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Abstract

We study structure theorems for the conjugacy closed �CC�� loops�
a speci�c variety of G�loops �loops isomorphic to all their loop iso�
topes�� These theorems give a description all such loops of small
order� For example� if p and q are primes� p � q� and q � � is not
divisible by p� then the only CC�loop of order pq is the cyclic group of
order pq� For any prime q � 	� there is exactly one non�group CC�loop
in order 	q� and exactly three in order q�� We also derive a number
of equations valid in all CC�loops� By contrast� every equation valid
in all G�loops is valid in all loops�

� Introduction

A quasigroup is a system Q � �G� �� such that G is a non�empty set and � is
a binary function on G satisfying �xy��z�xz � y� and �xy��z�zx� y�� In a
quasigroup� we may name the z as a function of x� y and de	ne left division�
n� and right division� �� by


x � �xny� � y �y�x� � x � y ���
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By cancellation� and setting y � xu or y � ux� we have also

xn�x � u� � u �u � x��x � u ���

As usual� equations written this way with variables are understood to be
universally quanti	ed� Quasigroups are often de	ned to be systems of the
form Q � �G� �� n� �� satisfying ��� and ���
 this lets us de	ne the notion in a
purely equational way� without existential quanti	ers� A loop is a quasigroup
which has an identity element� �� satisfying �x�x� � �x � x�� See the
books ���� ���� ���� for general background and references to the literature on
quasigroups and loops�

There are probably no interesting results about the class of all loops�
since it is too broad
 for example� there are already ��� loops of order six ����
However� there has been much study of speci	c classes of loops� Most well�
known are the groups� which are the associative loops� For these� there are
many structure theorems� which enable one to enumerate easily the groups
of small orders
 for example� there are only two groups of order six� In this
paper� we look at structure theorems for conjugacy closed loops�

De�nition ��� A loop is conjugacy closed �or a CC�loop� i� it satis�es the
two identities�

RCC 
 z�yx� � ��zy��z��zx� LCC 
 �xy�z � �xz��zn�yz��

Actually� every quasigroup satisfying both these identities must be a loop

see Section �� Clearly� every group is a CC�loop� The reason for the termi�
nology �conjugacy closed� is explained in Remark ����

The reader unfamiliar with previous work on these loops ������������ may
not see why this particular variety of loop is interesting� One motivation for
studying CC�loops is that they arise naturally in the study of isotopy� and the
CC�loops form a natural variety of G�loops �� isotopy�isomorphy loops�� as
we explain in Section �� which collects some useful results and de	nitions from
the literature� The other is that the CC�loops have a non�trivial structure
theory� described in Section �
 see also Goodaire and Robinson ����� where
the notion originated� Using this structure theory� one may compute the CC�
loops of small order� For example� if p is an odd prime� we show �Theorem
����� that the only non�group CC�loop of order �p is the one constructed by
R� L� Wilson� Jr� ����� For p � �� this loop is displayed in Table �� Also
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Table �
 A CC�Loop

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

�Theorem ������ in order p�� there are exactly three non�group CC�loops�
constructed by the method of Goodaire and Robinson �����

By another result of Wilson ����� the only G�loop� and hence the only
CC�loop� of prime order p is the cyclic group of order p� We show �Theorem
����� that for CC�loops� the same is true for orders pq� where p � q are
primes with q � � not divisible by p� Note that for these pq� the fact that
any group of order pq must be cyclic is an easy exercise in using the Sylow
theorems� The structure theory for CC�loops uses combinatorial arguments
similar to those used in the proof of the Sylow theorems�

If p � q are primes and q � � is divisible by p� then in order pq� there
are CC�loops which are not groups �see Corollary ����� of ������ as well as
non�abelian groups�

The Moufang loops� whose structure is already widely discussed in the
literature ������� are always diassociative �that is� every two elements generate
a group� by Moufang�s Theorem� The CC�loops need not even be power
associative �that is� every single element generates a group�
 for example� in
Table �� the single element � generates the whole loop� It is shown in ����
that the CC�loops which are diassociative �equivalently� Moufang� are the
extra loops studied by Fenyves �������

It might seem that the structure for non�power�associative loops might be
intractable� but we show �Theorem ����� that in a CC�loop� xy � � implies
that yx is in the nucleus� From this we shall conclude �Theorem ����� that
either the loop is power associative or the nucleus is non�trivial� In particular
�Corollary ����� this implies that if G is any 	nite CC�loop� then for some
prime p dividing jGj� G has a subloop H isomorphic to the cyclic group of
order p� In Table �� jGj � �� p � �� and H � f�� �� �g
 there are no subloops
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of order �� as one might have hoped from group theory�
Our structure theory succeeds through the study of loop automorphisms�

In a group� the inner automorphisms are related to failures of commutativ�
ity� In the same way� CC�loops possess a family of automorphisms related
to failures of associativity� This is described in more detail in Section �� In
Section �� we derive a number of equations and implications between equa�
tions used in the structure theory in Section �� The division between these
two sections is a bit arbitrary� but in general� the results of Section � hold for
all CC�loops� whereas Section � uses counting arguments to prove theorems
about 	nite CC�loops�

One might ask to what extent the results of this paper hold for G�loops
in general� In Section � we show that every equation �in fact� every universal
statement� true in all G�loops is true in all loops� so that we do not have any
analog to the results in Section ��

In developing this work� we have found it very useful to use the auto�
mated reasoning tools OTTER ����� programmed by W� W� McCune� and
SEM ����� programmed by J� Zhang and H� Zhang� OTTER is used in deriv�
ing equations from other equations� and was instrumental in producing many
of the results in Section �� OTTER�s proofs are simply sequences of 	fty or
so intermediate equations� and seem at 	rst to have little intuitive content�
but following the method of previous work ������������� we have rephrased
OTTER�s proofs using more conceptual notions� such as the action of au�
tomorphisms� SEM is used to construct 	nite examples� For example� the
CC�loops given in Table � and Example ���� were constructed using SEM�
Once one has such an example� it is usually possible to describe it in a more
conceptual way
 for example� the loop in Table � can be recognized as the
one already constructed by Wilson �see ���� or Theorem ������ and we have
described the one in Example ���� as a semidirect product� We originally
tried to use SEM to construct a non�group CC�loop of order ��� but this
failed� proving that there was no such loop� We then found the proof in
this paper �Theorem ������ which does not rely on a computer search and
which generalizes to other orders of the form pq� Besides the results explic�
itly presented in this paper� OTTER and SEM were very useful for quick
experimentation and for checking out �often false� conjectures�
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� Isotopy and G�Loops

Throughout this section� �G� �� always denotes a loop� The theory of isotopy
lets us associate with �G� �� a number of permutation groups� One may then
apply familiar methods from group theory to study G� We begin with the
autotopy group �see ���� p� �����

De�nition ��� SYM�G� is the group of all permutations of the set G�
I � SYM�G� is the identity element� AT OP�G� �� is the set of triples
��� �� �� in �SYM�G��� such that

�x� y� z � G�x� � y� � �xy���

It is easy to see that AT OP�G� is a subgroup of �SYM�G����

De�nition ��� De�ne AUT �G� ���LII�G� ���RII�G� ���II�G� �� by�

� � AUT �G� �� �	 ����� �� � AT OP�G� ��

� � LII�G� �� �	 �� � SYM�G�� ��� �� �� � AT OP�G� �� �

� � RII�G� �� �	 �	 � SYM�G�� ���	� �� � AT OP�G� �� �

� � II�G� �� �	 ���	 � SYM�G�� ���	� �� � AT OP�G� �� �

So� AUT �G� �� is the group of automorphisms of �G� ��� Bryant and
Schneider ��� called II�G� �� the group of �G� ��� It is immediate from the
de	nitions that


Lemma ��� Each of the sets AUT �G� ���LII�G� ���RII�G� ���II�G� �� is a
subgroup of SYM�G�� Furthermore	
AUT �G� �� 
 LII�G� �� �RII�G� ��	 and
LII�G� �� �RII�G� �� 
 II�G� ���

Another family of elements of SYM�G� is given by left and right multi�
plications by elements of G


De�nition ��� De�ne	 for each a � G	 La � L�a� and Ra � R�a� in
SYM�G� by�

xLa � a � x xRa � x � a
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These are related to the autotopy group by


Lemma ��� Suppose that ��� �� �� � AT OP�G� ��� Let b � ���� and a �
����� Then for all x� y� x� � �xb��	 y� � �ay��	 and �xb�� � �ay�� � �xy���
Thus	 � � Rb�	 � � La�	 and �Rb�� La�� �� � AT OP�G� ���

Proof	 Use b� � � and then a� � � in the de	nition ����� of AT OP�

Now� applying this lemma to the de	nition of LII�RII�II


Lemma ��
 If � � SYM�G�	 then�


� � � II�G� �� i� for some a� b � G� �Rb��La���� � AT OP�G� ��	 in
which case �ab�� � ��

�� � � LII�G� �� i� for some b � G� �Rb���� �� � AT OP�G� ��	 in which
case b must be �����

�� � � RII�G� �� i� for some a � G� ���La���� � AT OP�G� ��	 in
which case a must be �����

Corollary ��� AUT �G� �� 
 f� � LII�G� �� 
 �� � �g 
 f� � RII�G� �� 

�� � �g�

For every loop� we may de	ne the left nucleus �N��� the middle nucleus
�N��� the right nucleus �N��� and the center �Z�


De�nition ��� For any loop �G� �� and a � G�
a � N��G� �� i� �x� y � G �a�xy� � �ax�y�
a � N��G� �� i� �x� y � G �x�ay� � �xa�y�
a � N��G� �� i� �x� y � G �x�ya� � �xy�a�
a � Z��G� �� i� �x � G �xa � ax�
N�G� �� � N��G� �� �N��G� �� �N��G� ���
Z�G� �� � N�G� �� � Z��G� ���

It will turn out �Lemma ����� that Z��G� �� � Z�G� �� for CC�loops� It is
easy to verify the following equivalents� in terms of autotopy�

Lemma ��
 For any loop �G� ���
N��G� �� � fa � G 
 �La� I� La� � AT OP�G� ��g�
N��G� �� � fa � G 
 �R��

a � La� I� � AT OP�G� ��g�
N��G� �� � fa � G 
 �I�Ra� Ra� � AT OP�G� ��g�
Z��G� �� � fa � G 
 La � Rag�
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Corollary ��� can fail for II�G� ��
 that is� one can have � � II�G� �� and
�� � � without � being an automorphism of the loop� but such an � must
be an automorphism of the nucleus�

Lemma ���� Suppose that � � II�G� �� and �� � �� Then�


� If either u � N� or v � N�	 then u� � v� � �uv���

�� � � N� � AUT �N�� ���

�� � � N� � AUT �N�� ���

Proof	 Fix a� b as in Lemma ������ So� �xb�� � �ay�� � �xy�� for all x� y�
Equivalently� u� � v� � ��u�b� � �anv��� for all u� v� Since �ab�� � � � ���
ab � �� Now suppose that u � N�� Then �ua�b � u�ab� � u� so ua � u�b�
Hence� u� � v� � ��ua� � �anv��� � �u � �a�anv���� � �uv��� The mirror of
this argument works for v � N��

So� � maps N� isomorphically onto its range� To prove ���� we need
�N��� � N�� Now� if u � N�� then applying ���� �u� � �xb��� � �ay�� �
�uxb�� � �ay�� � �uxy�� � u� � �xy�� � u� � ��xb�� � �ay���� Since �xb�� and
�ay�� can be arbitrary elements of G� this proves u� � N�� so �N��� 
 N��
Applying this argument to ��� shows �N��� � N��

So far� this whole discussion could be vacuous� since it is not clear whether
II�G� �� contains anything besides the identity permutation� I� However�
in G�loops� LII and RII are large enough to make Corollary ��� and
Lemma ���� useful for producing automorphisms�

De�nition ���� A loop G is a G�loop i� for each a� b � G	 there is an � �
SYM�G� such that �Rb��La���� � AT OP�G� ��� that is	 �xb�� � �ay�� �
�xy�� for all x� y � G�

This � will be in II�G� �� by Lemma ������ Furthermore� the special
cases where a � � or b � � will provide us with a supply of permutations
in LII�G� �� and RII�G� �� by Lemma ����� and Lemma ������ Actually� by
E� L� Wilson ����� being a G�loop is equivalent to these special cases
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Lemma ���� A loop �G� �� is a G�loop i� both

� For each b � G	 there is a � � SYM�G� such that �Rb�� �� �� �
AT OP�G� ��	 and

� For each a � G	 there is a � � SYM�G� such that ��� La�� �� �
AT OP�G� ���

Proof	 For the non�trivial direction� 	x a� b � G� First 	x � � LII�G� ��
such that b � ����� so that �xb�� � y� � �xy�� for all x� y� Then� 	x
� � RII�G� �� such that �x�� � �cy�� � �xy�� for all x� y� where c � �ab���
Let � � ��� Then for all x� y
 �xy�� � ��xb�� �y��� � �xb��� ���ab�� �y��� �
�xb��� � ��ay���� � �xb�� � �ay���

De	nition ���� has the following interpretation
 Let u � xb and v � ay�
so that we have u� � v� � ��u�b� � �anv���� Thus� if we de	ne a new product�

� so that u 
 v � �u�b� � �anv�� then 
 is another loop operation on G�
with identity a � b� and � is an isomorphism from �G� �� to �G� 
�� This 
 is
called a principal loop isotope� That is� the G�loops are those loops which
are isomorphic to all their principal loop isotopes� and � � II�G� �� i� � is
an Isomorphism onto a principal loop Isotope�

In a G�loop� De	nition ���� �seems� to pair an � � II�G� �� with an
�a� b� � G�� but this �correspondence� is not a function� By Bryant and
Schneider ��� and R� L� Wilson� Jr� ����� each � has jN�j corresponding �a� b��
and each �a� b� has jAUT �G� ��j corresponding �� Hence� jGj� � jAUT �G� ��j �
jII�G� ��j � jN�j� When jGj is prime� this implies that jN�j � jGj� so that G
is a group� Unfortunately� if jGj is not prime� this type of analysis does not
yield much information for G�loops in general�

We now consider �natural G�loops�� in which the � and � from Lemma
���� have some simple de	nition� So� 	x an a � G� and consider the require�
ment that there be a � � SYM�G� such that ��� La�� �� � AT OP�G� ���
A group is a G�loop� since we may let � be either L��

a or R��
a � It is nat�

ural to consider loops in which one of these choices works as well� The
	rst is uninteresting� since it holds only in groups� If � � L��

a � we have
�L��

a � LaL
��
a � L��

a � � AT OP�G� ��
 equivalently� �La� I� La� � AT OP�G� ���
so that a � N��G� �� �by Lemma ����� If this holds for all a� then G is a
group� Now� if � � R��

a � we have �R��
a � LaR

��
a � R��

a � � AT OP�G� ��
 equiv�
alently� �Ra� RaL

��
a � Ra� � AT OP�G� ��
 translating this to an equation� we
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get precisely equation LCC from De	nition ����
Likewise� consider the requirement that for each b � G� there be a � �

SYM�G� such that �Rb�� �� �� � AT OP�G� ��� In groups� � could be either
L��
b or R��

b � In any loop� if � is always R��
b � then the loop is a group� whereas

if � is always L��
b � then we have each �LbR

��
b � Lb� Lb� � AT OP�G� ��� which

yields equation RCC� Hence


Lemma ���� A loop �G� �� is conjugacy closed i� both Ra � RII�G� �� and
La � LII�G� �� for each a � G� If �G� �� is conjugacy closed	 then �G� �� is a
G�loop	 and both �Ra� RaL

��
a � Ra� and �LaR

��
a � La� La� are in AT OP�G� ���

We may now take various products from RII�G� �� and LII�G� �� to
produce automorphisms� In particular� as in ����


Lemma ���� If G is conjugacy closed	 then for each a� b � G	 both RaRbR
��
ab

and LaLbL
��
ba are automorphisms of G�

Proof	 By Lemma ����� RaRbR
��
ab � RII�G� ��� It is then an automorphism

by Corollary ����

Note that in every loop� the associative law holds i� RaRbR
��
ab � I for

all a� b� However� in CC�loops� the fact that these are automorphisms lets us
use automorphism arguments to study non�associative CC�loops in the same
way that inner automorphisms are used to study non�commutative groups�
Every commutative CC�loop is a group
 more generally� for any CC�loop� the
three nuclei coincide ���� and contain Z� �see De	nition �����

Lemma ���� For any CC�loop �G� ��� Z�G� �� � Z��G� �� 
 N�G� �� �
N��G� �� � N��G� �� � N��G� ���

Proof	 Apply Lemma ��� and Lemma ����� plus the fact that AT OP�G� ��
is a group�

De�nition ���
 For any a � G	 let Ja � RaL
��
a and let Ea � RaRan��

In a group� Ea � I and Ja is an inner automorphism� In a CC�loop� Ea is
an automorphism �by Lemma �����
 Ja need not be an automorphism of the
loop� but it does de	ne an automorphism of the nucleus ���� �apply Lemma
����
 note that Ja � II�G� �� and �Ja � ���
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Corollary ���� For any CC�loop �G� ��	 let N � N�G� ��� Then Ea �
AUT �G� ��	 and Ja � N � AUT �N� ��	 for each a � G�

Corollary ���� For any CC�loop �G� ��	 if jN�G� ��j � � then Z�G� �� �
N�G� ���

Proof	 Since the only automorphism of N�G� �� is the identity� it follows
that for each a � G� and each x � N�G� ��� xLaR

��
a � x� so ax � xa�

Table � is an example of a CC�loop in which the nucleus has size � and
the center has size �� Nevertheless� we shall see later �Lemma ����� that
the method of proof of Corollary ���� is useful for proving the center to be
non�trivial in cases where the nucleus has size greater than two� if we have
some further information about the orders of these Ja�

Some further examples of non�group CC�loops are described in Goodaire
and Robinson ����� In addition� the following� which is a modi	cation of the
semidirect product construction in groups� will be useful later as a source of
counter�examples


Lemma ���
 Suppose that G � H�A	 where �H��� and �A��� are abelian
groups	 and we de�ne a product on G by

�h� x� � �k� y� � �h� k
x � ix�y � x� y� �

where the 
x	 for x � A	 and the ix�y	 for x� y � A	 satisfy�


� Each 
x is an automorphism of H and 
x�y � 
x
y�

�� Each ix�y is an element of H and ix�� � i��y � ��

�� For each x� y� z �

iy�z
x � ix�y�z � ix�y � iy�x � ix�z
y � iy�x�z

ix�y � ix�y�z � ix�z � iy�z
x � iz�y
x � ix�z�y �

Then G is a CC�loop� Furthermore	 fh � H 
 �y�h
y � h�g � f�g 
 Z�G�
and H � f�g 
 N�G��
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Proof	 Note that by item ���� we also have 
�x � �
x��� and 
� � I� Using
this plus item ���� it is easy to see that ��� �� is the identity element of G� To
prove that G is a loop� and to identify n and �� we may solve the equation
�h� x� � �k� y� � ��� z� for �k� x� or for �h� y� to obtain


�h� x�n��� z� � ���� h� ix�z�x�
�x � z � x�

��� z���k� y� � �� � k
z�y � iz�y�y � z � y�

We compute the product of three elements as


�h� x� � ��k� y� � ��� z�� � �h � k
x � �
x�y � iy�z
x � ix�y�z � x� y � z�

��h� x� � �k� y�� � ��� z� � �h � k
x � �
x�y � ix�y � ix�y�z � x� y � z� �

Note that these are equal i� ix�y�ix�y�z � iy�z
x�ix�y�z � which holds whenever
at least one of x� y� z is � �applying item ��� and 
� � I�� so that H � f�g 

N�G�� Likewise� using the de	nition of �� any element of the form �h� �� is in
the center i� h
y � h for all y�

Now� equations RCC and LCC require


RCC 
 �h� x� � ��k� y� � ��� z�� � ���h� x��k� y�� � �h� x�� � ��h� x���� z��

LCC 
 ��h� x� � �k� y�� � ��� z� � ��h� x���� z�� � ���� z� n ��k� y���� z���

The right�hand side of these are


RCC 
 �h� k
x � �
x�y � ix�y � iy�x � ix�z
y � iy�x�z � x� y � z�

LCC 
 �h� k
x � �
x�y � ix�z � iy�z
x � iz�y
x � ix�z�y � x� y � z� �

Thus� to get RCC and LCC� we need precisely item ����

Note that if ix�y � � for all x� y� then G is a group� and the construction
reduces to the standard semidirect product� The following use of Lemma
���� to get a non�group G will be useful later


Example ���� In Lemma ��
�	 take �H��� �� �A��� �� Z� � Z�	 where
H � f�� p� q� sg and A � f�� a� b� cg� De�ne 
x and ix�y by�

x 
x
� I
a I
b �p� q�
c �p� q�

�
x
�

�� y ��
ix�y � a b c

� � � � �
a � p � q
b � p � p
c � � s �
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Then G � H � A is a 
��element CC�loop satisfying the equation ���x� �
�xn��	 with a ��element nucleus	 H � f�g	 and a ��element center	 f�� sg �
f�g� This loop contains �� � such that �� � � but ����� �� � and ����� �� ��
furthermore	 the cosets	 h�i � � and h�i � ��	 are neither equal nor disjoint�

Proof	 G is a CC�loop by Lemma ����
 the tedium of verifying item ���
there may be alleviated somewhat by noting that the equations are trivially
true if one of x� y� z is �� so that there are only �� � �� cases to verify� not
�� � ��� It is clear from the proof of Lemma ���� that an element �k� y� is
in N��G� i� �xz�ix�y � ix�y�z � iy�z
x � ix�y�z �� which implies in particular
�z�ia�y � ia�y�z � iy�z � ia�y�z�� For y � a and y � b� this is refuted by z � b�
and for y � c� this is refuted by z � c� Hence� the only possible elements of
the nucleus have form �k� ��� so N�G� � H�f�g� Furthermore� �k� �� cannot
be in the center unless k
y � k for all y� so Z�G� � f�� sg � f�g�

The equation ���x� � �xn�� is immediate from the formulas for � and n
derived in the proof of Lemma �����

Finally� let � � ��� c� and � � ��� b�� Then �� � ��� ��� �� � �s� a� and
����� � �s� b� �� �� Also� �� � �p� a� and ����� � �s� b� �� �� Furthermore�
h�i � � � h�i � �� � f�� ��g � f��� �����g � f��g�

� Some Useful Equations

Throughout this section� �G� �� always denotes a conjugacy closed loop� We
collect here a number of equations and implications between equations which
G must satisfy� Often �but not always�� it is more transparent to state and
prove equations in terms of permutations� For example� in Lemma ����� the
fact that RaRbR

��
ab is an automorphism could be expressed as the equation

���xa�b��ab� � ���ya�b��ab� � ����xy�a�b��ab� and then derived directly from
equations LCC and RCC of De	nition ���� but this derivation would be a
bit messy and obscure� We begin by re�stating the de	nition of �conjugacy
closed� in terms of conjugations�

Lemma ��� For any x� y �


� L��
x RyLx � R��

x Rxy � R��
x LyRx � L��

x Lyx

�� L��
x LyLx � L�xy��x � R��

x RyRx � Rxn�yx�

�� LxRyL
��
x � R��

xn�Rxny � RxLyR
��
x � L��

��xLy�x

�� LxLyL
��
x � Lxn�yx� � RxRyR

��
x � R�xy��x
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Proof	 The equation RCC of De	nition ��� asserts both RxLz � LzR
��
z Rzx

and LyLz � LzL�zy��z 
 equivalently� L��
z RxLz � R��

z Rzx and L��
z LyLz �

L�zy��z � Renaming the variables� and applying also LCC� we get both ���
and ���� To obtain item ���� use the conjugations in item ��� to compute
L��
x R��

xn�RxnyLx and R��
x L��

��xLy�xRx� Item ��� is proved likewise from ����

Remark ��� The equations ��� of Lemma ��� are easily seen to be equivalent
to RCC and LCC� Originally ����� a CC�loop was de	ned to be a loop in
which the left and right multiplications were closed under conjugations � that
is� for all x� y� there are u� v such that L��

x LyLx � Lu and R��
x RyRx � Rv�

But this requires that u � �xy��x and v � xn�yx�� so we retrieve equations
���� Hence� our de	nition of CC�loop is equivalent to the original one�

Lemma ��� If cd � �	 then L��
c RdLc � R��

c 	 R��
d LcRd � L��

d 	 and Ec �
RcRd � L��

c L��
d � AUT �G� ��� Furthermore	 J��c � RdLc and Jd � LcRd�

Proof	 The 	rst two equations are immediate from Lemma ������ These
yield Lc � RdLcRc � RdL

��
d R��

d 
 cancelling the Rd� we get RcRd � L��
c L��

d �
Ec � AUT �G� �� by Corollary �����

Lemma ��� For any x� y	 xy � yx i� LxLy � LyLx i� RxRy � RyRx�

Proof	 By Lemma ������

Lemma ��� For any x� y	 Rxy � RxRy i� LxRy � RyLx i� Lxy � LyLx�

Proof	 By Lemma ������

Lemma ��
 For any x� y	 Jxy � JxRyLxR
��
y L��

x Jy�

Proof	 By Lemma ����� and the de	nition of J �

This lemma is most useful when the commutator� RyLxR
��
y L��

x � disap�
pears� That could happen in several ways� First� recall �Corollary ����� that
Jx de	nes an automorphism of the nucleus� It follows that


Corollary ��� Let N � N�G� ��� Then JxJy � N � Jxy � N �

Thus� the map x �� Jx yields a homomorphism from G into AUT �N� ���
Next� we may consider subloops other than the nucleus�
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De�nition ��� A subloop H of G is nuclear i� for all h� k � H	 Rhk �
RhRk�

Note that the nucleus is nuclear and that every nuclear subloop must be
a group� In view of Lemma ���� the condition Rhk � RhRk could have been
replaced by LhRk � RkLh� or by Lhk � LkLh�

Lemma ��
 If H is a nuclear subloop of G	 then JhJk � Jhk for all h� k � H	
and Jd maps H isomorphically onto HJd for all d � G�

Proof	 The 	rst statement is immediate by Lemmas ��� and ���� By Lemma
����� �Rd� Jd� Rd� � AT OP�G� ��� so for any x� y


xd � yJd � �xy� � d

Let c � ��d� so cd � �� Then Jd � LcRd by Lemma ���� So� if h� k � H


�hk�Jd � �c�hk�� � d � ��ch� k� � d � �ch�d � kJd � hJd � kJd

Hence� Jd restricted to H is an isomorphism�

The next lemma is used only for the proof of the theorem which follows
it�

Lemma ���� If cd � �	 then the following equations hold� x denotes any
element of G�

R��
c� � RdL

�
dLcRdLc ���

Lc�R
��
c� � RdLcLdLcRdLc ���

LcR
��
cx L

��
c � R��

x Rd ���
RdR�cx�dR

��
d � Rx ���

LdLcRxL
��
c L��

d � R�xc�d ���
RdLcLxRc � Lxc ���
RdLcRc� � RcLc ���

RdLdR
��
xd L

��
d R��

d � R��
x Rc ���

LdLcRxRcLc � LcRxc ���
RcRdLdLc � I ����
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Proof	 For ���� we apply Lemma ����� and then Lemma ��� three times
to get R��

c� � L��
c R��

c LcR
��
c � RdLdR

��
d R��

c LcR
��
c � RdL

�
dLcLcR

��
c �

RdL
�
dLcRdLc� For ���� 	rst note by Lemma ��� that R��

d LcR
��
c � Lc
 that

is� �c�x�d���c � cx� Hence� by Lemma ������ L��
c Lx�dLc � Lcx� Now� since

��d � c� Lemma ����� implies RdLxL
��
d R��

d � L��
c Lx�dLc� so RdLxL

��
d R��

d �
Lcx� Setting x � c� we have RdLcL

��
d R��

d � Lc� � and ��� now follows by
using the value of R��

c� from ���� Equation ��� is immediate from Lemma
������ since cn� � d� For ���� apply Lemma ����� to get RdRdn�xd�R

��
d � Rx�

but then dn�xd� � �cx�d because RdL
��
d � LcRd by Lemma ���� For ����

Lemma ��� implies RcRdLdLc � I� so c�d��xc�d�� � x� Thus� by ������
L��
c L��

d R�xc�dLdLc � L��
c R��

d Rd��xc�d�Lc � R��
cd Rc�d��xc�d�� � Rx� For ���� ap�

ply ����� and then ��� to get Lxc � LcR
��
c LxRc � RdLcLxRc� For ���� apply

����� and then ��� to get RdLcRc� � RdLcRcL
��
c RcLc � RdR

��
d RcLc � RcLc�

For ���� apply ����� and ����� to get RdLdR
��
xdL

��
d R��

d � RdR
��
dn�xd�Rdn�R

��
d �

R��
x R��d� To prove ���� we rewrite it as c�� �c�dz��x�c� � �cz��xc�� which

says the same as Lc�dz�RcLc � RcLcz� By ����� and ������ R��
c Lc�dz�RcLc �

L��
c L�c�dz��cLc � L�zLdLcRcLcR

��
c �� But by Lemma ���� LdLcRcLcR

��
c �

LdLcRcRdLc � Lc� so R��
c Lc�dz�RcLc � Lcz � Finally� equation ���� is imme�

diate from Lemma ����

The following theorem is important because it gives us a supply of ele�
ments of the nucleus�

Theorem ���� If cd � � then dc is in the nucleus�

Proof	 Fix c� d with cd � �� By Lemma ������ R��
y � R��

x R��
�xy��xRx� Below�

we shall take the right side of this equation with x � c�� and apply Lemma
���� to derive R��

y � R��
�dc�yRdc� This will imply that R�dc�y � RdcRy for every

y� which implies that dc is in the �middle� nucleus� In the following chain
of equalities� the comments on the right indicate the equation numbers from
Lemma ���� used to derive the equality with the next line
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R��
y � R��

c� � �R��c�y��c����� �Rc� � R��
c� � �R�yLc�R

��
c� ���� �Rc� � ���� �

RdL
�
dLcRdLc � �R�yRdLcLdLcRdLc���� �Rc� � ���

RdL
�
dLcRd � �R�yRdLcLdLcRd���� �RdLcRc� � ���

RdL
�
dLc � �R�yRdLcLd���� �R�

dLcRc� � ���
RdLd � �R�yRdLcLdRcRd��

�� � LdLcR
�
dLcRc� � ���� �

RdLd � �R���dc�y�d���� � LdLcRdRcLc � ���
�R��dc�y���� �RcRdLdLdLcRdRcLc � ���
R��

�dc�y �RcRdLdLcRdc � ����

R��
�dc�y �Rdc

Of course� it is possible that cd � dc � � �that is� ���c� � �cn���� in which
case Theorem ���� tells us nothing� but in that case we shall see �Lemma ����
below� that the subloop generated by c is a group� First� some preliminaries


Lemma ���� If cd � dc � �	 then�


� L��
c RdLc � R��

c and R��
c LdRc � L��

c �

�� Ec � RcRd � �LcLd��� � AUT �G� ��	 and it commutes with each of
Lc	 Ld	 Rc	 and Rd�

�� L��
c RcLc � �Rc��Rd and R��

c LcRc � �Lc��Ld�

�� Rc� � �Rc�
�Rd and Lc� � �Lc�

�Ld�

�� Jc � LdRc � J��c � RdLc � Jd � LcRd � J��d � RcLd�

Proof	 ���� ���� and ��� follow from Lemmas ��� and Lemma ���� To prove
���
 ��� implies �Rc��Rd � L��

c L��
d Rc
 then use L��

d Rc � RcLc� which follows
from ���� Then ��� follows from L��

c RcLc � R��
c Rc� �by Lemma ������� and

����

The commutation relations in this lemma give a pretty good description
of the group generated by Rc� Rd� Lc� Ld in the case that cd � dc � �� First�
some general notation

De�nition ���� If X 
 G	 then hXi is the subloop of G generated by X�
If x� y � G	 then hxi � hfxgi and hx� yi � hfx� ygi�
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De�nition ���� If X 
 G	 then� R�X� is the subgroup of RII�G� �� gen�
erated by all the Ra for a � X� L�X� is the subgroup of LII�G� �� generated
by all the La for a � X� I�X� is the subgroup of II�G� �� generated by both
the La and Ra for all a � X�

Lemma ���� If H is a subloop of G	 then both R�H� and L�H� are normal
subgroups of I�H��

Proof	 By Lemma ������

Lemma ���
 If X 
 G	 then II�hXi� � II�X��

Proof	 It is enough to show that Rxy� Rxny� Ry�x� Lxy� Lxny� Ly�x� are always
in the subgroup generated by Rx� Ry� Lx� Ly� For Rxy� just apply Lemma
������ For Rxny� use ����� again to get that L��

x RxnyLx � R��
x Ry� Then� for

Ry�x� use ������ which implies R��
x Ry�xRx � Rxny�

We now describe II�hci� � II�fcg� in the case that ��c � cn�� Although
this group is generated by Lc and Rc� it is simpler to express the group in
terms of Lc� Rc� Ec� since Ec is in the center�

Lemma ���� If cd � dc � �	 then the following hold� r� s� t� i� j� k� n are
arbitrary integers�


� Ec is in the center of II�hci��

�� R�j
c Lt

cR
j
c � E�jt

c Lt
c�

�� Er
cR

s
cL

t
c � E

i
cR

j
cL

k
c � Er�i�jt

c Rs�j
c Lt�k

c �

�� �Er
cR

s
cL

t
c�
�� � E�st�r

c R�s
c L�t

c �

�� Every element of II�hci� is of the form Er
cR

s
cL

t
c for some r� s� t�

�� II�hci� is abelian i� Ec � I i� RcLc � LcRc�

�� Jn
c � E

�n���n��
c Rn

cL
�n
c �

�� Rd � EcR
��
c � Ld � E��

c L��
c �



� SOME USEFUL EQUATIONS ��

Proof	 Items ��� and ��� are by Lemma ������� For item ��� in the case
j � t � �� apply ������ and ������� The rest follows by an easy computation�

We next describe Ry and Ly for y � hci in the case that ��c � cn��

De�nition ���� For any integer n	 let xn � �Rn
x�

So� xn�� � xn � x for all n� positive and negative� It turns out� by the
next lemma� that if ��c � cn� then all possible associations of cn are equal�

Lemma ���
 If ��c � cn�	 then the following hold� m�n are arbitrary inte�
gers�


� Rcn � E
�n���n��
c Rn

c � Lcn � E
��n���n��
c Ln

c �

�� cm � cn � cm�n �

�� Ecn � En�

c �

�� Jcn � E
�n���n��
c Jn

c �

Proof	 By Lemma ������ Lcn�� � LcR
��
c LcnRc� so Lcn � RcL

��
c Lcn��R

��
c �

Using this� the formula for Lcn may be veri	ed by induction for n � � �going
up�� and for n � � �going down�� using the commutation relations in Lemma
����� Also by ������ Rcn�� � RcnL

��
cn RcLcn � from which the formula for Rcn

may be veri	ed� using the formula for Lcn � This proves ���
Now� ��� is immediate from the de	nition of cn� since �Ec � � � By ����

c generates a cyclic subgroup� so cnn� � c�n� Items ��� and ��� are now
immediate from the de	nitions of E and J � using Lemma ���� and ����

Lemma ���� For any c � G	 the following are equivalent�


� hci is a group �

�� ��c � cn��

�� c � c� � c� � c�
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Proof	 ���	 ��� is trivial� and ���	 ��� is immediate from Lemma ����� To
prove ���	 ���� assume ��� and cd � �
 we must prove dc � �� By ��� and
RCC of De	nition ���


c � �c�d� � �cc���c � �c�c��c � c�

so c�d � c� Using this and LCC�

c � �cc�d � �cd��dn�cd�� � dn�

so dc � ��

It now follows immediately by Theorem ���� that


Theorem ���� If N�G� �� � f�g	 then hxi is a group for every x�

If hci is a group� then either hci �� Zor hci ��Zm for some positive integer
m �where� of course� Zand Zm denote the additive groups of integers and
integers modulo m�� In the Zm case


Lemma ���� If hci ��Zm	 then


� Em
c � I

�� R�m
c � L�m

c � J�m
c � I�

�� If m is odd	 then Rm
c � Lm

c � Jm
c � I�

�� If m is even	 then Rm
c � Lm

c � Jm
c � E

m��
c �

Proof	 Applying Lemma ������� Rc � Rcm�� � E
�m���m��
c Rm��

c � so

Em�m�����
c Rm

c � I ���

Again by �������
I � Rcm � E�m���m��

c Rm
c ���

Dividing ��� by ��� yields Em
c � I� Then� squaring ��� or ��� yields R�m

c � I�
Likewise� L�m

c � I and J�m
c � I �squaring Lemma ������ with n � m��

If m is odd� then m j �m � ��m��� so ��� yields Rm
c � I� while if m is

even� then �m� ��m�� � m�� �mod m�� so E
�m��
c � R�m

c � Likewise for Lc

and Jc�

Note that Example ���� provides an example �where c is the element
�� where m � � and Rc and Lc have order �� not �� We do have enough
information about elements of order � to prove the following�
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Lemma ���� If a� � b� � �ab�� � �	 then ab � ba�

Proof	 Using LCC of De	nition ��� with x � y � ab and z � b� we have
b � ��ab�b� � �bn��ab�b��� Then� since L�

b � R�
b 


b � �b�ba�� � �ba� ���

Using RCC of De	nition ��� with x � y � a and z � b� we have b �
��ba��b� � �ba�� Then� since LbR

��
b � RbLb �by Lemma �������


b � �b�ab�� � �ba� ���

By ���� ���� and cancelling� ba � ab�

Note that even in groups� no two of a� � � � b� � � � �ab�� � � is su�cient
to derive ab � ba�

Corollary ���� If x� � � for all x	 then G is a commutative group�

Proof	 Since the center is contained in the nucleus �Lemma ������ every
commutative CC�loop is a group�

Actually� it is well�known that every commutative G�loop is a group� and
it is also easy to check that the equation x� � � implies commutativity in
G�loops�

Now� the last few results emphasized the situation where hxi is a group�
If in fact every hx� yi is a group �that is� the loop is diassociative�� then
the loop is an extra loop� and we may appeal to some results already in the
literature�

De�nition ���� G is �exible i� RxLx � LxRx for every x�

This is usually written as the equation� x�yx� � �xy�x� A �exible CC�
loop is an extra loop ����� and hence a Moufang loop ������� By Moufang�s
Theorem ���� every Moufang loop is diassociative� Hence


Proposition ���
 G satis�es the �exible law i� G it is diassociative�

In an extra loop� the square of every element is in the nucleus ���
 in
particular� the nucleus is non�trivial �since if x� � � for all x� then G must
be a group by Corollary ������ We do not know if a CC�loop must have a
non�trivial nucleus�
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Lemma ���� For any c	 the following are equivalent�


� RcLc � LcRc�

�� Ec � I�

�� hci is a nuclear subloop of G�

Proof	 ���	 ���
 Let d � cn�� so cd � �� Then c�dc� � �cd�c � c� so dc � ��
Then� applying Lemma ������� RdLc � LcR

��
c � R��

c Lc� so Rd � R��
c �

whence Ec � RcRd � I�
���	 ���
 Let d � cn�� so cd � � and Ec � RcRd� Then d � dEc � �dc�d�

so dc � �� Hence hci is a group� By Lemma ������� Rcn � Rn
c for each n�

which implies that hci is nuclear�
���	 ���
 Since hci is a group� let d � c��� By �nuclear�� I � Rcd �

RcRd� so applying Lemma ������� RcLc � Lc�Rc�
�Rd � LcRc�

Note that ���c� � �cn�� is not an equivalent� The CC�loop of Example
���� satis	es ���x� � �xn�� for every x but it is not an extra loop �since it is
not diassociative��

Finally� the next two lemmas will be used to prove that certain elements
which �should� be distinct �judging by group theory� really are distinct in
CC�loops�

Lemma ���� If A and C are subloops of G	 with A�C � f�g and C ��Zp

for some prime p	 then the elements ac for a � A and c � C are all distinct�

Proof	 Suppose we have ac � a�c�� with a� a� � A� and c� c� � C� We need to
prove that a � a� and c � c�� This is clear �using A �C � f�g� if any one of
a� a�� c� c� is �� so assume none of them is� Then c� � cn for some n� and the
case n � � is trivial� so assume � � n � p� and we derive a contradiction�

By Lemma ������ LxR
��
xy � R��

y LxR
��
x � so �xz���xy� � �x�z�y���x� So�

�xci���xcj� � �xci�j��x � �xci�k���xcj�k�� for any integers i� j� k� Since
ac � a�cn� we have a � �a�cn��c � �a��c�cn �applying Lemma ����� so a�a� �
��a��c�cn����a��c�c�� � ��a��c�cn�k����a��c�c��k� for any k� Using this� we
show� by induction on r � �� that ��a��c�c��r�n���� � A� Now� 	x r such that
r � �n � �� � �� �mod p�� and we have a��c � A� so c � A� a contradiction�
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Lemma ���
 Suppose that hci �� Zp for some prime p	 and aEi
cR

�
c �

aEj
cR

m
c � Then � � m �mod p��

Proof	 It is su�cient to derive a contradiction from aEi
cR

�
c � a along with

� � � � p� If p � �� this is easy �using Ec � R�
c and E�

c � R�
c � I�� so

assume p 
 ��
If i � �� then aR�

c � a plus Rp
c � I yields ac � aRc � a� a contradiction�

so assume � � i � p�
For any n with � � n � p� 	x b � hci such that bn � c� Applying Lemma

����� Rc � E
�n���n��
b Rn

b and Ec � En�

b � so

a � aEi
cR

�
c � aE

��in���n���n���
b R�n

b �

If �in Zp� �i � � �� �� we may choose n � ����i � ��� so that aR�n
b � a�

yielding a contradiction as in the i � � case�
If �inZp� �i� � � �� we have aEin

b R
��in
b � a� and we may choose n � ��i�

yielding aEbR
��
b � a� or �ab���b � �ab�b� Cancelling yields b�� � b� a

contradiction� since p 
 ��

� Structure Theorems

Throughout this section� �G� �� always denotes a conjugacy closed loop� We
use the general isotopy results in Section �� together with the equations in
Section � to analyze the structure of conjugacy closed loops�

We begin with some conditions which imply that the size of a subloop
divides the size of the loop� Bruck ���� p� ��� discusses such �Lagrange
theorems� for loops in general�

De�nition ��� Let H be a subloop of G� H is a characteristic subloop i�
every automorphism of G takes H into H� H is an isolated subloop i� H is
nuclear and HJx � H for all x � G�

In groups� �characteristic� has its usual meaning� while �isolated� is
equivalent to �normal�� We use �isolated� here because �normal� already
has a somewhat di�erent meaning ��� in loops� Note that the nucleus is both
characteristic and isolated�

Lemma ��� If H is either a nuclear or a characteristic subloop of G	 then
any two right cosets	 Ha and Hb	 are either equal or disjoint�
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Proof	 It is su�cient to prove that Ha � Hd for all d � Ha� since then�
if Ha � Hb contains any element� d� we have Ha � Hd � Hb� So� 	x
d � ha � Ha�

To prove H�ha� 
 Ha� 	x k�ha� � H�ha�� Let x � �k�ha���a� so
k�ha� � xa
 we need to show that x � H� If H is nuclear� then x � kh �
H� If H is characteristic� then note that x�h � kRhaR

��
a R��

h � H� since
RhaR

��
a R��

h � AUT �G� �� by Lemma ����� Hence� x � H�
To prove Ha 
 H�ha�� 	x ka � Ha� Let x � �ka���ha�� so ka � x�ha�


we need to show that x � H� If H is nuclear� then x � kh�� � H� If
H is characteristic� note that x � ���k�h�h�a���ha� � H since RhRaR

��
ha �

AUT �G� ���

Note that the conclusion to Lemma ��� fails for the CC�loop in Example
����� Even in cases where the cosets fail to be disjoint� one can sometime
prove a Lagrange theorem by analyzing the orbits under right multiplication�
using the following lemma and its corollary


Lemma ��� If H is a commutative subgroup of G and jHj � pn	 where p is
a prime and n is �nite	 then jR�H�j � pr and jL�H�j � p� for some �nite
r� � � n�

Proof	 R�H� and L�H� are commutative groups �by Lemma ����� and are
	nitely generated �by de	nition�� and the order of each of their generators is
a power of p �by Lemma ������ Thus� jR�H�j and jL�H�j are powers of p�
The Ra� for a � H� are all distinct� which implies that r � n
 likewise� � � n�

Corollary ��� If H is a commutative subgroup of G and jHj � pn	 where
p is a prime and n is �nite	 then for each b � G	 the sizes of the sets
fb� 
 � � R�H�g and fb� 
 � � L�H�g are both power of p and at least pn�

Proof	 They are powers of p by Lemma ���� and they are at least pn because
the elements bRa � ba� for a � H� are all distinct�

Theorem ��� If G is �nite and H is a subloop of G	 then jGj is divisible
by jHj if any of the following hold�


� H is a group and the Sylow p�subgroups of H are commutative for each
prime p�
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�� H is a nuclear subloop of G�

�� H is a characteristic subloop of G�

Proof	 For ���� it is enough to prove this when H is an abelian p�group� in
which case� the result follows from Corollary ���� since the size of each orbit
under R�H� is divisible by jHj� For ��� and ���� the result is immediate by
Lemma ���

A special case of ��� or of ��� is that jGj is divisible by the size of the
nucleus� but this fact is true in all loops ����

Corollary ��
 If � � jGj � �	 then G contains an isomorphic copy of Zp

for some prime factor p of G�

Proof	 By Theorem ���� either the nucleus is non�trivial or every hxi is a
group�

Corollary ��� If jGj � p	 where p is prime	 then G ��Zp�

Of course� by Wilson ����� this corollary is true of all G�loops�
As with normal subgroups of groups�

Lemma ��� If H is an isolated subloop of G	 then aH � Ha for all a � G�

If a subloop H is both characteristic and isolated� then one can form a
quotient G�H as follows� In general� for S� T 
 H� de	ne their set product �
S � T � fst 
 s � S and t � Tg�

Lemma ��
 Suppose H is a characteristic and isolated subloop of G� Then
�Ha� � �Hb� � H�ab� for every a� b�

Proof	 Since H is a characteristic subloop� the automorphism RxRyR
��
xy

takes H to H� so� as in the proof of Lemma ���� �Hx� � y � H�xy� for any
x� y� Likewise� x � �yH� � �xy�H� Now� H�ab� � �Ha�b 
 �Ha� � �Hb��
To prove equality� 	x h� k � H� and we prove �ha� � �kb� � H�ab�� Since
�Ha���kb� � H�a�kb��� 	x h� � H such that �ha���kb� � h���a��kb��� and then�
by Lemma ���� 	x k� � H such that kb � bk�� Then �ha� ��kb� � h� ��a ��bk����
Now� a�bk�� � a�bH� � H�ab�� so 	x k�� � H so that a�bk�� � k���ab�� Then�
since H is nuclear� �ha� � �kb� � �h�k��� � �ab� � H�ab�
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De�nition ���� If H is a characteristic and isolated subloop of G	 then
G�H � fHa 
 a � Gg� the product operation on G�H is set product�

Lemma ���� If H is a characteristic and isolated subloop of G	 then G�H
is a CC�loop and the map x �� Hx is a homomorphism from G onto G�H
with kernel H�

Lemma ���� will produce some examples of characteristic and isolated
subloops�

Lemma ���� Suppose that hhi �� Zp	 p is prime	 and jGj is �nite� Then
there is a subloop K 
 G such that jKj � jGj �mod p�� and hhi is a nuclear
subloop of K�

Proof	 Let H � hhi� and let K � fx � G 
 xEh � xg� Then H 
 K 
 G�
H is a nuclear subloop of K by Lemma ����� For any b � G� let Ob � fb� 

� � R�H�g be the orbit of b under R�H�� Since Eh � R�H� and R�H� is
commutative �Lemma ����� each Ob is either contained in or disjoint from K�
Furthermore� by Corollary ���� jObj is always a power of p� Now� suppose
b �� K� so bEh �� b� Then Ob contains b� bh� �bh�h� � � � � bRp��

h � plus bEh� all of
which are distinct by Lemma ����� so p� j jObj� Hence� jKj � jGj �mod p���

Now� we already know that p divides jGj
 this lemma is trivial when
jGj � p �mod p��� since we could just take K � hhi� When jGj � p�� then
K must equal G� We shall look in detail at the situation jGj � p� later�

Lemma ���� If hhi �� Zp	 where p is prime and p� 
 jGj	 then hhi is a
characteristic and isolated subgroup of G�

Proof	 It is nuclear by Lemma ����� To prove it is isolated� 	x any x � G�
and let K � hhiJx
 we must show that K � hhi� Now K �� hhi �� Zp by
Lemma ���� By Lemma ����� if K � hhi � f�g� then jGj � p�
 hence� 	x
a �� � in K � hhi� But then K � hai � hhi� The same argument shows that
hhi is characteristic�

The following theorem yields a weak version of the fact that the order of
a 	nite group of exponent p is a power of p


Theorem ���� Suppose that jGj � pm	 where p is prime and m� � is not
divisible by p	 and suppose that hai �� Zp for every a �� �� Then G contains
an isomorphic copy of Zp�Zp	 and jGj is divisible by p��
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Proof	 That jGj is divisible by p� is immediate by Theorem ���� once we
produce the Zp�Zp� To do that� 	rst iterate Lemma ���� a 	nite number
of times to produce a subloop K 
 G such that jKj � jGj �mod p�� and hxi
is a nuclear subloop of K for every x � K� Then� Ex � I for every x � K�
so K is �exible� and hence diassociative �by Proposition ������ jKj 
 p
because m � � is not divisible by p� Fix a� b � K with b �� � and a �� hbi�
Then H � ha� bi is a group of exponent p� and has size greater than p� so it
contains a copy of Zp�Zp�

What are the non�group CC�loops of order seven or less By Wilson ����
�or Corollary ����� these cannot have prime order� and it is easy to see by
inspection that all loops of order four are commutative� and hence groups
if they are CC� so that leaves order six� In that case� we have the CC�loop
from Table �� and that is the only one� as is true in general for orders �q�
where q is an odd prime� by the following theorem


Theorem ���� If q is an odd prime	 then there are exactly three CC�loops
of order �q	 exactly two of which are groups�

Proof	 Assume jGj � �q� Let N � N�G� ��� Then jN j divides �q
First note that jN j cannot be �
 If jN j � �� then N is also the center

by Corollary ����� Say N � f�� cg� Fix a di�erent from � and c� Note
that hai cannot be a group� since if hai �� Zn� then ha� ci �� Zn �Z�� By
Theorem ���� �n must divide �q� which means that G ��Zq�Z�� so jN j � �q�
a contradiction� Let b � an�� so ab � �� Then ba �� � �by Lemma ������
but ba � N �by Theorem ������ so ba � c� Let Ea � RaRb � AUT �G� ��
�see Lemma ����
 note that bEa � cb� Since Ea is an automorphism and
c is in the center� bkEa � �bEa�k � bkck for each k �we are de	ning bk by
De	nition ������ Now G�N is a CC�loop of size q and hence isomorphic to
Zq� so bq � N � Since q is odd� bqEa � bqc� which is impossible� since Ea is
the identity on N �

So� jN j is either �� q� or �q�
Next� note that G has some subloop isomorphic to Zq
 This is clear if

jN j is q or �q� so suppose that jN j � � �which will later turn out to be
impossible�� Then� by Theorems ���� and ���� each hxi is a group of some
order dividing �q� and we cannot have that every x has order � �or G would
be a boolean group �by Corollary ����� and hence have size a power of ��� so
hxi ��Zq for some x�
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Now� 	x a subloop H isomorphic to Zq� Then H is a a characteristic and
isolated subgroup of G �by Lemma ������ and G�H �� Z� �by Lemma ������
There are now three cases


Case 
 
 x� � � for all x �� H� Then� for all x �� H
 R�
x � L�

x � J�
x � Ex�

and Jx � H � AUT �H� �by Lemmas ���� and ����� Fix some c �� H and
some h � H with h �� �� Then the general element of G is of the form hnci�
with n �Zq and i �Z�� Now 	x r �Zq such that hJc � hr� so hc � chr�

Now� consider an arbitrary element x � hnc �� H� Then hx � xhs for
some s� But then hx � hn��c � chnr�r and xhs � �hnc�hs � �chnr�hs �
chnr�s� so r � s� Thus� for all x �� H� we have Jx � Jc� and hence hEx � hr

�

�
To compute r
 hr

�

� hEc � �hc�c � �hc��chrh�r� � �hc���hc�h�r� �
�h�r�Ehc � h�r� � so r � ��� Hence� for all x �� H
 R�

x � L�
x � J�

x � Ex � I�
since Ex is the identity on hfxg � Hi � G� Hence� Ex � I for all x � G�
since H is a nuclear subgroup�

Now we compute
 �hmc��hnc� � �hmc��ch�n� � �hmc���ch�m�hm�n� �
�hmc���hmc�hm�n� � �hm�n�Ehmc � hm�n� Similarly


hm � hn � hm�n �hmc� � hn � hm�nc
hm � �hnc� � hm�nc �hmc� � �hnc� � hm�n

which we recognize as the usual description of the non�abelian group of order
�q as a semidirect product of Zq by Z��

Case � 
 hxi is a group for all x �� H� but not all such x have order �� Fix
c �� H with c� �� �� Then the only possibility is that c has order �q� so that
hci � G ��Z�q�

Case � 
 Neither Case � nor Case � holds� Then 	x c such that hci is
not a group� Then c �� H but c� � H
 however� c� �� �� Let h � c�
 then
H � hhi� Let d � cn�� so that cd � �� Now dc �� � �otherwise� hci would be
a group by Lemma ������ but dc � H �since G�H �� Z��� and dc � N �by
Theorem ������ Hence� N � H�

As in Case �� the general element of G is of the form hnci� with n � Zq

and i � f�� �g� Again� Jc � H � AUT �H�� but now we apply Corollary ���
to get �Jc�� � H � �Jc�� � H � I � H� Now� Jc � H cannot be the identity
�since cn�c� � c� � c� would imply c� � c � c � c�� making hci a group by Lemma
������ Thus� the only possibility is that hJc � h��� so that hnc � ch�n� Now�
using H � N and c� � h� we easily compute


hm � hn � hm�n �hmc� � hn � hm�nc
hm � �hnc� � hm�nc �hmc� � �hnc� � h��m�n
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It is also easy to verify that these equations indeed yield a CC�loop� which
is then the only non�group CC�loop of order �q�

Regarding Case �
 Note that we have x� � h for each x �� hhi� as might
be expected from examining Table �� To verify that this really de	nes a
CC�loop� one may plug the equations directly into LCC and RCC� but it
is simpler to just verify that �G 
 N � � �� and then quote Theorem ��� of
Goodaire and Robinson ����� which says that this implies the loop is CC�
The actual construction of this loop is due to Wilson �����

Next� consider CC�loops of order pq� where p � q are odd primes� with
q � � not divisible by p� In the case p � q� a non�group CC�loop of order p�

was described in ����� In the case p � q� we shall show there is none at all

since ���� already proved that any such loop must have a trivial nucleus� it
is not surprising that we begin by proving that the nucleus is non�trivial�

Lemma ���
 Suppose that jGj � pq	 where p � q are odd primes and q � �
is not divisible by p� If G is not a group	 then N�G� �� � Z�G� ��	 and is
isomorphic to either Zp or Zq�

Proof	 Consider the three possibilities for N � N�G� ���
If N ��Zq� then G�N is a CC�loop of size p� so G�N ��Zp� Then� in view

of Corollary ���� every Jx de	nes an automorphism of N of order p� But�
since p does not divide q� �� the only such automorphism is the identity� so
every Jx is the identity on N � which means that N is contained in the center�
The same argument works if N ��Zp�

Finally� suppose N � f�g� Then� by Theorems ���� and ���� each hxi is a
group of order either p or q� Furthermore� the orders of these hxi cannot all
be the same� or Theorem ���� would yield a contradiction
 hence p � q and
some hxi have order p and some hxi have order q� Now� 	x a with hai ��Zq�

Then this hai is characteristic and isolated by Lemma ����� In particular�
hai is nuclear� so by Lemma ���� each Jx de	nes an automorphism of hai�
Furthermore� if x �� hai� then xp � �� so Jp

x � I by Lemma ������� so Jx � hai
is the identity� Thus� a commutes with all elements of G� so that a � N�G�
by Lemma ����� a contradiction �

The proof of the following theorem is patterned after Goodaire and Robin�
son �������� from which ��� is immediate� given Lemma �����

Theorem ���� Suppose that p � q are odd primes and q� � is not divisible
by p� Then
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� p � q� The only CC�loop of order pq is Zpq�

�� p � q� There are exactly three CC�loops of order p� besides Zp� and
Zp�Zp�

Proof	 Assume thatG has order pq and is not a group� Do not assume p � q�
but assume that q� � is not divisible by p� and p� � is not divisible by q� so
that by Lemma ����� we may assume that N � N�G� �� � Z�G� �� �� Zq� We
shall now derive a multiplication table in the case p � q� and a contradiction
in the case p �� q�

Recall that xk denotes �Rk
x� so x

k �x � xk��� Note that G�N is a CC�loop
of order p� and hence a group� so that for any x� i� j� there is a y � N � Z
such that xi � xj � xi�jy � yxi�j�

For now� 	x any b �� N � Then b � b� �� b�� since otherwise hbi would
be a group �by Lemma ������ which would imply that G �� Zp �Zq� Let
c � �b � b���b�� so that b � b� � c � b� � b� � c� Note that c � N and c �� �� so
that N � Z � hci�

For any natural numbers r� s� de	ne ��r� s� in the 	eldZq so that br � bs �
br�s � c��r�s�� Note that ���� s� � ��r� �� � ��r� �� � � for any r� s� and our
choice of c implies ���� �� � ��

For any s� let �s � Rs
bR

��
bs � AUT �G� �� �applying Corollary ����� Note

that c�s � c� De	ne ��s� �Zq so that b�s � bs���bs � b � c�	�s�� Since �s is
an automorphism� br�s � bs�r�bs � brc�r	�s�� That is� we must have �in Zq��
��r� s� � r � ��s�� Note that ���� � ���� � � and ���� � ��

Since bp � N � we have bp � bp�� � bpc�p� which is impossible unless
p � q� establishing ��� of the theorem�

We now proceed to examine the possibilities in order q�� Fix � �Zq such
that bq � c�� Every element of G is of the form brci for some r� i� and this
representation is unique if we take � � r � q and i �Zq� We have a product
on these elements de	ned by


brci � bscj �

�
br�s � ci�j���r�s� if r � s � q
br�s�q � ci�j���r�s��� if r � s � q

Furthermore� it is easy to see that these equations de	ne a loop of size q�

�based on the formal symbols brci�� It remains to investigate what values of
� and the ��r� s� � r � ��s� really lead to a CC�loop� and what the possible
isomorphism types are�
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To verify that the loop is conjugacy�closed� we simply insert three loop
elements into the equations LCC and RCC� A straightforward computation
shows that LCC is automatically satis	ed� and RCC reduces to


s ��r� � t ��r � s� � t ��r� � s ��r � t� � t ��s�� s ��t� �R�

Setting r � t � � yields ����s� � s���s�� so ��s� � s�s����� �mod q�� and
hence ��r� t� � rt�t � ���� �mod q�� It is easy to check that this expression
satis	es �R�� So� we have one CC�loop for every choice of � �Zq�

Now� the choice of b �� N determined c � N and then �� Let us now
see what other values of � could arise from a di�erent choice� !b �� N � This
!b de	nes !c so that !b � !b� � !b� � !c� and then !� � Zq such that !bq � !c	�� Since

the value of !� only depends on which coset of the nucleus !b lies in� we may
as well assume that !b � bn� where � � n � q� Then !b � !b� � b�nc��n�n����n��n�

and !b� � !b� � !b � b�nc��n�n�����n�n�� so !c � c��n��n�����n�n� � cn
�

� Also� !bq �
�bn�q � bnqc
 � cn�c
 � where � � ��n� n� � ���n� n� � � � � ���q � ��n� n� �
�q�q � ����� � n��n� � � �mod q�� Thus� !� � ��n�� so that the various
possible values of � obtainable from a given loop are all in the ratio of a
perfect square in the 	eld Zq� It follows that up to isomorphism� the three
possibilities for � are �� � �equivalently� any non�zero square�� and any non�
square�

If q is an odd prime and � �Zq� let C�q� �� denote the CC�loop of order
q� constructed as above� For any loop� �G� ��� we may form the mirror� �G� 
��
by letting x 
 y � y �x� A straightforward computation shows that for q 
 ��
the mirror of C�q� �� is isomorphic to C�q����� whereas for q � �� the mirror
of C�q� �� is isomorphic to C�q���� ���

� G�loops

It is reasonable to ask to what extent the results of this paper generalize to
G�loops� The results of this section put some limits on this� In Section ��
we collected a number of results true in all CC�loops� These were mainly
equations� or else implications between equations� such as

�xyz�xy � yx 	 x�yz� � y�xz�� ���

from Lemma ���� Here� we show that the only facts of this sort true in all
G�loops are true in all loops�



� G�LOOPS ��

An equation is an expression of the form � � � � where � and � are terms
composed of variables� �� and the functions n� �� �� A universal sentence is a
logical sentence of the form �x� � � � xn	� where 	 is an equation or a Boolean
combination of equations� Thus� ��� above is a universal sentence�

Theorem ��� If � is a universal sentence true in all G�loops	 then � is true
in all loops�

Bruck ��� �p� ��� asked if one could 	nd �necessary and su�cient condi�
tions upon the loop G in order that� G be a G�loop� By Theorem ���� such
conditions cannot be just universal statements� We do not know whether
such conditions can be 	rst�order� Of course� there are 	rst�order logical
statements true in all G�loops which are not true in all loops� An example
of such a statement is

�xy�xy � yx� 	 �xyz�x�yz� � y�xz�� ���

But� by Theorem ���� for a general G�loop� one cannot pin down by a formula
exactly which elements need to commute in order to conclude x�yz� � y�xz��

In proving Theorem ���� note 	rst that by the following lemma� it is
su�cient to consider sentences about � and �


Lemma ��� If � is a universal sentence	 then there is a universal sentence
�� such that �� does not use n or �	 and such that �� �	 ��� is true in all
loops�

Proof	 Replace all occurrences of n and �� using the observation that in
loops� 	�x�y� is equivalent to �z��zy � x� 	 	�z���

Let us call an incomplete binary system a pair �G� 
�� where G is a non�
empty set� 
 
 dom�
� � G is a function� and dom�
� 
 G � G� We use
�x 
 y � z� to abbreviate ��x� y� � dom�
� � x 
 y � z�� This incomplete
binary system is an incomplete loop i� it contains an element � which makes
the loop properties hold as far as 
 is de	ned
 more formally


�x � G�x 
 � � � 
 x � x�
�xyz � G�x 
 y � x 
 z 	 y � z�
�xyz � G�y 
 x � z 
 x 	 y � z�

Note that if �G� 
� is a �nite incomplete loop and dom�
� is all of G � G�
then �G� 
� is a loop� By a theorem of Evans� every 	nite incomplete loop
may be extended to a loop on a possibly larger 	nite set




� G�LOOPS ��

Lemma ��� �Evans �
�� If �G� 
� is an incomplete loop	 then there is a
loop �H� �� such that G 
 H	 jHj � � � jGj	 and � agrees with 
 wherever 

is de�ned�

Now� any universal sentence which fails in some loop fails because of a
	nite number of elements � that is� because of some 	nite incomplete subloop�
This incomplete subloop may then be extended to a 	nite loop� where the
sentence still fails� Hence�

Lemma ��� If � is a universal sentence true in all �nite loops	 then � is
true in all loops�

De�nition ��� A loop �G� �� is saturated i�

� G is countably in�nite�

� Every �nitely generated subloop of G is �nite�

� Whenever �K� �� is a �nite loop	 H is a subloop of K	 and i is an
injective homomorphism from H into G	 there is an extension of i to
an injective homomorphism from K into G�

The notion of �saturated� is borrowed from model theory ���� but it has
a somewhat di�erent meaning there� Note in particular� with H � f�g� that
a saturated loop contains isomorphic copies of all 	nite loops� So�

Lemma ��
 If the loop �G� �� is saturated	 then every universal sentence true
in �G� �� is true in all loops�

Furthermore� the saturated loop is unique�

Lemma ��� There is exactly one saturated loop	 up to isomorphism�

Lemma ��� The saturated loop is a G�loop�

Proof	 It is su�cient to prove that every loop isotope of a saturated loop is
saturated�

Proof of Theorem ���	 If � is true in all G�loops� then it is true in the
saturated loop� and hence in all loops�
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� Concluding Remarks

We feel that we have demonstrated that CC�loops have a non�trivial struc�
ture� but we have not settled all possible questions� Following Theorems
���� and ����� one might try to characterize all CC�loops of sizes pq or p�

�for primes p� q�� A more general question is whether the nucleus must be
non�trivial� In fact� as pointed out in ����� in all known examples the loop
modulo the nucleus is a commutative group�

In another direction� one might try to develop a structure theory of G�
loops� It is still unknown whether there is a non�group G�loop of order ���
Perhaps one might extend the results of Section � to show that �there is no
structure theory�� but it is not clear exactly what such a statement would
mean�

We do not know whether it pays to study the consequences of LCC
and RCC separately� Related to this� one might study LCC and RCC
quasigroups� Note that in a quasigroup� RCC implies that there is a left
identity �apply RCC with zy � z to show that yx � x for all x�� so that
every CC quasigroup is a loop�
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