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Abstract

We consider a class of compacta X such that the maps from X onto metric
compacta define an Aronszajn tree of closed subsets of X.

1 Introduction

All topologies discussed in this paper are assumed to be Hausdorff. We begin by
defining an Aronszajn compactum, along with a natural tree structure, by considering
a space embedded into a cube. An equivalent definition, in terms of elementary
submodels, is considered in Section 2.

Notation 1.1 Given a product
∏

ξ<λ Kξ: If α ≤ β ≤ λ, then πβ
α denotes the natural

projection from
∏

ξ<β Kξ onto
∏

ξ<α Kξ. If we are studying a space X ⊆ ∏
ξ<λ Kξ

then Xα denotes πλ
α(X), and σβ

α denotes the restricted map πβ
α�Xβ; so σβ

α : Xβ � Xα.

Definition 1.2 An embedded Aronszajn compactum is a closed subspace X ⊆ [0, 1]ω1

with w(X) = ℵ1 and χ(X) = ℵ0 such that for some club C ⊆ ω1: for each α ∈ C
Lα := {x ∈ Xα : |(σω1

α )−1{x}| > 1} is countable. For each such X, define T =
T (X) :=

⋃{Lα : α ∈ C}, and let � denote the following order: if α, β ∈ C, α < β,
x ∈ Lα and y ∈ Lβ, then x � y iff x = πβ

α(y).

The σω1
α for which |Lα| ≤ ℵ0 are called countable rank maps in [1, 8]. Observe

that 〈T (X), �〉 is a tree. Each level Lα is countable by definition, and is non-empty
because w(X) = ℵ1; then T is Aronszajn because χ(X) = ℵ0. Of course, a compactum
of weight ℵ1 may be embedded into [0, 1]ω1 in many ways, but:
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Lemma 1.3 If X, Y ⊆ [0, 1]ω1, X is an embedded Aronszajn compactum, and Y is
homeomorphic to X, then Y is an embedded Aronszajn compactum.

Proof. Let f : X → Y be a homeomorphism. Then use the fact that there is a
club D ⊆ ω1 on which f commutes with projection; that is, for α ∈ D, there is a

homeomorphism fα : Xα � Yα such that πω1
α ◦ f = fα ◦ πω1

α . K
The proof of this lemma shows that the Aronszajn trees derived from X and from

Y are isomorphic on a club.

Definition 1.4 An Aronszajn compactum is a compact X such that w(X) = ℵ1 and
χ(X) = ℵ0 and for some (equivalently, for all ) Z ⊆ [0, 1]ω1 homeomorphic to X, Z is
an embedded Aronszajn compactum.

The next lemma is immediate from the definition. Further closure properties of
the class of Aronszajn compacta are considered in Section 4.

Lemma 1.5 A closed subset of an Aronszajn compactum is either second countable
or an Aronszajn compactum.

The Dedekind completion of an Aronszajn line is an Aronszajn compactum (see
Section 2), and the associated tree is essentially the same as the standard tree of closed
intervals. A special case of this is a compact Suslin line, which is a well-known compact
L-space; that is, it is HL (hereditarily Lindelöf) and not HS (hereditarily separable).
The line derived from a special Aronszajn tree is much different topologically, since it
is not even ccc.

In Section 5 we shall prove:

Theorem 1.6 Assuming ♦, there is an Aronszajn compactum which is both HS and
HL.

Our construction is flexible enough to build in additional properties for the space
and its associated tree, which may be either Suslin or special; see Theorem 5.8. The
form of the tree is (up to club-isomorphism) a topological invariant of X, but seems
to be unrelated to more conventional topological properties of X; for example, X may
be totally disconnected, or it may be connected and locally connected, with dim(X)
finite or infinite.

Question 1.7 Is there, in ZFC, an HL Aronszajn compactum?

We would expect a ZFC example to be both HS and HL. Note that an Aronszajn
compactum is dissipated in the sense of [9], so it cannot be an L-space if there are no
Suslin lines by Corollary 5.3 of [9].

To refute the existence of an HL Aronszajn compactum, one needs more than just
an Aronszajn tree of closed sets, since this much exists in the Cantor set:
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Proposition 1.8 There is an Aronszajn tree T whose nodes are closed subsets of the
Cantor set 2ω. The tree ordering is ⊃, with root 2ω. Each level of T consists of a
pairwise disjoint family of sets.

The proof is like that of Theorem 4 of Galvin and Miller [4], which is attributed
there to Todorčević.

2 Elementary Submodels

We consider Aronszajn compacta from the point of view of elementary submodels.
Assume that X is compact, with X (and its topology) in some suitably large H(θ).
If X is first countable, so that |X| ≤ c and its topology is a set of size ≤ 2c, then θ
can be any regular cardinal larger than 2c, assuming that the set X is chosen so that
its transitive closure has size ≤ c.

If X ∈ M ≺ H(θ), then there is a natural quotient map π = πM : X � X/M
obtained by identifying two points of X iff they are not separated by any function in
C(X, R) ∩ M . Furthermore, X/M is second countable whenever M is countable.

Lemma 2.1 Assume that X is compact, w(X) = ℵ1, and χ(X) = ℵ0. Then the
following are equivalent:

1. X is an Aronszajn compactum.

2. Whenever M is countable and X ∈ M ≺ H(θ), there are only countably many
y ∈ X/M such that π−1{y} is not a singleton.

3. (2) holds for all M in some club of countable elementary submodels of H(θ).

Proof. For (1) → (2), note that X ∈ M ≺ H(θ) implies that M contains some club

satisfying Definition 1.2. K
For example, say that X is a compact first countable LOTS. Then the equivalence

classes are all convex; and, if x < y then π(x) = π(y) iff [x, y]∩M = ∅. Now consider
Aronszajn lines:

Definition 2.2 A compacted Aronszajn line is a compact LOTS X such that w(X) =
ℵ1 and χ(X) = ℵ0 and the closure of every countable set is second countable.

By χ(X) = ℵ0, there are no increasing or decreasing ω1–sequences. Note that
our definition allows for the possibility that X contains uncountably many disjoint
intervals isomorphic to [0, 1]. The term “compact Aronszajn line” is not common in
the literature. An Aronszajn line is usually defined to be a LOTS of size ℵ1 with no
increasing or decreasing ω1–sequences and no uncountable subsets of real type (that is,
order-isomorphic to a subset of R). Such a LOTS cannot be compact; the Dedekind
completions of such LOTSes are the compacted Aronszajn lines of Definition 2.2.
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Lemma 2.3 A LOTS X is an Aronszajn compactum iff X is a compacted Aronszajn
line.

Proof. For ←: suppose that X ∈ M ≺ H(θ) and M is countable. Then X/M is
a compact metric LOTS, and is hence order-embeddable into [0, 1]. Suppose there
were an uncountable E ⊆ X/M such that |π−1{y}| ≥ 2 for all y ∈ E. Say π−1{y} =
[ay, by] ⊂ X for y ∈ E, where ay < by. If D is a countable dense subset of E then

cl({ay : y ∈ D}) ⊆ X would not be second countable, a contradiction. K
We use the standard definition of a Suslin line as any LOTS which is ccc and not

separable; this is always an L-space. Then a compact Suslin line is just a Suslin line
which happens to be compact. A compacted Aronszajn line may be a Suslin line,
but a compact Suslin line need not be a compacted Aronszajn line. For example, we
may form X from a connected compact Suslin line Y by doubling uncountably many
points lying in some Cantor subset of Y . More generally,

Lemma 2.4 Let X be a compact Suslin line. Then X is a compacted Aronszajn line
iff D := {x ∈ X : ∃y > x ([x, y] = {x, y}} does not contain an uncountable subset of
real type.

Proof. Note that D is the set of all points with a right nearest neighbor. If D
contains an uncountable set E real type, let B ⊆ E be countable and dense in E.
Then whenever M is countable and X, B ∈ M ≺ H(θ), there are uncountably many
y ∈ X/M such that |π−1{y}| ≥ 2, so that X is not an Aronszajn compactum.

Conversely, if X is not an Aronszajn compactum, consider any countable M with
X ∈ M ≺ H(θ) and A := {y ∈ X/M : |π−1{y}| ≥ 2} uncountable. Let A′ := {y ∈
X/M : |π−1{y}| > 2}. Since each π−1{y} is convex, A′ is countable by the ccc, and
the left points of the π−1{y} for y ∈ A\A′ yield an uncountable subset of D of real

type. K
A zero dimensional compact Suslin line formed in the usual way from a binary

Suslin tree will also be a compacted Aronszajn line.

3 Normalizing Aronszajn Compacta

The club C and tree T derived from an Aronszajn compactum X in Definition 1.2 can
depend on the embedding of X into [0, 1]ω1. To standardize the tree, we choose a nice
embedding. For X ⊆ [0, 1]ω1, C cannot in general be ω1, since C = ω1 implies that
dim(X) ≤ 1. Replacing [0, 1] by the Hilbert cube, however, we can assume C = ω1,
which simplifies our tree notation. In particular, the levels will be indexed by ω1, so
that Lα will be level α of the tree in the usual sense.
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Definition 3.1 Q denotes the Hilbert cube, [0, 1]ω. If X ⊆ Qω1 is closed and α < ω1,
then Lα = Lα(X) = {x ∈ Xα : |(σω1

α )−1{x}| > 1}. W(X) = {α < ω1 : |Lα| ≤ ℵ0}.

So, X is an Aronszajn compactum iff W(X) contains a club; W(X) itself need not
be closed, and W(X) depends on how X is embedded into Qω1 . Now, using the facts
that Q ∼= Qω and that an Aronszajn tree can have only countably many finite levels:

Lemma 3.2 Every Aronszajn compactum is homeomorphic to some X ⊆ Qω1 such
that W(X) = ω1 and |Lα| = ℵ0 for all α > 0.

Of course, L0 = X0 = {∅} = Q0, and ∅ is the root node of the tree.

Definition 3.3 If X ⊆ Qω1 is an Aronszajn compactum and W(X) = ω1, let L̂α =

{x ∈ Lα : w((σω1
α )−1{x}) = ℵ1}, and let T̂ =

⋃
α L̂α.

Since X is not second countable, each L̂α �= ∅ and T̂ is an Aronszajn subtree of
T . Repeating the above argument, we get

Lemma 3.4 Every Aronszajn compactum is homeomorphic to some X ⊆ Qω1 such
that W(X) = ω1, and |L̂α| = ℵ0 for all α > 0, and each x ∈ Lα\L̂α is a leaf, and

each x ∈ L̂α has ℵ0 immediate successors in L̂α+1.

This normalization can also be obtained with elementary submodels. Start with
a continuous chain of elementary submodels, Mα ≺ H(θ), for α < ω1, with X ∈ M0

and each Mα ∈ Mα+1. Let Xα = X/Mα, let πα : X � Xα be the natural map, and let
Lα = {y ∈ Xα : |π−1

α {y}| > 1}. We may view each Xα as embedded topologically into
Qα, in which case Lα has the same meaning as before. If π−1

α {y} is second countable,
then (since Mα ∈ Mα+1), all the points in π−1

α {y} are separated by functions in

C(X) ∩ Mα+1, so y ∈ Lα\L̂α is a leaf.
If X is a compacted Aronszajn line, then Xα+1 is formed by replacing each y ∈ Lα

by a compact interval Iy of size at least 2. If y ∈ Lα\L̂α, then π−1
α {y} is second

countable and is isomorphic to Iy. Note that the tree may have uncountably many
leaves; we do not obtain the conventional normalization of an Aronszajn tree, where
the tree is uncountable above every node.

Next, we consider the ideal of second countable subsets of X:

Definition 3.5 For any space X, IX denotes the family of all S ⊆ X such that S,
with the subspace topology, is second countable.

IX need not be an ideal. It is obviously closed under subsets, but need not be
closed under unions (consider ω ∪ {p} ⊂ βω).
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Lemma 3.6 Assume that X ⊆ Qω1 is an HL Aronszajn compactum, as in Lemma
3.2. Then IX is a σ–ideal, and, for all S ⊆ X, the following are equivalent:

1. S ∈ IX .

2. For some α < ω1, σω1
α (S) ∩ Lα = ∅.

3. There is a G ⊇ S such that G ∈ IX and G is a Gδ subset of X.

4. There is an f ∈ C(S, Q) such that f is 1-1.

5. There is an f ∈ C(S, Q) such that f−1{y} is second countable for all y ∈ Q.

Proof. It is easy to verify (2) → (3) → (1) → (4) → (5). In particular, for (2) → (3):
Fix α and let G = (σω1

α )−1(Xα\Lα). Then G is a Gδ set and σω1
α : G � Xα\Lα is a

1-1 closed map, and hence a homeomorphism.
For (1) → (2): Fix an open base for S of the form {Vn ∩ S : n ∈ ω}, where each

Vn is open in X. X is HL, so Vn is an Fσ. We can thus fix ξ < ω1 such that each
Vn = (σω1

ξ )−1(σω1
ξ (Vn)). It follows that σω1

ξ is 1-1 on S. We may then choose α with
ξ < α < ω1 such that σω1

α (S) ∩ Lα = ∅.
Now, IX is a σ–ideal by (1) ↔ (2).
To prove (5) → (2): Fix f as in (5). Let {Un : n ∈ ω} be an open base for

Q; then f−1(Un) = S ∩ Vn, where Vn is open in X and hence an Fσ set. We can
thus fix α < ω1 such that Vn = (σω1

α )−1(σω1
α (Vn)). It follows that f is constant on

S ∩ (σω1
α )−1{z} for all z ∈ Xα. Thus, S ∩ (σω1

α )−1{z} is second countable for all
z ∈ Xα. But then S is contained in the union of

⋃{S ∩ (σω1
α )−1{y} : y ∈ Lα} and

(σω1
α )−1(Xα\Lα) ∼= (Xα\Lα), so S ∈ IX because IX is a σ–ideal. K
This proof shows that every Aronszajn compactum is an ascending union of ω1

Polish spaces: namely, the (σω1
α )−1(Xα\Lα).

We needed X to be Aronszajn in Lemma 3.6; HS and HL are not enough to
prove the equivalence of (1)(3)(4)(5). If S is the Sorgenfrey line contained in the
double arrow space X, then (4)(5) are true but (1)(3) are false. Similar remarks hold
for similar spaces which are both HS and HL. For example, assuming CH, Filippov
[2] constructed a locally connected continuum which is HS and HL but not second
countable. The space was obtained by replacing a Luzin set of points in [0, 1]2 by
circles. If S contains one point from each of the circles, then S satisfies (4)(5) but fails
(1)(3). In both examples, the space X itself satisfies (5) but not (1)(3)(4).

More generally, any space X that has an f ∈ C(X, Q) as in (5) cannot be an
Aronszajn compactum. Thus, a ZFC example of an HL Aronszajn compactum would
settle in the negative the following well-known question of Fremlin ([3] 44Qc): is
it consistent that for every HL compactum X, there is an f ∈ C(X, Q) such that
|f−1{y}| < ℵ0 for all y ∈ Q? In [5], Gruenhage gives some of the history related to
this question, and points out some related results suggesting that the answer might
be “yes” under PFA.
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4 Closure Properties of Aronszajn Compacta

Closure under subspaces was already mentioned in Lemma 1.5. For products, Lemma
2.1 implies:

Lemma 4.1 Assume that X is an Aronszajn compactum and Y is an arbitrary space.
Then X × Y is an Aronszajn compactum iff Y is compact and countable.

Regarding quotients, we first prove:

Lemma 4.2 Assume that X, Y are compact, ϕ : X � Y , and X, Y, ϕ ∈ M ≺ H(θ).
Let ∼ denote the M equivalence relation on X and on Y . Then

1. If x0, x1 ∈ X and x0 ∼ x1, then ϕ(x0) ∼ ϕ(x1); so, the inverse image of an
equivalence class of Y is a union of equivalence classes of X.

2. If y0, y1 ∈ Y and x0 �∼ x1 for all x0 ∈ ϕ−1{y0} and all x1 ∈ ϕ−1{y1}, then
y0 �∼ y1.

Proof. For (1): If f ∈ C(Y )∩M separates ϕ(x0) from ϕ(x1) then f ◦ϕ ∈ C(X)∩M
separates x0 from x1.

For (2): For each x0 ∈ ϕ−1{y0} and x1 ∈ ϕ−1{y1}, there is an f ∈ C(X, [0, 1]) ∩
M such that f(x0) �= f(x1). By compactness of ϕ−1{y0} × ϕ−1{y1}, there are
f0, . . . , fn−1 ∈ C(X, [0, 1]) ∩ M for some n ∈ ω such that: for all x0 ∈ ϕ−1{y0}
and x1 ∈ ϕ−1{y1}, there is some i < n such that fi(x0) �= fi(x1). These yield

an �f ∈ C(X, [0, 1]n) ∩ M such that �f(ϕ−1{y0}) ∩ �f(ϕ−1{y1}) = ∅. Since M con-
tains a base for [0, 1]n, there are open U0, U1 ⊆ [0, 1]n with each Ui ∈ M such

that U0 ∩ U1 = ∅ and each �f(ϕ−1{yi}) ⊆ Ui, so that ϕ−1{yi} ⊆ (�f )−1(Ui). Let

Vi = {y ∈ Y : ϕ−1{y} ⊆ (�f)−1(Ui)}. Then the Vi are open in Y , each Vi ∈ M , each
yi ∈ Vi, and V0 ∩ V1 = ∅. There is thus a g ∈ C(Y ) ∩ M such that g(V0) ∩ g(V1) = ∅,
so that g(y0) �= g(y1). Thus, y0 �∼ y1. K
Theorem 4.3 Assume that X is an Aronszajn compactum, ϕ : X � Y , w(Y ) = ℵ1,
and χ(Y ) = ℵ0. Then Y is an Aronszajn compactum.

Proof. It is sufficient to check that for a club of elementary submodels M , all but
countably many M–classes of Y are singletons. Fix M as in Lemma 4.2; so all but
countably many M–classes of X are singletons. Then for all but countably many
classes K = [y] of Y : all M–classes of X inside of ϕ−1(K) are singletons, so that, by

the lemma, K is a singleton. K
Note that we needed to assume that χ(Y ) = ℵ0. Otherwise, when X is not HL, we

would get a trivial counterexample of the form X/K, where K is a closed set which
is not a Gδ.
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Examining whether an Aronszajn compactum may be both HS and HL reduces to
considering zero dimensional spaces and connected spaces, by the following lemma.

Lemma 4.4 Assume that X is an HL Aronszajn compactum, ϕ : X � Y . Then
either Y is an Aronszajn compactum or some ϕ−1{y} is an Aronszajn compactum.

Proof. Y will be an Aronszajn compactum unless it is second countable. But if it is
second countable, then some ϕ−1{y} will be not second countable by Lemma 3.6, and

then ϕ−1{y} will be an Aronszajn compactum. K
Corollary 4.5 Suppose there is an Aronszajn compactum X which is HS and HL.
Then there is an Aronszajn compactum Z which is HS and HL and which is either
connected or zero dimensional.

Proof. Get ϕ : X � Y by collapsing all connected components to points. Then Z is

either Y or some component. K
Note that the cone over X is also connected, but is not an Aronszajn compactum

by Lemma 4.1.

5 Constructing Aronszajn Compacta

We begin this section by constructing a space X which proves Theorem 1.6. We
construct X = Xω1 as an inverse limit as a closed subspace of Qω1 . To make X both
HS and HL, we shall apply the following lemma:

Lemma 5.1 Assume that X is compact and for all closed F ⊆ X, there is a compact
metric Y and a map g : X � Y such that g � g−1(g(F )) : g−1(g(F )) � g(F ) is
irreducible. Then X is both HS and HL.

Proof. By irreducibility, g−1(g(F )) = F , so that F is a Gδ and F is separable. Thus,

X is a compact HL space in which all closed subsets are separable, so X is HS.K
In applying the lemma to X = Xω1, g will be some πω1

α �X. We shall use ♦ to
capture all closed F ⊆ Qω1 so that all closed F ⊆ X will be considered. This method
was also employed in [6], which constructed some compacta which were HS and HL
but not Aronszajn.

As in standard inverse limit constructions, we inductively construct Xα ⊆ Qα, for
α ≤ ω1. To ensure that X will be Aronszajn, at each stage α < ω1, we carefully
select a countable set Eα ⊆ Xα of “expandable points”, and at each stage β > α,
we construct Xβ ⊆ Qβ so that |(σβ

α)−1{x}| = 1 whenever x /∈ Eα. Then the Lα of
Definition 3.1 will be subsets of Eα and hence countable.

These preliminaries are included in the following conditions:
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Conditions 5.2 Xα, for α ≤ ω1, and Pα, Fα, Eα, qα, for 0 < α < ω1, satisfy:

1. Each Xα is a closed subset of Qα.

2. πβ
α(Xβ) = Xα whenever α ≤ β ≤ ω1.

3. Pα is a countable family of closed subsets of Xα, and Fα ∈ Pα.

4. For all P ∈ Pα:
a. σα+1

α �((σα+1
α )−1(P )) : (σα+1

α )−1(P ) � P is irreducible, and
b. (σβ

α)−1(P ) ∈ Pβ whenever α ≤ β < ω1.

5. For all closed F ⊆ X, there is an α with 0 < α < ω1 such that σω1
α (F ) = Fα.

6. Eα is a countable dense subset of Xα, and qα ∈ Eα.

7. Eβ ⊆ (σβ
α)−1(Eα) whenever 0 < α ≤ β < ω1.

8. |(σα+1
α )−1{x}| = 1 whenever 0 < α < ω1 and x ∈ Xα\{qα}.

9. |(σα+1
α )−1{qα}| > 1.

We discuss below how to satisfy these conditions. Conditions (1) and (2) sim-
ply determine our X = Xω1 ⊆ Qω1 with each Xα = πω1

α (X). ♦ is used for (5).
Constructing an X that satisfies Conditions (1 - 9) is enough to prove Theorem 1.6:

Lemma 5.3 Conditions (1−9) imply that X = Xω1 is an Aronszajn compactum and
is both HS and HL.

Proof. By (4) and induction on β, σβ
α�((σβ

α)−1(P )) : (σβ
α)−1(P ) � P is irreducible

whenever α ≤ β ≤ ω1 and P ∈ Pα. Then X is HS and HL by Lemma 5.1 and (5)(3).
By (6)(7)(8) and induction, |(σβ

α)−1{x}| = 1 whenever 0 < α ≤ β ≤ ω1 and
x ∈ Xα\Eα. So, Lα := {x ∈ Xα : |(σω1

α )−1{x}| > 1} ⊆ Eα, which is countable by (6).

Finally, w(X) = ℵ1 by (9), and χ(X) = ℵ0 because X is HL.K
To obtain Conditions (1 − 9), we must add some further conditions so that the

natural construction avoids contradictions. For example, satisfying Conditions (6)
and (7) at stage β requires

⋂
α<β(σβ

α)−1(Eα) �= ∅. So we add Conditions (10 - 12)
below making the Eα into the levels of a tree; the selection of the Eα will resemble the
standard inductive construction of an Aronszajn tree.

The sets Fα may be scattered or even singletons. This cannot be avoided, because
we are using the Fα to ensure that all closed sets are Gδ sets, so that X is HL; making
just the perfect sets Gδ could produce a Fedorchuk space (as in [7]), which is not
even first countable. If x ∈ P ∈ Pα and x is isolated in P , then the irreducibility
condition in (4) requires that |(σα+1

α )−1{x}| = 1, but that contradicts (9) if x = qα.
Now, if every point of Eα is isolated in some P ∈ Pα, then we cannot choose qα ∈ Eα,
as required by (6). We shall avoid these problems by requiring that if x ∈ Eα and
P ∈ Pα, then either x /∈ P or x is in the perfect kernel of P . This can be ensured by
choosing Fα first (as given by ♦), and then choosing Eα; for limit α, our Aronszajn
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tree construction will give us plenty of options for choosing the points of Eα, and we
shall make Fα trivial for successor α. The additional conditions that handle this will
employ the notation in the following:

Definition 5.4 If F is compact and not scattered, let ker(F ) denote the perfect kernel
of F ; otherwise, ker(F ) = ∅.

To satisfy Condition (8), we construct Xα+1 from Xα by choosing an appropriate
hα ∈ C(Xα\{qα}, Q), and letting Xα+1 = cl(hα). Identifying Qα+1 with Qα × Q and
hα with its graph, hα(x) is the y ∈ Q such that x	y ∈ Xα+1. Note that hα is indeed
continuous because its graph is closed.

Thus, to construct X so that Conditions (1 - 9) are met, we add the following:

Conditions 5.5 hα and rn
α, for 0 < α < ω1 and n < ω, satisfy:

10. (σβ
α)(Eβ) = Eα whenever 0 < α ≤ β < ω1.

11. |Eα+1 ∩ (σα+1
α )−1{qα}| > 1.

12. If x ∈ Eα, then (σα+n
α )(qα+n) = x for some n ∈ ω.

13. Xα has no isolated points whenever α > 0.

14. Fα = ∅ whenever α is a successor ordinal.

15. Pβ = {Fβ} ∪ {(σβ
α)−1(P ) : 0 < α < β & P ∈ Pα}.

16. Eα ∩ (P\ ker(P )) = ∅ whenever P ∈ Pα.

17. rn
α ∈ Xα\{qα} and the sequence 〈rn

α : n ∈ ω〉 converges to qα.

18. hα ∈ C(Xα\{qα}, Q), and Xα+1 = cl(hα).

19. If qα ∈ P ∈ Pα, then rn
α ∈ ker(P ) for infinitely many n, and every y ∈ Q with

q	
α y ∈ Xα+1 is a limit point of the sequence 〈hα(rn

α) : n ∈ ω & rn
α ∈ ker(P )〉.

Observe that (10)(11)(12) will give us the following:

Lemma 5.6 Lα = Eα whenever 0 < α < ω1 .

In the tree T (X), although only the node qα ∈ Lα has more than one successor in
Lα+1, (12) ensures that at limit levels γ, there are 2ℵ0 choices for the elements of Eγ,
so that we may avoid the points in Fγ\ ker(Fγ), as required by (16).

By (14)(15), ∅ ∈ Pα for all α > 0, and non-empty sets are added into the Pα only
at limit α.

The following proof gives the bare-bones construction; refinements of it produce
the spaces of Theorem 5.8.

Proof of Theorem 1.6. Before we start, use ♦ to choose a closed F̃α ⊆ Qα for
each α < ω1, so that {α < ω1 : πω1

α (F ) = F̃α} is stationary for all closed F ⊆ Qω1 .
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To begin the induction: X0 must be {∅} = Q0, and Pα, Fα, . . . . . . are only defined for
α > 0.

Now, fix β with 0 < β < ω1, and assume that all conditions have been met below
β. We define in order Xβ, Fβ, Pβ, Eβ, qβ , rn

β , hβ.
If β is a limit, then Xβ is determined by (1)(2) and the Xα for α < β. X1 can

be any perfect subset of Q1. If β = α + 1 ≥ 2, then Xβ = cl(hα), as required by

(18). Now let Fβ = F̃β if F̃β ⊆ Xβ and β is a limit; otherwise, let Fβ = ∅. Pβ is now
determined by (15).

E1 can be any countable dense subset of X1. If β = α + 1 ≥ 2, let Eβ =
(σβ

α)−1(Eα\{qα})∪Dβ, where Dβ is any subset of (σβ
α)−1{qα} such that 2 ≤ |Dβ| ≤ ℵ0.

Observe that Eβ is dense in Xβ (without using Dβ), so (6) is preserved, and Dβ guar-
antees that (11) is preserved. To verify (16) at β, note that by (15) at α, every

non-empty set in Pβ is of the form P̂ := (σβ
α)−1(P ) for some P ∈ Pα. So, if (16) fails

at β, fix P ∈ Pα and x ∈ Eβ ∩ (P̂\ ker(P̂ )). Then x ∈ (σβ
α)−1{qα}, so qα ∈ P , and

hence qα ∈ ker(P ); but then by (19), x is a limit of a sequence of elements of ker(P̂ ),

so that x ∈ ker(P̂ ).
For limit β, let Eβ = {x∗ : x ∈ ⋃

α<β Eα}, where, x∗, for x ∈ Eα, is some y ∈ Xβ

such that πβ
α(y) = x and πβ

ξ (y) ∈ Eξ for all ξ < β. Any such choice of the x∗ will

satisfy (10). But in fact, using (11)(12), for each such x there are 2ℵ0 possible choices
of x∗, so we can satisfy (16) by avoiding the countable sets P\ ker(P ) for P ∈ Pβ.

To facilitate (12), list each Eα as {ej
α : j ∈ ω}; let ej

0 = ∅ ∈ X0. Then, if β is a
successor ordinal of the form γ + 2i3j, where γ is a limit or 0, choose qβ ∈ Eβ so that

σβ
γ+i(qβ) = ej

γ+i. For other β, qβ ∈ Eβ can be chosen arbitrarily.
Next, we may choose the rn

β to satisfy (19) because if qβ ∈ P ∈ Pβ, then qβ ∈ ker(P )
by (16), so that qβ is also a limit of points in ker(P ).

Finally, we must choose hβ ∈ C(Xβ\{qβ}, Q). Conditions (18)(19) only require
that hβ have a discontinuity at qβ with the property that every limit point of the
function at qβ is also a limit of each of the sequences 〈hβ(rn

β) : n ∈ ω & rn
β ∈ ker(P )〉.

Since Xβ is a compact metric space with no isolated points, we may accomplish this

by making every point of Q a limit point of each 〈hβ(rn
β) : n ∈ ω & rn

β ∈ ker(P )〉. K
If we choose each hβ as above and also set X1 = Q, then our X will be connected,

and it is fairly easy to choose the hβ so that X fails to be locally connected. The
next theorem shows how to make X connected and locally connected. We construct
X so that each Xα is homeomorphic to the Menger sponge, MS, and all the maps
σβ

α are monotone. The Menger sponge [10] is a one dimensional locally connected
metric continuum; the properties of MS used in inductive constructions such as these
are summarized in [7], which contains further references to the literature. A map is
monotone iff all point inverses are connected. Monotonicity of the σβ

α will imply that
X is locally connected.
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At successor stages, to construct Xα+1
∼= MS, we assume that Xα

∼= MS and apply
the following special case of Lemmas 2.7 and 2.8 of [7]:

Lemma 5.7 Assume that q ∈ X ∼= MS and that for each j ∈ ω, the sequence 〈rn
j :

n ∈ ω〉 converges to q, with each rn
j �= q. Let π : X × [0, 1] � X be the natural

projection. Then there is a Y ⊆ X × [0, 1] such that:

1. Y ∼= MS and π(Y ) = X.

2. |Y ∩ π−1{x}| = 1 for all x �= q.

3. π−1{q} = {q} × [0, 1].

4. Let Y ∩ π−1{rn
j } = {(rn

j , un
j )}. Then, for each j, every point in [0, 1] is a limit

point of 〈un
j : n ∈ ω〉.

Constructing X as such an inverse limit of Menger sponges will make X one dimen-
sional. The results quoted from [7] about MS were patterned on an earlier construction
of van Mill [11], which involved an inverse limit of Hilbert cubes; replacing MS by Q
here would yield an infinite dimensional version of this Aronszajn compactum. The
following summarizes several possibilities for X and its associated tree:

Theorem 5.8 Assume ♦. For each of the following 2 · 3 = 6 possibilities, there is
an Aronszajn compactum X with associated Aronszajn tree T such that X is HS and
HL. Possibilities for T :

a. T is Suslin.

b. T is special.

Possibilities for X:

α. dim(X) = 0.

β. dim(X) = 1 and X is connected and locally connected.

γ. dim(X) = ∞ and X is connected and locally connected.

Proof. We refine the proof of Theorem 1.6, To obtain (a) or (b), the refinement is in
the choice of the Eβ for limit β. To obtain (α) or (β) or (γ), the refinement is in the
choice of X1 and the functions hα. Since these refinements are independent of each
other, the discussion of (a)(b) is unrelated to the discussion of (α)(β)(γ).

For (a): We use ♦ to kill all potential uncountable maximal antichains A ⊂ T .
Fix a sequence 〈Aα : α < ω1〉 such that each Aα is a countable subset of Q<α and such
that for all A ⊆ Q<ω1 : if each A ∩ Q<α is countable, then {α < ω1 : A ∩ Q<α = Aα}
is stationary.

Let Tβ =
⋃{Lα : α < β} =

⋃{Eα : α < β} (see Lemma 5.6), and use � for
the tree order. For each limit β < ω1, modify the construction of Eβ in the proof of
Theorem 1.6 as follows: We still have Eβ = {x∗ : x ∈ Tβ}, where, x∗, for x ∈ Tβ , is
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chosen so that x � x∗ and x∗ defines a path through Tβ. But now, if Aβ ⊆ Tβ and
Aβ is a maximal antichain in Tβ , then make sure that each x∗ is above some element
of Aβ. To do this, use maximality of Aβ first to choose x† ∈ Tβ so that x � x† and
x† is above some element of Aβ, and then choose x∗ so that x � x† � x∗. There are
still 2ℵ0 possible choices for x∗, so we can satisfy (16) by avoiding the countable sets
P \ker(P ) as before. Now, the usual argument shows that T is Suslin.

For (b): Let Lim denote the set of countable limit ordinals, and let T Lim =
⋃{Lα :

α ∈ Lim} =
⋃{Eα : α ∈ Lim}. To make T special, inductively define an order pre-

serving map ϕ : T Lim → Q. To make the induction work, we also assume inductively:

∀γ, β ∈ Lim ∀x ∈ Lγ ∀q ∈ Q [γ < β & q > ϕ(x) → ∃y ∈ Lβ [x � y & ϕ(y) = q]] (∗)
To start the induction, ϕ�Lω : Lω → Q can be arbitrary.

For β = α+ω, where α is a limit ordinal: First, determine the x∗ exactly as in the
proof of Theorem 1.6. Then, note that for each x ∈ Lα, the set Sx := {y ∈ Eβ : x � y}
has size ℵ0, so we can let ϕ�Sx map Sx onto Q ∩ (ϕ(x),∞).

For β < ω1 which is a limit of limit ordinals: Let

Eβ = {x∗
q : x ∈ Tβ & q ∈ Q ∩ (ϕ(x),∞)} ,

where each x∗
q is chosen so that x � x∗

q and x∗
q defines a path through Tβ and the

x∗
q are all different as q varies. We let ϕ(x∗

q) = q, which will clearly preserve (∗),
but we must make sure that ϕ remains order preserving. For this, choose x∗

q so that
q > sup{ϕ(z) : z ∈ T Lim & z � x∗

q}. Such a choice is possible using (∗) on Tβ. As
before, there are 2ℵ0 possible choices of x∗

q , so we can still avoid the countable sets
P \ker(P ).

For (α), just make sure that Xα is homeomorphic to the Cantor set 2ω whenever
0 < α < ω1. In view of (13), this is equivalent to making Xα zero dimensional.
For α = 1, we simply choose X1 so that X1

∼= 2ω. Then, for larger α, just make
sure that in (9), we always have |(σα+1

α )−1{qα}| = 1, which will hold if in (18), we
choose hα ∈ C(Xα\{qα}, 2) (identifying 2 = {0, 1} as a subset of Q). To make this
choice, and satisfy (19): First, let Aj , for j ∈ ω, be disjoint infinite subsets of ω
such that for each P ∈ Pα, if qα ∈ P then for some j, rn

α ∈ ker(P ) for all n ∈ Aj.
Next, let Xα = K0 ⊃ K1 ⊃ K2 ⊃ · · · , where each Ki is clopen,

⋂
i Ki = {qα},

and, for each j, there are infinitely many even i and infinitely many odd i such that
Ki\Ki+1 ∩ {rn

α : n ∈ Aj} �= ∅. Now, let hα be 0 on Ki\Ki+1 when i is even and 1 on
Ki\Ki+1 when i is odd.

For (β), construct X so that each Xα is homeomorphic to the Menger sponge, MS,
and all the maps σβ

α are monotone. Then dim(X) = 1 will follow from the fact that
X is an inverse limit of one dimensional spaces.

For monotonicity of the σβ
α, it suffices to ensure that each σα+1

α is monotone. By
Condition (8), that will follow if we make (σα+1

α )−1{qα} connected; in fact we shall
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make (σα+1
α )−1{qα} homeomorphic to [0, 1], as in the proof of Theorem 1.6. But we

also need to verify inductively that Xα
∼= MS. At limits, this follows from Lemma 2.5

of [7]. At successor stages, we assume that Xα
∼= MS and identify [0, 1] as a subspace

of Q, so that Xα+1 may be the Y of Lemma 5.7.
(γ) is proved analogously to (β). Construct Xα

∼= Q rather than MS, applying the

results about Q in [11]§3. As in [11]§2, all the σβ
α are cell-like Z∗-maps. K

6 Chains of Clopen Sets

The double arrow space has an uncountable chain (under ⊂) of clopen sets of real
type. This cannot happen in an Aronszajn compactum:

Lemma 6.1 If X is an Aronszajn compactum and E is an uncountable chain of clopen
subsets of X, then E cannot be of real type.

Proof. Suppose that E is such a chain. Deleting some elements of E , we may assume
that (E ,⊂) is a dense total order. Let D be a countable dense subset of E . Since
X is an Aronszajn compactum, there is a map ϕ : X � Z, where Z is a compact
metric space, A = ϕ−1(ϕ(A)) for all A ∈ D, and {y ∈ Z : |ϕ−1{y}| > 1} is countable.
Since D is dense in E , the sets ϕ(B) for B ∈ E are all different. Each ϕ(B) is closed,
and only countably many of the ϕ(B) can be clopen. Whenever ϕ(B) is not clopen,
choose yB ∈ ϕ(B) ∩ ϕ(X\B). Since D is dense in E , these yB are all different points,
so there are uncountably many such yB. But ϕ−1{yB} meets both B and X\B, so

each |ϕ−1{yB}| ≥ 2, a contradiction. K
Note that if this argument is applied with a chain of clopen sets in the double

arrow space, then the |ϕ−1{yB}| will be exactly 2.

Lemma 6.2 If X is any separable space, and E is an uncountable chain of clopen
subsets of X, then E must be of real type.

Proof. If D ⊆ X is dense, then (E ,⊂) is isomorphic to a chain in (P(D),⊂). K

Corollary 6.3 If X is a separable Aronszajn compactum and E is a chain of clopen
subsets of X, then E is countable.

Note that if X is a zero dimensional compacted Aronszajn line which is also Suslin
(see Lemma 2.4), then X has uncountable chain of clopen sets, but X is not separable.
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7 Appendix

This is not intended to be part of the published version of the paper, but we verify
here the remark after Definition 2.2. Again, we define an Aronszajn line to be a LOTS
of size ℵ1 with no increasing or decreasing ω1–sequences and no uncountable subsets
of real type. Then we are claiming:

Lemma 7.1 For a compact LOTS X, TFAE:

1. X is a compacted Aronszajn line.

2. X is the Dedekind completion of some Aronszajn line.

Proof. In any LOTS, call x left isolated iff x is not a limit from the left and right
isolated iff x is not a limit from the right. Call x, y neighbors iff x �= y and there are
no points between x, y; so, if x < y then x is right isolated and y is left isolated.

For (2) → (1): Assume that X is the Dedekind completion of the Aronszajn line
A ⊆ X. Note that whenever x, y are neighbors in X, both x, y ∈ A. To see that
w(X) = ℵ1, note that the open intervals (p, q), (p,∞), and (−∞, q), for p, q ∈ A,
form a base for the topology. To prove that χ(X) = ℵ0, use the fact that there
are no increasing or decreasing ω1–sequences in A. Now, in view of Lemma 2.1, it
is sufficient to verify that whenever M is countable and X, A ∈ M ≺ H(θ), there
are only countably many p ∈ X/M such that |π−1{p}| ≥ 2. This is true because
only countably many π−1{p} can contain an element of A (otherwise A would have
an uncountable subset of real type), and [x, y] := π−1{p} must meet A whenever
|π−1{p}| ≥ 2 (since A is dense in X, and (x, y) = ∅ implies that x, y ∈ A).

For (1) → (2): Let X be a compacted Aronszajn line. Let B be the set of points
in X which are isolated either from the left or from the right. Then 2 ≤ |B| ≤ ℵ1,
since w(X) = ℵ1 and there are at least |B| clopen sets. B cannot have an uncountable
subset of real type, since that would yield a countable subset of X whose closure is
not second countable. Whenever A ⊇ B is dense in X, X is the Dedekind completion
of A. So, it is sufficient to find such an A of size ℵ1 such that A has no uncountable
subsets of real type.

Let 〈Mα : α < ω1〉 be a continuous chain of elementary submodels of H(θ) with
X ∈ M0 and each Mα ∈ Mα+1. Define A ⊆ X recursively so that x ∈ A iff x ∈ M0 or,
for some α < ω1, x ∈ (Mα+1\Mα) and either x is not a limit from the left of points
from A ∩ Mα or x is not a limit from the right of points from A ∩ Mα. In particular,
B ∩ (Mα+1\Mα) ⊆ A, so that B ⊆ A because B ∈ M0 and |B| ≤ ℵ1. Then A is
dense in X and |A| = ℵ1, so it is sufficient to prove that every D ⊆ A of real type
is countable. Shrinking D, we may assume that D ∩ B = ∅ and for some countable
E ⊆ D, every point of D\E is a limit, both from the left and from the right, of
points of E. But then E ⊆ Mα for some α, and then the definition of A implies that

D ⊆ Mα, so that D is countable. K


