ON SUBCLASSES OF WEAK ASPLUND SPACES
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ABSTRACT. Assuming the consistency of the existence of a measurable cardinal, it is
consistent to have two Banach spaces, X,Y, where X is a weak Asplund space such
that X* (in the weak™ topology) in not in Stegall’s class, whereas Y* is in Stegall’s
class but is not weak* fragmentable.

A Banach space X is weak Asplund if every convex continuous real function on
X is Gateaux differentiable at all points of a dense G5 set. This is a large class
of spaces, it contains for example all Asplund spaces and all weakly compactly
generated spaces. A detailed study of weak Asplund spaces and their subclasses is
given in [1]. The largest known subclass of Asplund spaces with reasonable stability
properties was introduced by C. Stegall [16].

A topological space T belongs to Stegall’s class if for any Baire space B and
any upper-semicontinuous nonempty compact valued mapping ¢ : B — T which
is minimal with respect to inclusion, ¢(b) is a singleton for all b € B except for a
meager set. If (X*, w*) is in Stegall’s class then X is weak Asplund. The converse
does not hold by [7].

A further subclass is the class of those X such that (X, w*) is fragmentable.
Recall that a topological space T is fragmentable if there exists a metric p on the
set T such that every nonempty subset of T" has nonempty relatively open subsets
of arbitrarily small p-diameter. Every fragmentable topological space is easily seen
to belong to Stegall’s class. An example of a Banach space X such that (X*, w*)
is in Stegall’s class but not fragmentable is given in [9].

Both results of [9] and [7] use some additional axioms beyond ZFC. As remarked
in [7], these two sets of axioms cannot hold at the same time. In the present paper,
we construct a model of ZFC in which all three classes — weak Asplund spaces,
spaces with dual in Stegall’s class, and spaces with weak* fragmentable dual — are
mutually different. The main result is contained in the following theorem.
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Theorem. If “ZFC + there is a measurable cardinal” is consistent, then “ZFC +
there are Banach spaces X and Y such that X is weak Asplund but (X*, w*) is
not in Stegall’s class, and (Y*,w*) is in Stegall’s class but is not fragmentable” is
consistent as well.

Measurable cardinals are discussed in detail in [8]. They are commonly used in
set-theoretic arguments, although their consistency strength is known to be stronger
than just ZFC; that is, their relative consistency (i.e., the implication Con(ZFC) =
Con(ZFC + there is a measurable cardinal)) cannot be proved in ZFC, and there is
no procedure for constructing a model of “ZFC + there is a measurable cardinal”
from a model of ZFC. For a detailed explanation see [8].

We do not know if the measurable cardinal can be removed from the hypothesis
of the Theorem, although it is needed for some of the lemmas. For example, the
situation obtained in Lemma 6 implies the existence of an inner model with a
measurable cardinal.

To prove the Theorem, we formulate the following set of axioms:

Axioms A.

(i) Martin’s Aziom and 2%° = V3 hold.
(ii) There is a precipitous ideal over w,.
(iii) The cardinal Xy is not measurable in any transitive model of ZFC' containing
all the ordinals.

We first prove (Lemma 2) the consistency of A, and then construct X and Y
using A. In proving Lemma 2, we use forcing to obtain (i) and (ii), but first we
observe that (iii) cannot be forced to be false if it is true in the ground model.

Definition. For an ordinal p let W(p) denote the formula “p is a measurable car-
dinal in some transitive model of ZFC containing all the ordinals”.

Lemma 1. Let p be an ordinal such that —=¥(p) holds, and let P be a partially
ordered set. Then 11Fp =U(p).

Proof. First, call a p-model a transitive M containing all the ordinals such that
M satisfies ZFC plus the statement p is measurable and the universe (i.e., M)
equals L[u], where u is a normal ultrafilter on p. By [10], this M is unique (if it
exists), so call it M,. Furthermore, by [14], M, = GCH, and, by [10], in M,, the
normal ultrafilter u is unique. Now, u is a subset of the power set P(p), but u
can be uniquely coded by a set of ordinals. Let ®(p,d, W) assert that WU(p) holds,
§ = (pT)Me, and W C 4 is the first subset of § which codes the normal ultrafilter.
So, ¥(p) = 35, W &(p, 0, W). Here, “first” is in the canonical order of construction
from u, and “codes” can be via any standard method; for example u is the collection
of all sets of the form {{ < p:p-a+ &€ W}, for a <.

Now, if 1 does not force =¥ (p), we may fix a p € P, an ordinal J, and a
name W such that p I+ ®(p, 8, W). Replacing P with {q : ¢ < p}, we can in fact
assume that 1 I- ®(p,d, W). Now, let Q = P, x Py, where P;, P, are isomorphic
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copies of P, and let W; be the P;-name corresponding to the P-name W, so that
Ll @(p, 6, Wl)/\q)(p, 0, Wz), and hence, by uniqueness 1 IF¢ W, = W,. But then,
since the names are disjointly supported, there is a W C ¢§ in the ground model
such that 1o W, = Wy = W; so that ¥(p) holds in the ground model. O]

Lemma 2. If “ZFC + there exists a measurable cardinal” is consistent then “ZFC
+ A” is consistent.

Proof. By [14], we may assume that the ground model V satisfies V' = L[u] where
u is a normal ultrafilter on a measurable cardinal . Then, by [9, Theorem 9.4] we
have =¥ (w;) in V.

Now consider the iterated generic extension V[G1][G2]. where Gy is the Levy
collapse with countable conditions, making x = ws, and then G5 is the ccc extension
which makes Martin’s Axiom and 2% = X3 hold (see [15] or [11]). Since both these
extensions preserve wy, the validity of (iii) in V[G1][G2] follows from Lemma 1.
The validity of (i) is obvious. Further, it follows from [3] that x carries a normal
precipitous ideal in V[G1], and this is true also in V[G1][Gs], since such ideals are
preserved by ccc extensions by [4]. O

Now we give a series of lemmas which prove the Theorem from A.

Lemma 3. (Under A) Let X be a Baire space and &€ a disjoint family of meager
subsets of X such that card € = Ry and | JE' has the Baire property in X for every
E' C&. Then |JE is meager in X.

Proof. Suppose | J€ is not meager. Then we can suppose without loss of generality
that X = J&. Now, by the Lemma in the proof of Theorem 3.3 in [2], card E' = ¥y
is a measurable cardinal in some submodel, contradicting (iii). O

The following lemma is a special case of [5, Proposition 2.4].

Lemma 4. Let X be a Baire space of weight at most k (where k is an uncountable
cardinal). Let € be a disjoint family of meager sets such that | JE' is F, in X for
all &' C &, and such that |JE" is meager in X for all &' C & with cardE’ < k.
Then | JE is meager in X .

Proof. Suppose that [ J& is not meager. As |JE is Fj, its interior G = int|JE€
is nonempty. Let {U, : @ < k} be an open base for G. Choose by transfinite
induction sets E¢, Fy € £ for £ < k such that

(a) EgﬂUg?é@anngﬂUg#w;

(b) E£7F§ g_ﬁ {EWFTI :n < 5},

(c) Fe # E.
This is possible because each | J{E, U F;, : n < £} is meager. Let Hy = J{E: NG :
¢ < k} and Hy = G\ H;. Then both Hy and Hs are dense F, in G, so both are
meager, hence G is meager, a contradiction. [J

By Lemmas 3 and 4 we get:
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Lemma 5. (Under A) Let X be a Baire space of weight at most Ry and € be a
disjoint family of meager sets such that | JE' is F, for any &' C E. Then |JE is
meager in X .

We continue by the following consequence of [2].

Lemma 6. (Under A) There is a Baire metric space X of weight X3 and a decom-
position € of X into meager sets such that | JE' has the Baire property in X for
any &' C € and card £ = Ns.

Proof. In [2, Theorem 3.2] there is constructed, under (ii), such a decomposition of
a Baire metric space of weight 282 which is N3 by (i) (see [13]). O

Now we are almost ready to prove the Theorem. It remains to recall the definition
of Stegall spaces with respect to a class of Baire spaces, the construction from [6]
and a lemma from [7].

Let C be a class of Baire spaces closed under taking open subsets and dense Baire
subspaces. We say that a topological space T is Stegall with respect to C if for any
B € C and any upper-semicontinuous compact valued mapping ¢ : B — T', which
is minimal with respect to inclusion, ¢(b) is a singleton for all b € B except for a
meager set.

If A C (0,1) is arbitrary, we put K4 = ((0,1] x {0}) U (({0} U A) x {1}) and
equip this set with the lexicographical order (i.e., (s,a) < (t,b) if either s < ¢, or
s =t and a < b) and the order topology. By [6, Proposition 2] the space K4 is
compact and Hausdorff.

Lemma 7. Let C be a class of Baire spaces which is closed under taking open
subspaces and dense Baire subspaces, and let A C (0,1). Consider:
(1) (C(K4)*,w*) is Stegall with respect to C.
(2) For any B € C and any continuous f : B — A, there is a nonempty open
U C B such that f is constant on U.

Then (2) = (1); and (1) = (2) when all the spaces in C are metrizable.

(2) = (1) is proved in [9], and (1) = (2) is proved in [7].
Now the Theorem is an immediate consequence of Lemma 2 and the following
lemma.

Lemma 8. (Under A) Let A C (0,1) be arbitrary.
(a) (C(Ka)*,w*) is fragmentable if and only if A is countable.
(b) (C(Ka)*,w*) is Stegall if and only if card A < N;.
(c) If card A < No, then C(K y) is weak Asplund.

Proof.
(a) is proved in [6, Proposition 3] and requires no special axioms of set theory.
(b)<=: It is enough to show that A satisfies condition (2) of Lemma 7 with
respect to the class of all Baire spaces. Let B be a Baire space and f : B — A
continuous. The family {f~!(a) : a € A} is a partition of B. Moreover, the union
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of each subfamily is F,, as each subset of A is relatively F, by Martin’s Axiom (see
[12, p.162]). Hence, by Lemma 3, some f~!(a) is non-meager and therefore has a
nonempty interior.

(b)=: Let card A > Ry. Let X be the metric space with partition £ from Lemma
6. Let ¢ : & — A be a one-to-one mapping. Define f : X — A by the formula
f(x) = a if a = $(E) such that z € E. Then f, considered as a function to R, has
the Baire property and so there is (by [12]) a residual B C X such that f = f | B
is continuous. Hence A does not satisfy condition (2) of Lemma 7.

(c): It is enough to show that (C'(K4)*,w*) is Stegall with respect to Baire
metric spaces of weight at most Ny. As each subset of A is again relatively F,, the
proof is the same as in (b)<=, only use Lemma 5 instead of Lemma 2. O

Let us finish by mentioning the following open question.

Problem. Is it consistent with ZFC to suppose that any weak Asplund space has
weak™ fragmentable dual?
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