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ABSTRACT

We describe a semantics for answer literals which is not tied to the speci�c details
of the resolution proof procedure� We also describe a number of applications of
answer literals to mathematical theorem proving�

x�� Introduction� The use of answer literals is well�known in resolution� It was
introduced in the ����	s by Green 
��
 and is now discussed in many texts on automated
reasoning 
�
 ��� and on AI� This technique is usually presented as trick for keeping track
of the variable bindings
 thus simulating in a general resolution framework what Prolog
would do with Horn clauses� For example
 consider�

D�� p�a� b�
D�� p�b� c�
D�� gp�x� z� � �p�x� y� � �p�y� z�
Q�� �gp�x� z� �ANS�x� z�

We may think of D�
D�
D� as the database� D�
D� axiomatize the parenthood relation
and D� is an axiom about grandparenthood� The clause Q� can be viewed as the negation
of a theorem �or query�
 �xz gp�x� z�� If this negation is expressed simply as the clause
�gp�x� z�
 then resolution will derive the empty clause
 proving the theorem
 but not
actually producing an explicit x� z satisfying gp�x� z�� Instead
 we feed clause Q� to the
resolution prover
 deriving ANS�a� c�
 meaning that in the course of the deduction
 x got
bound to a and z got bound to c
 so gp�a� c� holds�

Here
 since all the clauses are Horn clauses
 this particular example has an obvious
translation into Prolog syntax� Non�Horn examples may produce disjunctive answers�
For example
 if we replaced D� by p�a�� b� � p�a
� b�
 then we could derive ANS�a�� c� �
ANS�a
� c�
 but we could not derive either ANS�a�� c� or ANS�a
� c��

A completely di�erent application with exactly the same semantics comes from rea�
soning about exceptions
 as in the following famous example�

R�� �exception�x� y� �ANS�x� y�
R�� �bird�x� � has wings�x� � exception�x� r��
R�� �bat�x� � has wings�x� � exception�x� r��
R�� �has wings�x� � can fly�x� � exception�x� r��
F�� bird�tweety�
F�� �can fly�tweety�

�
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Deleting the ANS literal� R�
R�
R�
R�
F�
F� are inconsistent� R� says that no rules
have exceptions� We may view R�
R�
R�
R�
F� as the database
 and F� as the negation
of the query� Or
 exchanging the rolls of query and database
 we may also say that
�xy exception�x� y� is a logical consequence of R�
R�
R�
F�
F�� Then
 re�inserting the
ANS literal
 we compute which rule got broken � again
 we get a disjunctive answer�
ANS�tweety� r�� �ANS�tweety� r���

Now
 the answer literal technique can be used with other resolution�based methods

such as paramodulation� Some less trivial mathematical examples will be given in xx�
�

but a simple illustration is�

D�� � � h�y� � y � � � h�y� � � � y
D�� �u� �� � � � u
Q�� � � x �� c � ANS�x�
Q�� � � x �� c� � � ANS�x�

Here
 the database
 D�
D�
 axiomatizes some simple facts about the integers
 where h�x�
denotes the largest integer � x��� The two query clauses come from the one theorem

	y�x�� � x � y � � � x � y � ��
 but we want not only to prove the theorem
 but also to
retrieve x as an explicit function of y� Negating the theorem in the standard way
 we
replace y by a Skolem constant c
 and the negated �x becomes a 	x
 but then we insert
an ANS disjunct
 obtaining 	x���� � x � c � � � x � c��� �ANS�x��
 which becomes the
clauses Q�
Q�� After two binary resolution steps and two paramodulation steps
 we obtain
ANS�h�c����
 which presumably proves 	y�� �h�y��� � y � � �h�y��� � y���� As we
see
 when the query is converted to clauses
 the answer literal may appear several times in
the resolution input� Because of this
 and because of the introduction of Skolem constants
and functions
 one may begin to wonder exactly what the results of such derivations really
say about solutions to the original query�

Discussions in the literature 
�
 �
 �� of the theory of answer literals are very much
tied to the procedural details of the resolution format� They are also based on Herbrand
models
 so it is not clear how these discussions apply in the presence of equality� They
also assume that the ANS appears in only one clause�

In x�
 we give a simple semantic explanation of the answer literal method which is
not tied to resolution at all� Thus
 answer literals could just as well be used with any
other proof procedure
 such as tableau�based systems
 which have been advocated 
�� as
an alternative to resolution�

The speci�cs of the deductive system only come in when we consider the issues of
soundness and completeness� Completeness sometimes leads to tricky theoretical problems

since many of the known �completeness� results about resolution�based systems really only
establish refutation completeness � that is
 the empty cause will be derived if the input
clauses are inconsistent� this does not necessarily imply that every answer clause ANS�� �
which follows from the axioms will be derived� As usual
 soundness questions are easier
 but
even here we must be careful to distinguish between soundness and refutation soundness�
These issues are also covered in x��

In xx�
�
 we illustrate the abstract discussion in x� with two classes of examples

obtained using McCune	s system
 OTTER 
���
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The �rst class
 covered in x�
 is
 perhaps
 obvious � one can solve an equation� That
is
 we prove from some algebraic theory that a solution exists
 and we use the answer literal
to retrieve the solution� Simple examples of this kind occur in the text of Chang and Lee

��� More sophisticated examples from combinatory logic occur in 
��� �see x������ We give
two examples� In the �rst
 we show how to use OTTER to produce all answers to a given
problem� The second illustrates the interpretation of Skolem functions occurring in the
solution�

In the second class
 covered in x�
 we solve an inequation� This is of interest when
we are trying to pin down which instances of a rule are needed to prove a given fact�
For example
 it is well�known that a semigroup �associative structure� with an identity e
satisfying 	x�x
 � e� must be a group �obviously�
 and must also be commutative� But

to prove ab � ba
 exactly which squares do we need to be the identity� Or
 turning this
around
 if we have ab �� ba
 then there is some element whose square is not the identity�
What is it� Formally
 from the axiom ab �� ba
 we are proving the solvability of an
inequation
 �x�x
 �� e�
 and we are using the answer literal to �nd a solution� Or
 using
the terminology of the all�birds�can��y example
 assuming a failure of commutativity
 we
are pinning down an exception to the �rule� 	x�x
 � e��

We discuss this example in more detail in x�
 and then give a more complicated
example related to the Robbins algebra problem�

x�� Semantics� In this section
 our basic results involve purely semantic notions
of logical consequence � not any particular proof theory� We presume some standard
presentation of �rst�order logic� In particular
 we shall use L for our vocabulary � that is
the set of all function
 predicate
 and constant symbols� A sentence is a logical formula
with no free variables� If � is any formula
 let 	� be its universal closure�

An L�structure
 M
 consists of a non�empty domain of discourse
 M 
 together with
an assignment of a suitable semantic entity
 sM
 for each symbol s 
 L� In the case that L
includes the symbol ��	
 we shall always assume that M interprets ��	 as true identity on
M � If � is a sentence of L
 thenM j� � means that � is true inM� If � is a set of sentences
of L
 then M j� � means that M j� � for each � 
 �� If � is another sentence of L
 then
� j� � means that for all L�structures M
 if M j� � then M j� �� � is inconsistent i�
there is no M at all such that M j� �� So
 � j� � if and only if � � f��g is inconsistent�

Now
 suppose that � is a sentence of the form ��x���x�� Here
 �x denotes some n�tuple
of variables
 so that � is really of the form �x�� � � � � xn��x�� � � � � xn�
 where � is a formula
with at most x�� � � � � xn free� Then
 in an attempt to establish � j� �
 we would normally
add 	�x�����x�� to �
 but instead we add 	�x�����x��ANS��x��� Part ��� if the next theorem
says that we will never derive a contradiction unless � itself is inconsistent
 and part ���
gives the semantic meaning to an ANS assertion being derived�

���� Theorem� Suppose � is a set of sentences of L and ��x���x� is a sentence of L

where �x denotes an n � tuple of variables� Let ANS be an n�place predicate symbol not
in L
 let L� be L � fANSg
 and let �� be � � f	�x�����x� �ANS��x��g� Then�
�� �� is inconsistent i� � is inconsistent�
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�� If
 for i � �� � � � k
 each ��i is an n�tuple of terms of L
 then

�� j� 	�ANS����� � � � � �ANS���k�� �a�

if and only if
� j� 	������� � � � � � ����k�� �b�

Proof� For ���
 one way is trivial
 since � � ��� Conversely
 if � is consistent
 let
M j� �
 where M is an L�structure� So
 M does not assign a meaning to ANS� We may
expandM to an L� structure by declaring ANSM

�

to be universally true� M andM� have
the same domains of discourse and agree on their interpretation of all symbols other than
ANS� Then
 M� j� ��
 so �� is consistent�

For ���
 also
 �a� is immediate from �b�
 since �� is equivalent to � together with
	�x����x�
ANS��x��� Conversely
 if �b� fails
 let M be a model of � in which the sentence
	������� � � � � � ����k�� is false� Expand M to an L� structure by declaring ANSM

�

to be
true exactly where � is
 so that M j� 	�x����x� �
 ANS��x��� Then M is a model for ��

in which 	�ANS����� � � � � � ANS���k�� is false�

Note that we are assuming nothing about the logical complexity of � or �� Thus
 it
is quite possible that � j� ��x���x� without there being any sequence of terms ��i as in �b��
For a trivial counter�example
 let ��x� be 	y�p�x� � �p�y��� then �x��x� is logically valid

and hence follows from �
 but there are no �i such that � j� 	������ � � � � � ���k���

In resolution applications
 � is quanti�er free and the sentences in � are all universal

so that the input to the resolution prover
 ��
 is universal� In that case Herbrand	s Theorem
implies immediately that�

���� Theorem �Herbrand�� Suppose � is a set of universal sentences of L and ���x�
is a quanti�er�free formula of L� If � j� ��x���x�
 then for some k
 there are tuples of terms
of L
 ���� � � � � ��k
 such that �b� of Theorem ��� holds�

However
 often when resolution is applied
 the original axioms are not universal
 but
get converted to universal form by adding Skolem functions �or constants�� If the answer
obtained does not mention these Skolem functions
 then it is still useful by part ��� of the
following Lemma� Part ���
 which is really a special case
 is what justi�es the Skolemization
step when answer literals are not present �see Theorem ��� of 
����

���� Lemma� Suppose  is a set of sentences in vocabulary J and ! is a set of
universal sentences in !J � J obtained by Skolemizing  � Then�
��  is inconsistent i� ! is�
�� If � is a sentence of J 
 then  j� � i� ! j� ��

In particular
 in the situation of Theorem ���
 J � L� � L � fANSg and  � ��� If
we �nd that ! j� 	�ANS������ � � � �ANS���k��
 and none the ��i use any Skolem functions

then Lemma ��� applies
 and we can conclude �a�
 and hence �b� of Theorem ����

Now
 if some of the ��i involve functions arising from Skolemizing ��x���x�
 then the
answer might be completely worthless� To continue the above example
 suppose ��x� is
	y�p�x� � �p�y��� If we are trying to show that � j� �x��x�
 and �nd such an x
 we would
start with 	x����x��ANS�x��� This Skolemizes to the two clauses
 �p�x��ANS�x� and
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p�f�z�� �ANS�z�
 which derives ANS�z� �ANS�f�z��
 which gives no information at all
beyond �x��x��

However
 if the ��i only contain Skolem functions arising from �
 this may impart
some interesting information
 since we then know that the answer is valid regardless of the
choice of the Skolem functions� A concrete example where this is useful given in x��

Finally
 Skolem constants will come in if we wish to prove 	�w��x���w� �x�
 and see
explicitly how �x depends on �w� We introduce a tuple of Skolem constants
 �c
 for the
�w� Rather than just deriving a contradiction from 	�x����c� �x�
 we instead reason from
	�x�����c� �x� � ANS��x��� The �i appearing in the answer literals may then involve �c� In
addition
 the �i may involve some tuple of other variables
 which get universally quanti�ed
as before� We may then apply the following�

���� Theorem� Suppose �c are Skolem constants
 �� � ��f	�x�����c� �x��ANS��x��g

and the �i are terms involving �c
 along with some tuple of variables
 say �y� Suppose

�� j� 	�y�ANS������y��c� � � � � � ANS���k��y��c��� �a��

Then
� j� 	�y	�w����w������y� �w�� � � � � � ���w���k��y� �w��� �b��

Proof� Theorem ��� applies directly to get

� j� 	�y����c� �����y��c�� � � � � � ���c� ��k��y��c���

Then �b�� follows from the fact that � does not mention the �c�

So
 the �i��y� �w� do give us an expression in the original language which tells us how �x
depends on �w� A concrete example of this is given in x��

So far
 we have just discussed semantics� If we �x a speci�c proof theory
 we may
address problems of soundness and completeness� We have no new results here
 but just
point out that care must be taken when applying known results � especially concerning
completeness
 where the literature often blurs the distinction between completeness and
refutation completeness�

Let us assume that we have a de�nition of provability
 �� The underlying syntax need
not be full �rst�order logic �for example
 it may only deal with clauses�
 but we assume
it always has some syntactic entity
 �
 which is always false �e�g�
 the empty clause in
resolution
 or any 	 � �	 in standard predicate logic��

De�nition� � is fully complete �or
 just complete� i�

�� j� 
� implies �� � 
� ���

holds for each � and 
�
� is refutation complete i� ��� holds whenever 
 is ��
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De�nition� � is fully sound �or
 just sound� i�

�� � 
� implies �� j� 
� ���

holds for each � and 
�
� is refutation sound i� ��� holds whenever 
 is ��

Now
 all the standard resolution techniques �binary resolution
 paramodulation
 etc��
are fully sound
 so that
 assuming the implementation is correct
 if your resolution prover
tells you that � � 

 you may conclude that � j� 
 and then apply the semantic results
�Theorem ��� or Theorem ����� The only case where full soundness fails is in the Skolem�
ization step
 which
 if it is automated by the theorem prover �as does OTTER 
�� if the
user requests it�
 might be considered to be part of the deductive process� This step is
refutation sound but not fully sound� That is
 if your system Skolemizes � to !� and then
derives 
 which depends on the Skolem functions
 one cannot conclude that � j� 

 but
only that !� j� 
�

For completeness
 the problem is somewhat more tricky� There are many completeness
results in the literature for various combinations of resolution�based techniques
 but these
results usually derive refutation completeness
 not full completeness� Even very simple
resolution techniques fail to be fully complete� for example
 the clause p� q is not provable
from p by binary resolution� In some cases
 the lifting property plus refutation completeness
is su"cient to prove that all answers will be found� That is
 we may delete the ANS literals

�nd a proof of the empty clause
 and then insert the ANS literals back in again� This
examination of the proof structure is the content of the arguments in 
�
 ���

Of course
 one must be careful that the rules are phrased so that re�inserting the
ANS literal results in a legitimate proof� For example
 in negative hyper�resolution
 it
is important that
 as does OTTER
 we ignore the ANS literals when deciding whether a
clause is negative� Say we start with �p�a�
 q�a�
 and p�x� � �q�x� � ANS�x�� The �rst
step must derive �q�a� �ANS�a�
 and the prover must view this as a negative clause�

With equality
 many of the combinations with paramodulation do not satisfy the li�ng
property
 and we cannot in general guarantee that all the answers get computed� For exam�
ple
 paramodulation plus binary resolution plus factoring is refutation complete whenever
the input clauses contain x � x� If we start with x � x
 a � b
 and �x �� y� �ANS�x� y�

then we will derive ANS�x� x� and ANS�a� b�
 but not ANS�f�a�� f�b��
 even though this
is a correct answer and is not subsumed by the other two� We do not know if there is a
theorem to the e�ect that the answer literal method is complete in all �mathematically
interesting� cases�

In practice
 soundness is usually more important than completeness
 since many res�
olution runs include some bound to clause or term size
 which invalidates completeness
anyway� However
 occasionally �see
 e�g�
 Lemma ��� of 
#��
 the completeness of the
Knuth�Bendix procedure is taken as a proof of non�provability �that is
 of the existence
of a counter�model�� In the next section
 we use a similar argument as a proof that all
answers have been computed� in which case one must be careful to verify the correctness
of this assertion in the speci�c problem at hand�
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x�� Algebraic equations� We work two examples here� The �rst involves solving
an equation in a group� The second involves Moufang loops
 and illustrates an example
where the Skolem functions arise in the axioms�

For the �rst example
 say we are in a group
 with identity e
 and suppose the group has
exponent � �that is
 x� � e for all x�� What are the solutions to the equation� axb � bxa�
The natural OTTER input �le here is�

assign�max proofs� ���� � find �� answers� if you can

op����� xfy� 	�� � right associate

set�knuth bendix��

list�sos��

�x 	 y� 	 z 
 x 	 �y 	 z�� � associativity

� exp � groups�

x 	 �x 	 x� 
 e�

�x 	 x� 	 x 
 e�

e 	 x 
 x�

x 	 e 
 x�

� negation of conclusion�

a 	 �x 	 b� 

 b 	 �x 	 a� � �ans�x��

end of list�

OTTER produces �� proofs fairly quickly
 but there is a lot of redundancy
 since multiple
proofs are frequently obtained for the same answer� The proofs are all fairly short� For
example
 the �rst answer
 ba
 is derived as follows�

��� �� �x	y�	z
x	y	z�

� �� x	x	x
e�

��� �� e	x
x�

���� �� x	e
x�

�� �� a	x	b

b	x	a��ans�x��

�� �para into���������������demod�����flip��� x	x	x	y
y�

�� �para into�������������demod���flip��� x	y	x	y	x	y
e�

�� �para into����������������demod��� a	x	y	b

b	x	y	a��ans�x	y��

�� �copy����flip��� b	x	y	a

a	x	y	b��ans�x	y��

�� �para from�������������������demod����flip��� x	y	x	y	x
y	y�

�� �para from������������������� x	x	y	y
y	x	y	x�

�� �binary����������� �ans�b	a��

Observe how this �ts in the framework of our discussion of Skolem functions in Theorem
���� Let � be the axioms for exponent � groups
 expressed in the language L � f�� eg� To
prove 	uv�x�uxv � vxu�
 and retrieve x as an expression in u� v� �� e
 we Skolemized the
negation to axb �� bxa � ANS�x�
 and derived ANS�ba�
 which means we have shown as
a theorem of � that 	uv�u �vu� v � v �vu�u��

Eliminating repeated answers from the ��
 we obtained the following �� in the order
indicated� ba
 ab
 bb
 aa
 baabb
 ababb
 bbabb
 abbaa
 babaa
 aabaa
 bbaab
 aabba
 bbaba

aabab
 bbaaa� Even by hand
 we see some redundancies in this list� for example
 in a group
of exponent �
 the last answer
 bbaaa is equal to bb� Less obviously
 the answer bbaab is
equal to ababb since b
a
b � �ab�� � b
a
b � �ab�
 � ab � b
a
b � �ab�
 � b�

#



So
 one question is� exactly which of these �� answers are really di�erent in all groups
of exponent �� A potentially more di"cult question is� did we get all the answers� Perhaps

running this to get �� proofs
 we would get more answers� In general
 problems of this
nature are di"cult to answer by automated reasoning techniques
 since we are asking about
arbitrary models � given any other combination of a	s and b	s
 is there a model for the
axioms where it fails to be an answer� However
 in this particular case
 we can in fact get
a complete solution
 since the free group of exponent � with two generators is �nite �with
�# elements�
 and we can modify the input �le to force OTTER to run through this group
and output all the answers� at the same time
 we get an enumeration of the group� The
following input does that�

set�ur res��

set�print lists at end�� � enumerate group at end of file

assign�max literals� ��� � this count ignores the answer literals

assign�max proofs� ���� � find �� answers� if you can

op����� xfy� 	�� � right associate

set�knuth bendix��

lex��e�a�b� x 	 x���

weight list�pick and purge��

weight�elt������������

� so we get a complete set of reductions

� before generating any elements

end of list�

list�sos��

elt�a�� elt�b�� elt�e��

�elt�x� � �elt�y� � elt�x	y��

�elt�x� � x 	 x 	 x 
 e�

� So that Knuth�Bendix works� we

� use exp� only for named group elts

�x 	 y� 	 z 
 x 	 �y 	 z�� � associativity

e 	 x 
 x�

x 	 e 
 x�

a 	 �x 	 b� 

 b 	 �x 	 a� � �elt�x� � �ans�x��

end of list�

Running this
 the sos becomes empty after all the elements are generated
 and we see that
there are exactly � distinct answers� bb� ba� ab� aa� ababb� baabb� aabab� aabaa� abaab� More
precisely
 if F �a� b� is the free group of exponent � generated by a� b
 we are claiming that�
�� In any group of exponent �
 each of these � is a solution to axb � bxa�
�� In F �a� b�
 these � are distinct�
�� In F �a� b�
 every solution to axb � bxa is one of these ��
Thus
 no product involving a and b
 other than the � listed
 could represent a di�erent
solution in all groups of exponent �� Our claim is not based on any abstract completeness
theorem �which
 as pointed out in x�
 we do not have�
 but rather on the fact that in this
particular instance
 we have forced OTTER to enumerate all of F �a� b��
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The second example comes from Moufang loops� Consider the language to be L � f�g�
A loop is a structure with a left and right identity in which the maps x �� a�x and x �� x�a
are bijections for each a� In the ����	s
 Moufang studied loops satisfying the following three
Moufang identities�

�x � y� � �z � x� � �x � �y � z�� � x� �M��

��x � y� � z� � y � x � �y � �z � y��� �M��

x � �y � �x � z�� � ��x � y� � x� � z� �M��

By the ����	s
 Bruck and others �see 
��� had shown that these identities are actually
equivalent in loops
 a fact which is now trivial to derive on OTTER� See Chein 
�� for more
on the structure of �nite Moufang loops
 and Wos 
��� for more on OTTER derivations
involving these identities� Note that an associative loop is a group
 and in a group
 the
Moufang identities are trivial consequences of the associative law�

The axioms M� � M� alone do not imply the structure is a loop
 and in fact
 probably
have no interesting consequences at all
 since they are valid in any model of 	xy�x�y � y��
However
 now consider adding the additional axiom�

	xy�z�x � �z � x� � y� �A�

�A� plus M� � M� does imply that the structure is a loop� To prove this
 Skolemize �A� to
x � �f�x� y� � x� � y� it is not clear yet whether the z in �A� is determined uniquely from
x� y �although this will follow once we prove the structure is a loop�� As a �rst step in
investigating the subject
 we tried to prove that there is a right identity
 �u	x�x � u � x�

and obtain an explicit expression for the identity� Following the usual procedure
 we try
to derive a contradiction from 	u��	x�x � u � x� � ANS�u��� To feed this to OTTER

we Skolemize it to h�u� � u �� h�u� � ANS�u�
 and then try to derive an expression of
the form ANS�� �� If � involves the Skolem function h
 we could say nothing
 as pointed
out in x�
 but in fact the answers obtained involved only f 
 not h
 so they did yield some
information� The input �le was�

assign�max weight� ����

op����� xfx� 	�� � don�t associate

assign�max proofs� ����

set�knuth bendix��

list�sos��

� Moufang identities�

�x 	 y� 	 �z 	 x� 
 �x 	 �y 	 z�� 	 x�

��x 	 y� 	 z� 	 y 
 x 	 �y 	 �z 	 y���

x 	 �y 	 �x 	 z�� 
 ��x 	 y� 	 x� 	 z�

x 	 � f�x�y� 	 x� 
 y� � additional axiom

g�u� 	 u 

 g�u� � �ans�u�� � negation of conclusion

end of list�

Our �rst answer was the ugly �f�f�y� y��y� f�y� y��y�� �f�y� y� �y��� �f �y� y��y�
 but the
fourth was f�y� y� � y and the sixth was y � f�y� y�
 so regardless of the choice of Skolem
function f 
 we know that f�y� y� � y and y � f�y� y� are right identities� It follows that

�



every model for axioms M� � M� and A satis�es 	yzw�y � �z � y� � y 
 w � �z � y� � w�
and 	yzw�y � �z � y� � y 
 w � �y � z� � w�� By a second OTTER run �or by symmetry�

we get the same results about left identities� Adding all these facts
 OTTER easily proves
the rest of the loop axioms�

x�� Algebraic inequations� We start with some more details about the example
mentioned in the Introduction� In a semigroup with identity e
 which squares being equal
to e will enable us to conclude that ab � ba� Here
 the input �le is�

op����� xfy� 	�� � right associate

set�knuth bendix��

assign�max proofs� ����

list�sos��

� semigroups with identity�

x 	 e 
 x� e 	 x 
 x�

x 	 �y 	 z� 
 �x 	 y� 	 z�

a 	 b 

 b 	 a�

x 	 x 
 e � �ans�x��

end of list�

list�usable��

x 
 x�

end of list�

list�demodulators��

x 	 e 
 x� e 	 x 
 x�

end of list�

Note the di�erence in logical form here� In the �rst example of x�
 we were trying to
prove the existence of the solution to an equation
 �x�axb � bxa�� Now
 we are assuming
ab �� ba
 and trying to prove the existence of the solution to an inequation
 �x�xx �� e��
Here
 we get a disjunctive answer� either a or b or ab� OTTER	s �rst proof is�

� �� x	e
x�

� �� e	x
x�

� �� x	y	z
 �x	y�	z�

� �copy���flip��� �x	y�	z
x	y	z�

� �� a	b

b	a�

� �copy���flip��� b	a

a	b�

� �� x	x
e��ans�x��

�� �para into���������������demod���flip��� x	x	y
y��ans�x��

�� �para into�������������flip��� x	y	x	y
e��ans�x	y��

�� �para from�����������������demod���flip���

x	y	x
y��ans�y���ans�y	x��

�� �para from����������������� x	y
y	x��ans�x���ans�y���ans�y	x��

�� �binary���������� �ans�b���ans�a���ans�a	b��

Now that we know this answer
 it is easy to check by hand that it is best possible � that
is
 even in groups
 no two of a
 � e
 b
 � e
 �ab�
 � e implies that ab � ba�

��



A less elementary example regards Robbins algebras� this topic is discussed in some
detail in the text of Wos
 Overbeek
 Lusk
 and Boyle 
���� In a Boolean algebra
 we may
consider OR and NOT to be basic
 with the other Boolean operations de�ned from them�
It is easy to see that the following four equations are valid in every Boolean algebra �we
are using o for OR and n for NOT��

A� x o �y o z� � �x o y� o z
C� x o y � y o x
H� n�x o n�y�� o n�n�x� o n�y�� � y
R� n�n�x o y� o n�n�x� o y�� � y

In ����
 Huntington 
�� showed that in fact �A�
�C�
 and �H� together imply all equations
valid in Boolean algebras� Somewhat later
 Robbins formulated �R�� Let us call a Robbins
algebra any system satisfying �A�
 �C�
 and �R�� The Robbins algebra problem
 whether
every Robbins algebra must be Boolean
 is still open�

The attacks on this problem have been mainly to study the properties of a non�Boolean
Robbins algebra
 in the hopes of either deriving a contradiction or learning enough about
the structure to conjecture a model� Some things are easy to see by hand� Let A be a
Robbins algebra� Axiom �R� implies immediately that the n function mapsA onto A� Now
replacing y by n�y� in �R� yields n�n�x o n�y�� o n�n�x� o n�y��� � n�y�� If n is a ��� map

we could delete the outermost n on both sides
 obtaining n�x o n�y�� o n�n�x� o n�y�� � y�
which is axiom �H�
 so the algebra is Boolean� That is
 in a non�Boolean Robbins algebra

the map n is onto but not ���
 which implies that A is in�nite�

A much deeper result is due to Winker 
��
 ���
 who showed that every non�Boolean
Robbins algebra must satisfy the inequalities 	x	y�x o y �� x� and 	x	y�n�x o y� �� n�x���
Using this
 one may derive other structural properties of these algebras� For example
 it is
clear that in a non�Boolean Robbins algebra
 �H� must fail somewhere� but where
 exactly�

The natural way to answer this is to run OTTER with the following source �le
 which
�nishes in a few seconds��

op����� xfy� o��

assign�max proofs� ���

set�knuth bendix��

assign�max weight� ����

assign�pick given ratio� ���

lex��n�x�� x� o�x�x����

list�sos��

�x o y� o z 
 x o �y o z�� � �A�

x o y 
 y o x� � �C�

n� n�x o y� o n� n�x� o y � � 
 y� � �R�

n�x o y� 

 n�x�� � by Winker

n�x o n�y�� o n�n�x� o n�y�� 
 y � �ans�x�y��

end of list�

The third proof yields �ans�v�� o n�v�� o v����v���
 which means that axiom �H� is
false for x� y whenever x is of the form z o n�z o y�� Thus
 we know more than just the

��



fact that n is not ���
 which asserts merely �y�u�u �� y $ n�u� � n�y��� Rather
 we have
	y�u�u �� y $ n�u� � n�y��� Namely
 for any y� z
 if we set

u � n�z o n�z o y� o n�y�� o n�n�z o n�z o y�� o n�y�� �

then
 as we have just shown
 u �� y
 whereas by �R�
 n�u� � n�y��
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