At the end of their paper Kunen and Paris asked
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whether it is possible for the number of normal measures
on a measurable cardinal 𝜅 to be strictly between 1 and
22𝜅 , a question which was fully resolved only in 2009 by
Friedman and Magidor. Kunen’s 1972 result, published in
1978 in [Kun78], showing that it is consistent relative to
a huge cardinal to have an ℵ2-saturated ideal on 𝜔1, has
come to be regarded as a landmark in set theory. Kunen’s
method has been adapted and improved numerous times
to show the consistency of various saturation type proper-
ties from large cardinals. While it is now known how an
ℵ2-saturated ideal on 𝜔1 can be obtained from more opti-
mal large cardinal hypotheses, Kunen’s original technique
and its variations remain an indispensable item in every
set theorist’s toolkit. We refer the reader to Section 7 of
Kanamori’s article in the 2011 special issue of Topology and
its Applications for a detailed account of the historical sig-
nificance of Kunen’s [Kun78].

Kunen systematically studied the combinatorial prop-
erties of the Cohen and Random models. In his thesis,
Kunen pointed out that there are no towers of length 𝜔2
in 𝒫(𝜔)/fin in the Cohen model. The fact that Ramsey ul-
trafilters could not be constructed in 𝖹𝖥𝖢 was established
by Kunen’s observation in [Kun72] that they do not exist
in the Random model. In the expository article [Kun84],
Kunen introduced the crucial notion of an invariant c.c.c.
ideal. This notion allowed him to abstract away the shared
features of the Cohen and Random models, and to point
out the reasons for the differences between them. To-
wards the end of his article Kunen asked for a classifica-
tion of all invariant c.c.c. ideals. Kunen’s notion of an
invariant c.c.c. ideal and his call to classify them turned
out to be very influential, inspiring a sequence of impor-
tant works by Kechris and Solecki, Farah and Zapletal, and
Rosłanowski and Shelah which provided partial answers
to Kunen’s problem. Jointly with Juhász in 2001, Kunen
sought axioms that capture the combinatorics of 𝒫(𝜔) and
𝜔𝜔 in the Cohen model. The idea behind this interesting
line of research is to identify a handful of principles that
hold in the Cohen model from which most of the known
properties of the Cohen model could be axiomatically de-
rived.

Kunen was one of the first to obtain consistency results
about combinatorial cardinal characteristics of the contin-
uum by forcing. Kunen observed that 𝔞 = ℵ1 in the Cohen
model, a result he published in his textbook [Kun80b]. He
was the first to prove the consistency of 𝔲 < 2ℵ0 . There
were, in fact, two models of this. Bell and Kunen [BK81]
produced a model with 𝔲 = ℵ1 and 2ℵ0 = ℵ𝜔1 (more is
true in their model – every ultrafilter on 𝜔 has 𝜋-character
ℵ1). Exercise (A10) in Chapter VIII of [Kun80b] asks the
student to build Kunen’s simpler model where 𝔲 = ℵ1 and
2ℵ0 can be arbitrary. Kunen asked whether it is possible to

have a uniform ultrafilter on 𝜔1 that is generated by fewer
than 2ℵ1 sets, that is, whether 𝔲(ℵ1) < 2ℵ1 is consistent.
His question remains wide open.

I will end with some personal recollections. Kunen was
an outstanding advisor, a perfect match for my personality.
He was able to inspire his students by the sheer example
of his deeply original work. I had complete intellectual
freedom in choosing what I wanted to work on, receiving
guidance only if I was hopelessly stuck and decided to ask
him. And in that case he always had some valuable re-
marks. I was able to acquire what is arguably the single
most important skill in research: discerning the right prob-
lems to tackle. He was the ideal advisor for me. Kunen was
also well-known for providing generous financial support
to his students through his research grants. I was the ben-
eficiary of this generosity twice.

I saw Kunen for the last time in May 2018 in Madison,
WI. At that time, I was working on some problems about
the order dimension of uncountable partial orders. I ex-
plained to him the results I had obtained with my collabo-
rators and told him some of the problems I couldn’t solve
at the time. He thought briefly about what I had said, told
me enthusiastically that the results were really interesting,
and remarked casually that the model obtained by adding
ℵ3 Cohen reals is likely to be the right place to look for
a counterexample to one of the open problems. He was
absolutely right. Lemma 5.1 of [KR21] proves Kunen’s re-
mark from our final meeting that day.

Kunen and Inner Model Theory

John Steel and Hugh Woodin
Kunen began his graduate studies at Stanford in 1965,
and finished in 1968 with a PhD thesis that is truly re-
markable for its depth and breadth, and for the impor-
tance of its ideas in later work. The first half of the thesis
deals with 𝐿[𝑈], the canonical minimal inner model with
one measurable cardinal. An augmented version of it was
published in [Kun70], a classic paper that has become stan-
dard material in graduate set theory texts.

Kunen’s thesis adviser Dana Scott had proved in 1961
that the existence of measurable cardinals implies that
there are nonconstructible sets, that is, the full universe 𝑉
of sets is larger thanGödel’s canonical innermodel 𝐿. Row-
bottom and Gaifman had shown in 1964 that if there are
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measurable cardinals, then in fact there are only countably
many constructible real numbers, and Silver had identified
a canonical “least” nonconstructible real, now known as 0♯.
𝐿[0♯] is thus a canonical inner model slightly larger than 𝐿,
but if there are measurable cardinals, then it too has only
countably many reals. Solovay had observed that if 𝑈 is
an ultrafilter witnessing the measurability of a cardinal 𝜅,
then in 𝐿[𝑈], 𝜅 is measurable via 𝑈 ∩ 𝐿[𝑈], and the GCH
holds above 𝜅. So 𝐿[𝑈] is an inner model with a measur-
able cardinal, but we cannot say yet that it is canonical,
because it seems to depend on the arbitrary parameter 𝑈.
Silver showed in [Sil71] that the full GCH holds in 𝐿[𝑈],
and its set of reals is independent of 𝑈.

Figure 4. Ken in 1960.

With this as a founda-
tion, Kunen established the
basic canonicity theorems
for 𝐿[𝑈]. Silver’s work
on 𝐿[𝑈] had used Row-
bottom’s method of indis-
cernibles. Kunen’s key first
idea was to build on Gaif-
man’s method of iterated
ultrapowers instead. With
that as his starting point,
he showed that the model
𝐿[𝑈] depends only on the
measurable cardinal 𝜅, and
not on 𝑈, and that the first
order theory of 𝐿[𝑈] is in-
dependent of 𝜅 as well. Be-

hind these results was a Comparison Lemma, which in
Kunen’s work took the form: if 𝜆 > 𝜅 is any regular cardinal
and if 𝑊 is the filter generated by the closed unbounded
subsets of 𝜆, then in 𝐿[𝑊], 𝑊 ∩ 𝐿[𝑊] is an ultrafilter on
𝜆, and the inner model 𝐿[𝑊] is an iterated ultrapower of
𝐿[𝑈].

With 𝐿[𝑈] established as a canonical object, it is natu-
ral to ask whether there are other ways to construct it, and
whether there are canonical innermodels for stronger large
cardinal hypotheses. Kunen’s [Kun70] took some impor-
tant first steps in these directions. He showed that if there
is a strongly compact cardinal, then there is a canonical
inner model 𝐿[𝑈⃗] with a proper class of measurable cardi-
nals. By later work of Magidor, the existence of strongly
compacts does not imply the existence of two measurable
cardinals, so this construction of 𝐿[𝑈⃗] cannot be the sim-
ple one that Solovay identified. Building on work of Solo-
vay ([Sol71]), Kunen showed that if there is a 𝜅+-saturated
(uniform and 𝜅-complete) ideal on 𝜅, then the canonical
inner model with a measurable cardinal exists. (This leads
to an equiconsistency.) The hypothesis here does not im-
ply the existence of a measurable cardinal. Finally, Kunen

showed that if theGCH fails at ameasurable cardinal, then
there are indiscernibles for 𝐿[𝑈]. Again, the indiscernibles
cannot come from a second measurable cardinal. Each of
these theorems stands near the beginning of some substan-
tial line of development in set theory.

Shortly after leaving Stanford for Madison, Kunen
proved his well-known, very useful theorem that if there is
a nontrivial elementary embedding 𝑗 from 𝐿 to itself, then
0♯ exists. (The converse is easy.) The key concept of an
𝑀-ultrafilter is studied in his thesis, and the equivalence
of 0♯ with an iterable 𝐿-ultrafilter is at least implicit there.
The heart of the new work is that the 𝐿-ultrafilter derived
from 𝑗 is iterable. Here Kunen’s technique of considering
the hull of {𝛼 ∣ 𝑗(𝛼) = 𝛼}, much used by him and by others
later, plays the key role.

Kunen left inner model theory not long after moving to
Madison, but it is truly remarkable how far he went, near
the beginning, and in such a short time. Since then, the
theory has been extended so as to produce canonical in-
ner models for much stronger large cardinal hypotheses,
under a wide variety of assumptions. Kunen’s Comparison
Lemma has been greatly extended, both as to the models
being compared, and as to the iteration methods used to
compare them. Nevertheless, we still have very little infor-
mation concerning canonical inner models at the level of
strongly compact cardinals, and there are significant open
problems well below that level.

Adrian Mathias was a Research Associate at Stanford in
1967–68 and a Visiting Lecturer at Madison in 1968–69.
He writes of those times:

He had two excellent qualities not, alas, shared by every
distinguished academic: if you asked to try a proof on
him, he would listen carefully and give valuable feed-
back; and he scrupulously gave credit to others for their
work. I remember receiving a letter once from him an-
swering a question I’d posed, in which one paragraph
began “An argument due to you shows that. . . ” One
knows mathematicians who hate to admit that some-
one else has had a good idea; but Ken was free of that
fault.

We had speculative conversations, and listened to
each other’s proposed proofs, but there was no intense
collaboration such as I have had with some people; nor
was there that intense competitiveness that has made
me wary of some others. We were simply colleagues
who helped each other. I learnt a lot from him: I re-
member his coming to my Stanford office to test a proof
on me: the result was that if 𝑈 is a normal ultrafilter
on 𝜅 and you iterate 𝐿[𝑈] up to a larger regular cardi-
nal 𝜆, what you get is 𝐿[𝐹] where 𝐹 is the club filter
on 𝜆; from which many things follow.
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InMadison, as spring approached, Kleene organised
a picnic for the logicians, and at it Ken came up to me
and said “I can prove that 0♯ exists.” I asked him if he
was feeling quite well, and then he admitted that his
proof would require an assumption.

The assumption was that there is a nontrivial elemen-
tary embedding from 𝐿 to itself.
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