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Abstract

We study structure theorems for the conjugacy closed (CC-) loops,
a specific variety of G-loops (loops isomorphic to all their loop iso-
topes). These theorems give a description all such loops of small
order. For example, if p and ¢ are primes, p < ¢, and ¢ — 1 is not
divisible by p, then the only CC-loop of order pq is the cyclic group of
order pq. For any prime ¢ > 2, there is exactly one non-group CC-loop
in order 2¢, and exactly three in order ¢?. We also derive a number
of equations valid in all CC-loops. By contrast, every equation valid
in all G-loops is valid in all loops.

1 Introduction

A quasigroup is a system Q = ((,-) such that (7 is a non-empty set and - is
a binary function on G satisfying Vay3lz(zz = y) and Vay3lz(zx = y). In a
quasigroup, we may name the z as a function of =,y and define left division,
\, and right division, /, by:

vo(e\y)=y  (y/z)-x=y (1)
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By cancellation, and setting y = zu or y = ux, we have also

z\(z-u)=u (u-z)/x=u (2)

As usual, equations written this way with variables are understood to be
universally quantified. Quasigroups are often defined to be systems of the
form Q@ = (G, -, \, /) satisfying (1) and (2); this lets us define the notion in a
purely equational way, without existential quantifiers. A loop is a quasigroup
which has an identity element, 1, satisfying Va(x1l = la = ). See the
books [1], [5], [16] for general background and references to the literature on
quasigroups and loops.

There are probably no interesting results about the class of all loops,
since it is too broad; for example, there are already 109 loops of order six [2].
However, there has been much study of specific classes of loops. Most well-
known are the groups, which are the associative loops. For these, there are
many structure theorems, which enable one to enumerate easily the groups
of small orders; for example, there are only two groups of order six. In this
paper, we look at structure theorems for conjugacy closed loops.

Definition 1.1 A loop is conjugacy closed (or a CC-loop) iff it satisfies the
two identities:

ROC: 2(yx) = ((zy)/2)(x) LCC: (zy)z = (22)(2\(y2))

Actually, every quasigroup satisfying both these identities must be a loop;
see Section 6. Clearly, every group is a CC-loop. The reason for the termi-
nology “conjugacy closed” is explained in Remark 3.2.

The reader unfamiliar with previous work on these loops [10][11][17] may
not see why this particular variety of loop is interesting. One motivation for
studying CC-loops is that they arise naturally in the study of isotopy, and the
CC-loops form a natural variety of G-loops (= isotopy-isomorphy loops), as
we explain in Section 2, which collects some useful results and definitions from
the literature. The other is that the CC-loops have a non-trivial structure
theory, described in Section 4; see also Goodaire and Robinson [10], where
the notion originated. Using this structure theory, one may compute the CC-
loops of small order. For example, if p is an odd prime, we show (Theorem
4.15) that the only non-group CC-loop of order 2p is the one constructed by
R. L. Wilson, Jr. [19]. For p = 3, this loop is displayed in Table 1. Also
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Table 1: A CC-Loop

o/l 23 456
111 2 3 45 6
2123156 4
3131 26 45
414 6 5 2 1 3
5946 3 21
66 541 3 2

(Theorem 4.17), in order p*, there are exactly three non-group CC-loops,
constructed by the method of Goodaire and Robinson [10].

By another result of Wilson [18], the only G-loop, and hence the only
CC-loop, of prime order p is the cyclic group of order p. We show (Theorem
4.17) that for CC-loops, the same is true for orders pg, where p < ¢ are
primes with ¢ — 1 not divisible by p. Note that for these pq, the fact that
any group of order pg must be cyclic is an easy exercise in using the Sylow
theorems. The structure theory for CC-loops uses combinatorial arguments
similar to those used in the proof of the Sylow theorems.

If p < q are primes and ¢ — 1 is divisible by p, then in order pq, there
are CC-loops which are not groups (see Corollary 3.3.1 of [10]), as well as
non-abelian groups.

The Moufang loops, whose structure is already widely discussed in the
literature [1][4], are always diassociative (that is, every two elements generate
a group) by Moufang’s Theorem. The CC-loops need not even be power
associative (that is, every single element generates a group); for example, in
Table 1, the single element 4 generates the whole loop. It is shown in [11]
that the CC-loops which are diassociative (equivalently, Moufang) are the
extra loops studied by Fenyves [7][8].

It might seem that the structure for non-power-associative loops might be
intractable, but we show (Theorem 3.11) that in a CC-loop, 2y = 1 implies
that yx is in the nucleus. From this we shall conclude (Theorem 3.21) that
either the loop is power associative or the nucleus is non-trivial. In particular
(Corollary 4.6), this implies that if G is any finite CC-loop, then for some
prime p dividing |G|, G has a subloop H isomorphic to the cyclic group of
order p. In Table 1, |G| = 6, p =3, and H = {1,2,3}; there are no subloops
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of order 2, as one might have hoped from group theory.

Our structure theory succeeds through the study of loop automorphisms.
In a group, the inner automorphisms are related to failures of commutativ-
ity. In the same way, CC-loops possess a family of automorphisms related
to failures of associativity. This is described in more detail in Section 2. In
Section 3, we derive a number of equations and implications between equa-
tions used in the structure theory in Section 4. The division between these
two sections is a bit arbitrary, but in general, the results of Section 3 hold for
all CC-loops, whereas Section 4 uses counting arguments to prove theorems
about finite CC-loops.

One might ask to what extent the results of this paper hold for G-loops
in general. In Section 5 we show that every equation (in fact, every universal
statement) true in all G-loops is true in all loops, so that we do not have any
analog to the results in Section 3.

In developing this work, we have found it very useful to use the auto-
mated reasoning tools OTTER [15], programmed by W. W. McCune, and
SEM [20], programmed by J. Zhang and H. Zhang. OTTER is used in deriv-
ing equations from other equations, and was instrumental in producing many
of the results in Section 3. OTTER’s proofs are simply sequences of fifty or
so intermediate equations, and seem at first to have little intuitive content,
but following the method of previous work [12][13][14], we have rephrased
OTTER’s proofs using more conceptual notions, such as the action of au-
tomorphisms. SEM is used to construct finite examples. For example, the
CC-loops given in Table 1 and Example 2.20 were constructed using SEM.
Once one has such an example, it is usually possible to describe it in a more
conceptual way; for example, the loop in Table 1 can be recognized as the
one already constructed by Wilson (see [19] or Theorem 4.15), and we have
described the one in Example 2.20 as a semidirect product. We originally
tried to use SEM to construct a non-group CC-loop of order 15, but this
failed, proving that there was no such loop. We then found the proof in
this paper (Theorem 4.17), which does not rely on a computer search and
which generalizes to other orders of the form pq. Besides the results explic-
itly presented in this paper, OTTER and SEM were very useful for quick
experimentation and for checking out (often false) conjectures.
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2 Isotopy and G-Loops

Throughout this section, ((,-) always denotes a loop. The theory of isotopy
lets us associate with (G, -) a number of permutation groups. One may then
apply familiar methods from group theory to study G. We begin with the
autotopy group (see [1], p. 112).

Definition 2.1 SYM(G) is the group of all permutations of the set G
I € SYM(G) is the identity element. ATOP(G,-) is the set of triples
(a, B,7) in (SYM(G))? such that

It is easy to see that AT OP(G) is a subgroup of (SYM(G))?.

Definition 2.2 Define AUT (G, ), LIT(G,-), RII(G, ), IZ(G, ) by:

ac AUT(G,) <= (a,a,a) € ATOP(G, )

a€ LTI(G,) <= Jope SYM(G)[(9,a,a) € ATOP(G,-)]

a € RII(G,) <= e SYM(G)| (o, a) e ATOP(G,-)]
ac II(G,) <= 3,0 € SYM(G)[(o,4,a) € ATOP(G,-)]

So, AUT(G,-) is the group of automorphisms of (G,-). Bryant and
Schneider [2] called ZZ((, ) the group of (G,-). It is immediate from the
definitions that:

Lemma 2.3 Fach of the sets AUT (G, ), LIT(G, ), RII(G, ), II(G, ) is a
subgroup of SYM(G). Furthermore,

AUT (G, ) C LTI(G, )N RII(G, ), and

LIT(G,)URIZ(G, ) CTII(G, ).

Another family of elements of SYM(G) is given by left and right multi-
plications by elements of G-

Definition 2.4 Define, for each a € G, L, = L(a) and R, = R(a) in
SYM(G) by:
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These are related to the autotopy group by:

Lemma 2.5 Suppose that (o, 3,7) € ATOP(G,). Let b= 157" and a =
la~t. Then for all z,y: xa = (xb)y, yB = (ay)y, and (zb)y - (ay)y = (2y)7.
Thus, o = Ryy, = Loy, and (Ryy, Lav,7v) € ATOP(G,-).

Proof: Use b3 =1 and then aa = 1 in the definition (2.1) of ATOP. O
Now, applying this lemma to the definition of £LZIZ,RIZ,7T:
Lemma 2.6 If o € SYM(G), then:

1. o € TI(G, -) iff for some a,b € G: (Rya, Ly, ) € ATOP(G, ), in
which case (ab)a = 1.

2. a € LTI(G, ) zﬁfor some b € G: (Rya, o, 0) € ATOP(G, ), in which

case b must be 1a™!

3. o € RII(G, ) iff for some a € G: (o, L,o,0) € ATOP(G,-), in

which case a must be 1a™!

Corollary 2.7 AUT(G,-) ={a € LTI(G,-) : la =1} = {a € RTI(G, ) :
la =1}.

For every loop, we may define the left nucleus (N, ), the middle nucleus

(N,), the right nucleus (V,), and the center (7):

Definition 2.8 For any loop (G,-) and a € G:

a € NA(G,") iff Yo,y € Gla(zy) = (az)y]
0 € Ny(G.r) iff Yooy € G [z(ay) = (xa)y]
4 € NG iff o,y € G [o(ya) = (ay)a]
a € Zy(G,-) iff Ve € G xa = ax]

NGy ) 0 NG ) NGy ).

NG, ) =
')

2(G.-) = N(G.) 1 Zo(G, ).

It will turn out (Lemma 2.15) that Zo(G, ) = Z(G, ) for CC-loops. It is

easy to verify the following equivalents, in terms of autotopy.

Lemma 2.9 For any loop (G, -):

NA( )={a e G: (L1, L,) € ATOP(G,")}.
G, )y={a€eG:(R', L,, 1) € ATOP(G,)}.

G, J=H{aeG:([,R,,R,) € ATOP(G,-)}.

)=

v
Zo(G, - {aeG:L,=R,}.
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Corollary 2.7 can fail for ZZ((, -); that is, one can have oo € IZ((,-) and
la = 1 without a being an automorphism of the loop, but such an o must
be an automorphism of the nucleus.

Lemma 2.10 Suppose that o € TZ(G,-) and la = 1. Then:
1. If either w € Ny or v € N,, then ua - va = (uv)a.
2. al Nye AUT (N, ).
3. al N, € AUT(N,,-).

Proof: Fix a,b as in Lemma 2.6.1. So, (b)a - (ay)o = (2y)a for all x,y.
Equivalently, ue - va = ((u/b) - (a\v))a for all u,v. Since (ab)a =1 = le,
ab = 1. Now suppose that v € Ny. Then (ua)b = u(ab) = u, so ua = u/b.
Hence, ua - va = ((ua) - (a\v))a = (u - (a(a\v)))a = (uv)a. The mirror of
this argument works for v € N,,.

So, a maps N, isomorphically onto its range. To prove (2), we need
(Ny)ae = Ny. Now, if u € Ny, then applying (1), (va - (zb)a) - (ay)a =
(uab)a - (ay)o = (ury)a = va- (2y)oa = ua - ((xb)a - (ay)a). Since (xb)a and
(ay)a can be arbitrary elements of (7, this proves ua € Ny, so (Ny)a C N,.
Applying this argument to a™* shows (Ny)a = N,. O

So far, this whole discussion could be vacuous, since it is not clear whether
II(G,-) contains anything besides the identity permutation, /. However,
in G-loops, LI7 and RIZ are large enough to make Corollary 2.7 and

Lemma 2.10 useful for producing automorphisms.

Definition 2.11 A loop G is a G-loop iff for each a,b € G, there is an « €
SYM(G) such that (Ryor, Ly, o) € ATOP(G,-); that is, (xb)a - (ay)a =
(zy)a for all z,y € G.

This o will be in ZZ(G,-) by Lemma 2.6.1. Furthermore, the special
cases where ¢ = 1 or b = 1 will provide us with a supply of permutations
in LIZ(G,-) and RIZ(G,-) by Lemma 2.6.2 and Lemma 2.6.3. Actually, by
E. L. Wilson [17], being a G-loop is equivalent to these special cases:
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Lemma 2.12 A loop (G, -) is a G-loop iff both

e For each b € G, there is a € SYM(G) such that (Ry3,0,03) €
ATOP(G, ), and

o For each a € G, there is a v € SYM(G) such that (v, L,y,v) €
ATOP(G, ).

Proof: For the non-trivial direction, fix a,b € G. First fix 8 € LTZ(G, )
such that b = 187!, so that (2b)8 - yB8 = (ay)B for all x,y. Then, fix
a € RTI(G, ) such that (z)y - (ey)y = (ay)y for all x,y, where ¢ = (ab)f.
Let a = By. Then for all 2, y: (zy)a = ((2b)3-yB)y = (2b)By-((ab)5-yB)y =
(2b)B7 - ((ay)B)y = (zb)a - (ay)a. O

Definition 2.11 has the following interpretation: Let v = zb and v = ay,
so that we have ua-va = ((u/b) - (a\v))a. Thus, if we define a new product,
o, so that w o v = (u/b) - (a\v), then o is another loop operation on @,
with identity a - b, and « is an isomorphism from (G, -) to (G, 0). This o is
called a principal loop isotope. That is, the G-loops are those loops which
are isomorphic to all their principal loop isotopes, and o € IZ(G,-) iff « is
an Isomorphism onto a principal loop Isotope.

In a G-loop, Definition 2.11 “seems” to pair an o € IZ((,-) with an
(a,b) € G*, but this “correspondence” is not a function. By Bryant and
Schneider [1] and R. L. Wilson, Jr. [18], each « has |N,| corresponding («,b),
and each (a,b) has |[AUT (G, )| corresponding a. Hence, |G|?-|AUT (G, )| =
|ZZ(G, )| - [Ny|. When |G is prime, this implies that |N,| = |G/, so that G
is a group. Unfortunately, if |G| is not prime, this type of analysis does not
yield much information for G-loops in general.

We now consider “natural G-loops”, in which the $ and v from Lemma
2.12 have some simple definition. So, fix an @ € (G, and consider the require-
ment that there be a v € SYM(G) such that (v, L,vy,v) € ATOP(G,-).
A group is a G-loop, since we may let ~ be either L' or R;'. It is nat-
ural to consider loops in which one of these choices works as well. The

first is uninteresting, since it holds only in groups. If v = L', we have

(L7Y LL7Y LYY € ATOP(G,-); equivalently, (L, I, L,) € ATOP(G, ),
so that @« € N)\(G,-) (by Lemma 2.9). If this holds for all a, then G is a
group. Now, if v = R, we have (B!, L,R;', R;') € ATOP(G,-); equiv-

alently, (Ry, R.L;", R,) € ATOP(G,); translating this to an equation, we
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get precisely equation LC'C' from Definition 1.1.

Likewise, consider the requirement that for each b € (G, there be a § €
SYM(G) such that (Ry3,08,0) € ATOP(G,-). In groups, (3 could be either
L;'or R;'. In any loop, if 3 is always R; ', then the loop is a group, whereas
if 3 is always L; ', then we have each (LyR, ", Ly, Ly) € ATOP(G,+), which
yields equation RC'C'. Hence:

Lemma 2.13 A loop (G, ) is conjugacy closed iff both R, € RIZ( and

G, )
L, € LTI(G, ") for each a € G. If (G,+) is conjugacy closed, then (G,-) is a
G-loop, and both (R,, R, L;*, R,) and (L R, Ly, L,) are in ATOP(G,-).

We may now take various products from RIZ((G,-) and LIZ(G,-) to

produce automorphisms. In particular, as in [10]:

Lemma 2.14 [f G is conjugacy closed, then for each a,b € G, both R, Ry R,
and L,L,L; are automorphisms of G.

Proof: By Lemma 2.13, R, R R} € RIZ((,-). It is then an automorphism
by Corollary 2.7. O

Note that in every loop, the associative law holds iff R, RyR;} = I for
all a,b. However, in CC-loops, the fact that these are automorphisms lets us
use automorphism arguments to study non-associative CC-loops in the same
way that inner automorphisms are used to study non-commutative groups.
Every commutative CC-loop is a group; more generally, for any CC-loop, the
three nuclei coincide [10] and contain Zy (see Definition 2.8).

Lemma 2.15 For any CC-loop (G,-): Z(G,-) = Zy(G,-) € N(G,-) =
NG, ) = Nu(G,-) = N,y(G, ).

Proof: Apply Lemma 2.9 and Lemma 2.13, plus the fact that AT OP(G, )
is a group. [

Definition 2.16 For any a € G, let J, = R,L," and let E, = R,Ry\;.

In a group, £, = [ and J, is an inner automorphism. In a CC-loop, F, is
an automorphism (by Lemma 2.14); J, need not be an automorphism of the
loop, but it does define an automorphism of the nucleus [10] (apply Lemma

2.10; note that J, € ZZ(G,-) and 1.J, = 1).
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Corollary 2.17 For any CC-loop (G,-), let N = N(G,-). Then FE, €
AUT (G,-), and J, | N € AUT(N,), for each a € G.

Corollary 2.18 For any CC-loop (G,-), if [N(G,-)| = 2 then Z(G,-) =
N(G, ).

Proof: Since the only automorphism of N(G,-) is the identity, it follows
that for each a € G, and each v € N(G,+), v L, R;' = x, s0 ar = za. [

Table 1 is an example of a CC-loop in which the nucleus has size 3 and
the center has size 1. Nevertheless, we shall see later (Lemma 4.16) that
the method of proof of Corollary 2.18 is useful for proving the center to be
non-trivial in cases where the nucleus has size greater than two, if we have
some further information about the orders of these J,.

Some further examples of non-group CC-loops are described in Goodaire
and Robinson [10]. In addition, the following, which is a modification of the
semidirect product construction in groups, will be useful later as a source of
counter-examples:

Lemma 2.19 Suppose that G = H x A, where (H,4) and (A, +) are abelian
groups, and we define a product on G by

(hya)- (kyy)=(h+ KOy +ipy, x+vy) ,
where the 0, for x € A, and the 1,,, for v,y € A, satisfy:
1. Fach 0, is an automorphism of H and 0,4, = 0,0,.
2. Each 1, is an element of H and 1,0 = 10, = 0.

3. For each x,y,z :

by Tyt = Tey — lye T le:0y + iyats

Zx,y —I' Zac—l—y,z — Zx,z —I' Zy,zex - Zz,yex —I' Zac—l—z,y

Then G is a CC-loop. Furthermore, {h € H : Yy[h0, = h]} x {0} C Z(G)
and H x {0} C N(G).
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Proof: Note that by item (1), we also have §_, = (6,)~' and 6, = I. Using
this plus item (2), it is easy to see that (0,0) is the identity element of GG. To
prove that G is a loop, and to identify \ and /, we may solve the equation

(h,z)-(k,y) = ({,z) for (k,x) or for (h,y) to obtain:

(hya)\\(l,z) = ({L—h—iy.p)_p, z— 1)
(2)/(kyy) = (U=KOy — 1oy, 2—Y)

We compute the product of three elements as:

(hyx) - [(kyy) - (6,2)] = (B4 kOp + 0oy + 1y200 + inype, Ty + 2)
[(h,l‘) ) (kvy)] ) (672) = (h + kel’ + gel’-l-y + iﬂ&l/ + i$+y7z , T+ Y+ Z) :
Note that these are equal iff ¢, ,+154y . = 1y 05415 y4-, Wwhich holds whenever
at least one of x,y, z is 0 (applying item (2) and y = ), so that H x {0} C
N(G). Likewise, using the definition of -, any element of the form (h,0) is in

the center iff R0, = h for all y.
Now, equations RCC and LCC require:

LCC: [(hyz) - (ky)]-(62) = [(h2)(62)] - [(62)\ (R ) (4, 2))]
The right-hand side of these are:
RCC @ (h4 kb, + 00,4y + iy —tys + 100y + lysts, T+ Y+ 2)
LCC + (h4+ kb +00pqy + iv. + 1y 00 — 12 y00 + tagay, T+ y+2) .
Thus, to get RCC and LCC, we need precisely item (3). O

Note that if 7, , = 0 for all z,y, then G is a group, and the construction
reduces to the standard semidirect product. The following use of Lemma
2.19 to get a non-group G will be useful later:

Example 2.20 In Lemma 2.19, take (H,+) = (A,4) = Zy X Zy, where
H ={0,p,q,s} and A ={0,a,b,c}. Define 8, and i, by:

—y —
x| 0, by |0 a b c
0 1 00000
a 1 Ta 0 p 0 ¢
b | (p,q) Tb |0 p 0 op
c|(pq) e 00 s 0




3 SOME USEFUL EQUATIONS 12

Then G = H x A is a 16-element CC-loop satisfying the equation (1/x) =
(x\1), with a 4-element nucleus, H x {0}, and a 2-element center, {0,s} x
{0}. This loop contains a, 3 such that ac = 1 but a(af) # B and (Ba)a # 3;

furthermore, the cosets, (o) - 3 and (o) - of3, are neither equal nor disjoint.

Proof: ¢ is a CC-loop by Lemma 2.19; the tedium of verifying item (3)
there may be alleviated somewhat by noting that the equations are trivially
true if one of z,y, z is 0, so that there are only 3% = 27 cases to verify, not
4% = 64. It is clear from the proof of Lemma 2.19 that an element (k,y) is
in N,(G) iff Yez[izy + togy: = ty:0s + toyt-), which implies in particular
Vellay + tatys = tys + laytz). For y = a and y = b, this is refuted by z = b,
and for y = ¢, this is refuted by z = ¢. Hence, the only possible elements of
the nucleus have form (k,0), so N(G) = H x {0}. Furthermore, (k,0) cannot
be in the center unless k6, = k for all y, so Z(G) = {0,s} x {0}.

The equation (1/2) = («\1) is immediate from the formulas for / and \
derived in the proof of Lemma 2.19.

Finally, let o = (0,¢) and 8 = (0,b). Then aa = (0,0), a8 = (s,a) and
alaf) = (s,b) # (. Also, fa = (p,a) and (Ba)a = (s,b) # 3. Furthermore,
(0) -5 1 (0) a8 = {308} N {af a(08)} = {of}. O

3 Some Useful Equations

Throughout this section, ((G,-) always denotes a conjugacy closed loop. We
collect here a number of equations and implications between equations which
G must satisfy. Often (but not always), it is more transparent to state and
prove equations in terms of permutations. For example, in Lemma 2.14, the
fact that R,RyR is an automorphism could be expressed as the equation

(((za)b)/ab) - (((ya)b)/ab) = ((((xy)a)b)/ab) and then derived directly from
equations LC'C and RCC of Definition 1.1, but this derivation would be a
bit messy and obscure. We begin by re-stating the definition of “conjugacy
closed” in terms of conjugations.

Lemma 3.1 For any z,y :
1. L'R,L,=R'R,, ; RI'L,R.,=1L'L,
2L LyLe = Liayye 5 B Ry Ry = Ry
3. LnyL;1 = R;\11Rl’\y 5 Rl’LyR;l = Ll_/lel//l’
4. LwLyL;I = Ll,\(w) N RQURyR;l = R(xy)/l,



3 SOME USEFUL EQUATIONS 13

Proof: The equation RC'C of Definition 1.1 asserts both R, L. = L.R;'R.,
and LyL. = L.L(.).; equivalently, L7'R.L. = R;'R., and LJ'L, L. =
L(.y);-- Renaming the variables, and applying also LC'C', we get both (1)
and (2). To obtain item (3), use the conjugations in item (1) to compute

L;lR;\lle\ny and R;IL;/ley/xRx. Item (4) is proved likewise from (2). O

Remark 3.2 The equations (2) of Lemma 3.1 are easily seen to be equivalent
to RCC and LCC. Originally [10], a CC-loop was defined to be a loop in
which the left and right multiplications were closed under conjugations — that
is, for all x,y, there are u,v such that L;'L,L, = L, and R;'R,R, = R,.
But this requires that v = (2y)/a and v = z\(yx), so we retrieve equations
(2). Hence, our definition of CC-loop is equivalent to the original one.

Lemma 3.3 If ¢d = 1, then L7'RyL. = R', R;lLCRd = Lgl, and E, =
R.Ry = Lc_ngl € AUT (G, ). Furthermore, J7' = RyL. and J; = L.Ry.

Proof: The first two equations are immediate from Lemma 3.1.1. These
yield L. = RyL.R. = RdLglel; cancelling the R;, we get R.R; = Lc_ngl.
E. € AUT (G, ) by Corollary 2.17. O

Lemma 3.4 For any z,y, vy = yx ¢ff L, L, = L,L, iff R, R, = R, R,.
Proof: By Lemma 3.1.2. O

Lemma 3.5 For any z,y, R, = R, R, iff L,R, = R, L, iff L,y = L,L,.
Proof: By Lemma 3.1.1. O

Lemma 3.6 For any x,y, Jo, = J. R, L.R'L"J,.

Proof: By Lemma 3.1.1 and the definition of J. [

This lemma is most useful when the commutator, RnyszlL;I, disap-
pears. That could happen in several ways. First, recall (Corollary 2.17) that
J; defines an automorphism of the nucleus. It follows that:

Corollary 3.7 Let N = N(G,-). Then J,J, | N =J,, | N.

Thus, the map = +— J, yields a homomorphism from G into AUT (N, ).
Next, we may consider subloops other than the nucleus.
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Definition 3.8 A subloop H of G is nuclear iff for all hyk € H, Ry, =
Ry Ry.

Note that the nucleus is nuclear and that every nuclear subloop must be

a group. In view of Lemma 3.5, the condition R, = Rp Ry could have been
replaced by L, Ry = RyLy,, or by Ly, = LiLy.

Lemma 3.9 If H is a nuclear subloop of G, then JyJi, = Jui forallh,k € H,
and Jg maps H tsomorphically onto HJ; for all d € .

Proof: The first statement is immediate by Lemmas 3.6 and 3.5. By Lemma
2.13, (Rq, Ju, Rq) € ATOP(G,+), so for any x,y:

ad - yJy = (2y)-d
Let ¢ =1/d, so ed = 1. Then J; = L.R; by Lemma 3.3. So, if h, k € H:
(hk)Jq = (c(hk))-d = ((ch) k)-d=(ch)d-kJ; =hJy-kJy

Hence, J; restricted to H is an isomorphism. [
The next lemma is used only for the proof of the theorem which follows

it.

Lemma 3.10 If c¢d = 1, then the following equations hold; x denotes any
element of G':

R, = R4LAL.R4L. (1)

LoR,' = RyL.LsL.R.L. (2)
L.R})L7Y = RI'Ry (3)
RdR(w)dR;l = R, (4)
LdLCRch_ngl = Ry (5)
RchLacRc — Lxc (6)
R;,L.R> = R.L. (7)
Ryl R L7'R;Y = R;'R. (8)
LchRchLc — LCRJJC (9)
R.RyL,L., = 1 (10)
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Proof: For (1), we apply Lemma 3.1.1 and then Lemma 3.3 three times
to get B! = L'RIULLRT = RyLyR7RTILRT = RyLALL.RT =
RyL3L.RyL.. For (2), first note by Lemma 3.3 that R;'L.R;' = L.; that
is, (¢(z/d))/c = cx. Hence, by Lemma 3.1.2, L7'L,/qL. = L.,. Now, since
1/d = ¢, Lemma 3.1.3 implies RdeLglel = Lc_le/ch, SO RdeLglel =
Lep. Setting @ = ¢, we have RdLCLglel = L2, and (2) now follows by
using the value of R3' from (1). Equation (3) is immediate from Lemma
3.1.3, since ¢\1 = d. For (4), apply Lemma 3.1.2 to get RyRapwa) ;' = Ro,
but then d\(zd) = (cx)d because RyL;' = L.R; by Lemma 3.3. For (5),
Lemma 3.3 implies R.RylLqL. = I, so ¢(d((xc)d)) = x. Thus, by 3.1.1,
Lc_nglR(m)deLc = Lc_lele((xc)d)Lc = Rc_lec(d((xc)d)) = R,. For (6), ap-
ply 3.1.1 and then 3.3 to get L,. = L.R7'L,R. = RyL.L.R.. For (7), apply
3.1.1 and then 3.3 to get RyL. R = RdLCRCLc_lRCLC = RnglRCLC =R.L..
For (8), apply 3.1.3 and 3.1.4 to get RyL R L' R = Rng\l(xd)Rd\lel =
R;'Ryq. To prove (9), we rewrite it as ¢(( (c(dz)) x)e) = (ez)(xe), which
says the same as L., R.L. = R.L... By 3.1.1 and 3.1.2, Rc_ch(dz)Rch =
Lc_lL(c(dZ))ch = L(zL4L.R.L.R7'). But by Lemma 3.3, LyL.R.L.R;"' =
LiL:R.RyL. = L., so R;'LoazyR.L. = Le.. Finally, equation (10) is imme-

diate from Lemma 3.3. O

The following theorem is important because it gives us a supply of ele-
ments of the nucleus.

Theorem 3.11 If e¢d =1 then dc is in the nucleus.

Proof: Fix ¢, d with ¢d = 1. By Lemma 3.1.4, R;l = R;IR&Z)/QURQU. Below,

we shall take the right side of this equation with # = ¢%, and apply Lemma
3.10 to derive R;l = R(_dlc)dec. This will imply that R, = R4 R, for every
y, which implies that dc is in the (middle) nucleus. In the following chain
of equalities, the comments on the right indicate the equation numbers from

Lemma 3.10 used to derive the equality with the next line:
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R;l _ Rc_21 (R((2y) /)™ R = Rc_21 ) (R(yLCQRC—;))—l “Ro= //1,2

RaL3L.RyL. - (R(yRyL.LaL.RsL.))™" - R = //3
RdL?lLCRd . (R(deLCLdLCRd))_I - RgL.R> = //4
RyL3L. - (R(yRaL.Lq))™" - R3L.R, = /75
R;L,; - (R(deL LdRCRd))_l . LdLCR?lLCRcz = //6, 7
RqLq- (R ((( c)y)d))™t - LaLoRyR:L. = /18
(Ri(de)y) " - ReRiLoLoL RiR.L. = /19
R(_ de)y -R.RyL4yL. Ry = //10
R(_dlc)y : Rdc O

Of course, it is possible that ed = de = 1 (that is, (1/¢) = (¢\1)), in which
case Theorem 3.11 tells us nothing, but in that case we shall see (Lemma 3.20
below) that the subloop generated by ¢ is a group. First, some preliminaries:

Lemma 3.12 If ¢d = de = 1, then:
1. L7'RyL. = R and R7'LyR. = L',

2. E. = R.Ry = (L.Lg)™' € AUT (G, "), and it commutes with each of
Lc, Ld, Rc, and Rd.

3. L7'R.L. = (R.)*Ry and R:'L.R. = (L.)*Ly.
4. Rc2 = (RC)SRC[ and Lc2 = (LC)SLd.
5 J.=1L4R. ; J7' = RyL. ; Jy=L.Ry ; J;' = R.Lg.

Proof: (1), (2), and (5) follow from Lemmas 3.3 and Lemma 3.4. To prove
(3): (2) implies (R.)*Ry = Lc_ngch; then use L;Rc = R.L., which follows
from (1). Then (4) follows from L;'R.L. = R:'R. (by Lemma 3.1.1), and
(3). O

The commutation relations in this lemma give a pretty good description
of the group generated by R., Ry, L., L; in the case that e¢d = de = 1. First,
some general notation

Definition 3.13 If X C G, then (X) is the subloop of G generated by X.
[fw,y € G, then (x) = ({x}) and (z,y) = ({z,y}).
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Definition 3.14 If X C G, then: R(X) is the subgroup of RIZ(G,-) gen-
erated by all the R, for a € X; L(X) is the subgroup of LIT(G,-) generated
by all the L, for a € X; I(X) is the subgroup of TZ(G,-) generated by both
the L, and R, for all a € X.

Lemma 3.15 If H is a subloop of Gi, then both R(H) and L(H) are normal
subgroups of T(H ).

Proof: By Lemma 3.1.1. O

Lemma 3.16 If X C G, then IZ({(X)) = ITZ(X).

Proof: It is enough to show that .., .\y, /2y Lay, Loy, Ly/e, are always
in the subgroup generated by R,, R,, L;,L,. For R,,, just apply Lemma
3.1.1. For R,\,, use 3.1.1 again to get that L;'R.\, L, = R;'R,, Then, for
Ry/e, use 3.1.2, which implies R;' Ry, Ry = Rp\,. O

We now describe ZZ((¢)) = ZZ({c}) in the case that 1/c¢ = ¢\1. Although
this group is generated by L. and R., it is simpler to express the group in
terms of L., R., F., since F. is in the center.

Lemma 3.17 If ¢d = dc = 1, then the following hold; r,s,t,1,7, k,n are
arbitrary integers:

1. E. is in the center of TZ({c)).
RILLR = E-'LL
E'RL! - B'RILY = Eri-it geti [k,

(BEIRIL)™ = BT RTLC

Fvery element of TZ({c)) is of the form ETR*L! for some r,s,t.
6. IZ({c)) is abelian iff E. = I iff R.L. = L.R..
7. Jr = BT PR,

8 Ry=ER"' ; Ly=FE'L7
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Proof: Items (1) and (8) are by Lemma 3.12.2. For item (2) in the case
g =t=1,apply 3.12.3 and 3.12.2. The rest follows by an easy computation.

U
We next describe R, and L, for y € (¢) in the case that 1/¢ = ¢\1.

Definition 3.18 For any integer n, let 2™ = 1R].

So, "t = 2™ . x for all n, positive and negative. It turns out, by the
next lemma, that if 1/¢ = ¢\1 then all possible associations of ¢" are equal.

Lemma 3.19 [If 1/c = c\1, then the following hold; m,n are arbitrary inte-
gers:

1. R = B "2pn . [, = prnn/2 0
2, ™. e = gt

3. B = E™.

4o Ja = BTN

Proof: By Lemma 3.1.1, L1 = L.RZ'Len R, 50 Len = R.LT7'Loni RY
Using this, the formula for L.» may be verified by induction for n > 0 (going
up), and for n <0 (going down), using the commutation relations in Lemma
3.17. Also by 3.1.1, Rons1 = Ren L' R.Len, from which the formula for R.n
may be verified, using the formula for L.». This proves (1)

Now, (2) is immediate from the definition of ¢”, since 1E, =1 . By (2),
¢ generates a cyclic subgroup, so ¢"\1 = ¢ ™. Items (3) and (4) are now
immediate from the definitions of £ and J, using Lemma 3.17 and (1). O

Lemma 3.20 For any ¢ € G, the following are equivalent:
1. {c) is a group .
2. 1/e=c\l.

3. c-t=¢c-ec.



3 SOME USEFUL EQUATIONS 19

Proof: (1)=(3) is trivial, and (2) = (1) is immediate from Lemma 3.19. To
prove (3)=(2), assume (3) and ¢d = 1; we must prove de = 1. By (3) and
RCC of Definition 1.1:

c-(*d) = (cc*) /e = (cFe)[c =
so c¢*d = c. Using this and LC'C,
¢ = (ce)d = (ed)(d\(cd)) = d\1
sode=1. O
It now follows immediately by Theorem 3.11 that:
Theorem 3.21 [f N(G,-) = {1}, then () is a group for every x.

If (¢) is a group, then either (¢) = Z or (¢) = Z,, for some positive integer
m (where, of course, Z and Z,, denote the additive groups of integers and
integers modulo m). In the Z,, case:

Lemma 3.22 If (¢) 2 Z,,, then
1. E" =1
2. R¥™ = [?m = J* =],
3. If m is odd, then R = L7 = J" = 1.

4. If m is even, then R = L' = J" = EM?.

Proof: Applying Lemma 3.19.1, R. = Ront1 = Eém-l—l)m/z]%z”“, SO
Ertmtd/zpm (1)
Again by 3.19.1,
[ = Ron = E{m~1Um/2Rm (2)

Dividing (1) by (2) yields E™ = I. Then, squaring (1) or (2) yields R*™ = I.
Likewise, L?™ = [ and J?™ = [ (squaring Lemma 3.19.4 with n = m).

If m is odd, then m | (m — 1)m/2, so (2) yields R = I, while if m is
even, then (m — 1)m/2 = m/2 (mod m), so X2 = RE™ . Likewise for L,
and J.. O

Note that Example 2.20 provides an example (where ¢ is the element

«) where m = 2 and R, and L. have order 4, not 2. We do have enough
information about elements of order 2 to prove the following.
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Lemma 3.23 If a* = b* = (ab)* = 1, then ab = ba.

Proof: Using LCC of Definition 1.1 with # = y = ab and z = b, we have
b= [(ab)b] - [b\((ab)b)]. Then, since L} = R}:

b= [b(ba)] - [ba] (1)

Using RCC' of Definition 1.1 with + = y = @ and z = b, we have b =
[(ba)/b] - [ba]. Then, since LyR; ' = RyL, (by Lemma 3.12.1):

b= [b(ab)] - [ba] (2)

By (1), (2), and cancelling, ba = ab. O

Note that even in groups, no two of a*> =1 ,b6* =1, (ab)? = 1 is sufficient
to derive ab = ba.

Corollary 3.24 If 2% =1 for all x, then G is a commutalive group.

Proof: Since the center is contained in the nucleus (Lemma 2.15), every
commutative CC-loop is a group. [

Actually, it is well-known that every commutative G-loop is a group, and
it is also easy to check that the equation % = 1 implies commutativity in
G-loops.

Now, the last few results emphasized the situation where () is a group.
If in fact every (x,y) is a group (that is, the loop is diassociative), then
the loop is an extra loop, and we may appeal to some results already in the
literature.

Definition 3.25 & is flexible iff R.L, = L. R, for every x.

This is usually written as the equation, x(yx) = (xy)x. A flexible CC-
loop is an extra loop [11], and hence a Moufang loop [7][8]. By Moufang’s
Theorem [1], every Moufang loop is diassociative. Hence:

Proposition 3.26 G satisfies the flexible law iff G it is diassociative.

In an extra loop, the square of every element is in the nucleus [§]; in
particular, the nucleus is non-trivial (since if #? = 1 for all @, then G must
be a group by Corollary 3.24). We do not know if a CC-loop must have a
non-trivial nucleus.
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Lemma 3.27 For any ¢, the following are equivalent:
1. R.L.=L.R..
2. FE.=1.
3. {c¢) is a nuclear subloop of G.

Proof: (1)=(2): Let d = ¢\1, so ¢d = 1. Then ¢(de) = (ed)c = ¢, so de = 1.
Then, applying Lemma 3.12.1, RyL. = L.R;' = R'L., so Ry = Y
whence £. = R.R; = 1.

(2)=(3): Let d=¢c\1,s0 cd =1 and E. = R.Ry. Then d = dFE,. = (dc)d,
so dc = 1. Hence (¢) is a group. By Lemma 3.19.1, R.» = R? for each n,
which implies that (¢) is nuclear.

(3)=(1): Since {(c) is a group, let d = ¢~'. By “nuclear”, [ = Ry =
R.Ry, so applying Lemma 3.12.3, R.L. = L.(R.)?R; = L.R.. O

Note that (1/¢) = (¢\1) is not an equivalent. The CC-loop of Example
2.20 satisfies (1/x) = («\1) for every x but it is not an extra loop (since it is
not diassociative).

C

Finally, the next two lemmas will be used to prove that certain elements
which “should” be distinct (judging by group theory) really are distinct in
CC-loops.

Lemma 3.28 If A and C are subloops of G, with ANC = {1} and C = Z,

for some prime p, then the elements ac for a € A and ¢ € C are all distinct.

Proof: Suppose we have ac = o', with a,a’ € A, and ¢, € C. We need to
prove that @« = «’ and ¢ = ¢/. This is clear (using AN C = {1}) if any one of
a,da’ e, is 1, so assume none of them is. Then ¢ = ¢” for some n, and the
case n = 1 is trivial, so assume 1 < n < p, and we derive a contradiction.
By Lemma 3.1.1, L, Ry} = R;'L.R.", so (zz)/(xy) = (x(z/y))/x. So,
(zc)/(xcd?) = (xc™9) )z = (xct*)/(xc/TF), for any integers i,7,k. Since
ac = da'c", we have a = (d'c")/c = (d'[c)c” (applying Lemma 3.4), so a/d’ =
((a’/c)e™)/((a'[c)ct) = ((a'[e)e"**)/((a'[c)ct*F) for any k. Using this, we
show, by induction on > 0, that ((a’/¢)c!T"("=Y) € A. Now, fix r such that
r-(n—1)=—1 (mod p), and we have a'/c € A, so ¢ € A, a contradiction.

O
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Lemma 3.29 Suppose that (c) = 7, for some prime p, and al'R. =
aB!R™. Then { = m (mod p).

Proof: It is sufficient to derive a contradiction from aE'R’ = a along with
0 < /(< p. Ifp=2 this is easy (using £. = R? and F? = R! = I), so
assume p > 2.

If i = 0, then aR! = a plus R? = [ yields ac = aR. = a, a contradiction,
so assume 0 < ¢ < p.

For any n with 0 < n < p, fix b € (¢) such that " = ¢. Applying Lemma
3.19, R, = E""V"?Rr and E. = E}, so

_ 1l (2in2+6n% —tn) /2 en
a=alllR, =akl, R .

If (in Z,) 2i + ( # 0, we may choose n = (/(2i + (), so that aR" = a,
yielding a contradiction as in the 1 = 0 case.

If (in Z,) 20+ ¢ = 0, we have a Ej" R;*™ = a, and we may choose n = 1/,
yvielding aFyR;* = a, or (ab™')b = (ab)b. Cancelling yields b= = b, a

contradiction, since p > 2. [J

4 Structure Theorems

Throughout this section, ((G,-) always denotes a conjugacy closed loop. We
use the general isotopy results in Section 2, together with the equations in
Section 3 to analyze the structure of conjugacy closed loops.

We begin with some conditions which imply that the size of a subloop
divides the size of the loop. Bruck ([1] p. 92) discusses such “Lagrange
theorems” for loops in general.

Definition 4.1 Let H be a subloop of G. H is a characteristic subloop iff
every automorphism of G' takes H into H. H is an isolated subloop iff H is
nuclear and HJ, = H for all x € G.

In groups, “characteristic” has its usual meaning, while “isolated” is
equivalent to “normal”. We use “isolated” here because “normal” already
has a somewhat different meaning [1] in loops. Note that the nucleus is both
characteristic and isolated.

Lemma 4.2 If H is either a nuclear or a characteristic subloop of G, then
any two right cosets, Ha and Hb, are either equal or disjoint.
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Proof: It is sufficient to prove that Ha = Hd for all d € Ha, since then,
if Ha N Hb contains any element, d, we have Ha = Hd = Hb. So, fix
d=ha € Ha.

To prove H(ha) C Ha, fix k(ha) € H(ha). Let v = (k(ha))/a, so
k(ha) = xa; we need to show that @ € H. If H is nuclear, then x = kh €
H. If H is characteristic, then note that x/h = kR, R;'R;' € H, since
R R;'R;' € AUT (G, ) by Lemma 2.14. Hence, x € H.

To prove Ha C H(ha), fix ka € Ha. Let @ = (ka)/(ha), so ka = x(ha);
we need to show that » € H. If H is nuclear, then z = kh™' ¢ H. If
H is characteristic, note that = (((k/h)h)a)/(ha) € H since R,R,R;} €
AUT (G, -). O

Note that the conclusion to Lemma 4.2 fails for the CC-loop in Example
2.20. Even in cases where the cosets fail to be disjoint, one can sometime
prove a Lagrange theorem by analyzing the orbits under right multiplication,
using the following lemma and its corollary:

Lemma 4.3 [f H is a commutative subgroup of G and |H| = p", where p is
a prime and n is finite, then |R(H)| = p" and |L(H)| = p* for some finite
r.f>n.

Proof: R(H) and L(H) are commutative groups (by Lemma 3.4), and are
finitely generated (by definition), and the order of each of their generators is
a power of p (by Lemma 3.22). Thus, |R(H)| and |L(H)| are powers of p.
The R,, for a € H, are all distinct, which implies that r > n; likewise, £ > n.
O

Corollary 4.4 If H is a commulative subgroup of G and |H| = p", where
p is a prime and n is finite, then for each b € G, the sizes of the sets
{ba: o € R(H)} and {ba: o € L(H)} are both power of p and at least p™.

Proof: They are powers of p by Lemma 4.3, and they are at least p™ because
the elements bR, = ba, for a« € H, are all distinct. O

Theorem 4.5 [f G is finite and H is a subloop of G, then |G| is divisible
by |H| if any of the following hold.

1. H s a group and the Sylow p-subgroups of H are commutative for each
prime p.
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2. H s a nuclear subloop of GG.

3. H is a characteristic subloop of 5.

Proof: For (1), it is enough to prove this when H is an abelian p-group, in
which case, the result follows from Corollary 4.4, since the size of each orbit
under R(H) is divisible by |H|. For (2) and (3), the result is immediate by
Lemma 4.2

A special case of (2) or of (3) is that || is divisible by the size of the
nucleus, but this fact is true in all loops [1].

Corollary 4.6 [f1 < |G| < oo, then G contains an isomorphic copy of Z,
for some prime factor p of G.

Proof: By Theorem 3.21 either the nucleus is non-trivial or every (x) is a
group. [

Corollary 4.7 [If |G| = p, where p is prime, then G = Z,,.

Of course, by Wilson [18], this corollary is true of all G-loops.
As with normal subgroups of groups,

Lemma 4.8 If H is an isolated subloop of G, then aH = Ha for all a € G.

If a subloop H is both characteristic and isolated, then one can form a
quotient G/ H as follows. In general, for S, T C H, define their set product,
S T={st:seSandteTl}

Lemma 4.9 Suppose H is a characteristic and isolated subloop of GG. Then
(Ha) - (Hb) = H(ab) for every a,b.

Proof: Since H is a characteristic subloop, the automorphism RnyR;yl
takes H to H, so, as in the proof of Lemma 4.2, (Hz) -y = H(xy) for any
x,y. Likewise, x - (yH) = (2y)H. Now, H(ab) = (Ha)b C (Ha) - (Hb).
To prove equality, fix h,k € H, and we prove (ha) - (kb) € H(ab). Since
(Ha)-(kb) = H(a(kb)), fix b’ € H such that (ha)-(kb) = h'-(a-(k )) and then,
by Lemma 4.8, fix k' € H such that kb = bk’. Then (ha)-(kb) = h'-(a-(bK')).
Now, a(bk’) € a(bH) = H(ab), so fix k” € H so that a(bk’) = k”(ab). Then,
since H is nuclear, (ha) - (kb) = (R'E") - (ab) € H(ab) O
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Definition 4.10 If H is a characteristic and isolated subloop of G, then
G/H ={Ha: a € G}; the product operation on G/ H is set product.

Lemma 4.11 If H is a characteristic and isolated subloop of G, then G/H
is a CC-loop and the map x — Hzx is a homomorphism from G onto G/H
with kernel H.

Lemma 4.13 will produce some examples of characteristic and isolated
subloops.

Lemma 4.12 Suppose that (h) = Z,, p is prime, and |G| is finite. Then
there is a subloop K C G such that |K| = |G| (mod p?) and (h) is a nuclear
subloop of K.

Proof: Let H = (h), and let K = {a € G : 2k, = x}. Then H C K C G.
H is a nuclear subloop of K" by Lemma 3.27. For any b € GG, let O, = {ba :
a € R(H)} be the orbit of b under R(H). Since Ey € R(H) and R(H) is
commutative (Lemma 3.4), each O is either contained in or disjoint from K.
Furthermore, by Corollary 4.4, |Oy| is always a power of p. Now, suppose
b¢ K,so0bE, #b. Then O, contains b,bh, (bh)h, ..., bR~ plus bk}, all of
which are distinct by Lemma 3.29, so p* | |Oy]. Hence, |K| = |G| (mod p?).
]

Now, we already know that p divides |G|; this lemma is trivial when
|G| = p (mod p?), since we could just take K" = (h). When |G| < p*, then
K must equal G. We shall look in detail at the situation |G| = p* later.

Lemma 4.13 If (h) = 7Z,, where p is prime and p* > |G|, then (h) is a
characteristic and isolated subgroup of Gi.

Proof: It is nuclear by Lemma 4.12. To prove it is isolated, fix any = € G,
and let K = (h).J,; we must show that K = (h). Now K = (h) = Z, by
Lemma 3.9. By Lemma 3.28, if K N (h) = {1}, then |G| > p?; hence, fix
a # 1 in KN (h). But then K = (a) = (h). The same argument shows that
(h) is characteristic. O

The following theorem yields a weak version of the fact that the order of
a finite group of exponent p is a power of p:

Theorem 4.14 Suppose that |G| = pm, where p is prime and m — 1 is not
divisible by p, and suppose that (a) = Z, for every a # 1. Then G contains
an isomorphic copy of L, X L, and |G| is divisible by p*.
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Proof: That |G| is divisible by p* is immediate by Theorem 4.5, once we
produce the Z, x Z,. To do that, first iterate Lemma 4.12 a finite number
of times to produce a subloop K C ( such that |K| = |G| (mod p?) and (x)
is a nuclear subloop of K for every © € K. Then, E, = [ for every v € K,
so K is flexible, and hence diassociative (by Proposition 3.26). |K| > p
because m — 1 is not divisible by p. Fix a,b € K with b # 1 and a ¢ (b).
Then H = (a,b) is a group of exponent p, and has size greater than p, so it
contains a copy of Z, X Z,. O

What are the non-group CC-loops of order seven or less? By Wilson [18]
(or Corollary 4.7), these cannot have prime order, and it is easy to see by
inspection that all loops of order four are commutative, and hence groups
if they are CC, so that leaves order six. In that case, we have the CC-loop
from Table 1, and that is the only one, as is true in general for orders 2gq,
where ¢ is an odd prime, by the following theorem:

Theorem 4.15 If q is an odd prime, then there are exactly three CC-loops
of order 2q, exactly two of which are groups.

Proof: Assume |G| = 2q. Let N = N(G,-). Then |N| divides 2¢

First note that |N| cannot be 2: If |[N| = 2, then N is also the center
by Corollary 2.18. Say N = {l,¢}. Fix a different from 1 and ¢. Note
that (a) cannot be a group, since if (a) = Z,, then (a,¢) = Z, X Zy. By
Theorem 4.5, 2n must divide 2¢, which means that G = Z, X Zs, so |[N| = 2g¢,
a contradiction. Let b = a\1, so ab = 1. Then ba # 1 (by Lemma 3.20),
but ba € N (by Theorem 3.11), so ba = ¢. Let £, = R,R, € AUT (G, )
(see Lemma 3.3); note that bF, = ¢b. Since F, is an automorphism and
c is in the center, b*F, = (bE,)* = b*c* for each k (we are defining b* by
Definition 3.18). Now G//N is a CC-loop of size ¢ and hence isomorphic to
Zg, so b? € N. Since ¢ is odd, b'F, = b, which is impossible, since F, is
the identity on V.

So, | N| is either 1, ¢, or 2q.

Next, note that G has some subloop isomorphic to Z,: This is clear if
|N| is q or 2q, so suppose that |[N| = 1 (which will later turn out to be
impossible). Then, by Theorems 3.21 and 4.5, each () is a group of some
order dividing 2¢, and we cannot have that every x has order 2 (or G would
be a boolean group (by Corollary 3.24) and hence have size a power of 2), so
(x) = Z, for some z.
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Now, fix a subloop H isomorphic to Z,. Then H is a a characteristic and
isolated subgroup of G (by Lemma 4.13), and G//H = Z; (by Lemma 4.11).
There are now three cases:

Case 1: 2* =1 for all « ¢ H. Then, for all x ¢ H: R:2 = [* = J? = F,,
and J, | H € AUT(H) (by Lemmas 3.22 and 3.9). Fix some ¢ ¢ H and
some h € I with h # 1. Then the general element of G is of the form h"c',
with n € Z, and ¢ € Z;. Now fix r € Z, such that hJ. = 1", so hc = ch’.

Now, consider an arbitrary element = h"c ¢ H. Then ha = zh® for
some s. But then ha = h"tlc = ch™*" and xh® = (h"c)h* = (ch™)h® =
ch™*5 sor = s. Thus, for all z ¢ H, we have J,, = J., and hence h ), = h.

To compute r: h™ = hE, = (he)e = (he)(ech"h™") = (he)((he)h™) =
(W )Ep. =h™", sor=—1. Hence, forall 2 ¢ H: R2=12=J?=FE, =1,
since F, is the identity on ({#} U H) = G. Hence, E, = [ for all € G,
since H is a nuclear subgroup.

Now we compute: (h™c)(h"c) = (h"¢)(ch™) = (h™e)((ch™™)h" ") =
(h™e)((h™e)h™=™) = (K™ ") Epme. = h™~". Similarly:

h™ . B = pmtn (h™e) - h™ = h™ "¢
h™ - (h"c) = k™ e (h™¢) - (h"c) = h™"

which we recognize as the usual description of the non-abelian group of order
2q as a semidirect product of Z, by Z,.

Case 2: (x) is a group for all & ¢ H, but not all such a have order 2. Fix
c ¢ H with ¢ # 1. Then the only possibility is that ¢ has order 2¢, so that
(¢) = G = Ly,

Case 3: Neither Case 1 nor Case 2 holds. Then fix ¢ such that (c) is
not a group. Then ¢ ¢ H but ¢* € H; however, ¢ # 1. Let h = ¢*; then
H = (h). Let d = c\1, so that ¢d = 1. Now dec # 1 (otherwise, (¢) would be
a group by Lemma 3.20), but de € H (since G/H = Zj), and dc € N (by
Theorem 3.11). Hence, N = H.

As in Case 1, the general element of G is of the form A"¢', with n € Z,
and ¢ € {0,1}. Again, J. [ H € AUT(H), but now we apply Corollary 3.7
toget (J.)* | H=(Jz) | H=171 H. Now, J. | H cannot be the identity
(since c¢\(c? - ¢) = ¢* would imply ¢*- ¢ = ¢- ¢, making (c) a group by Lemma
3.20). Thus, the only possibility is that h.J. = L', so that h"c = ch™". Now,
using H = N and ¢? = h, we easily compute:

h™ - R = hmtn (h™e¢) - h™ = h™~ "¢
h™ - (h"c) = h™*"e (h™c) - (h"c) = httm=n
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It is also easy to verify that these equations indeed yield a CC-loop, which
is then the only non-group CC-loop of order 2¢. [

Regarding Case 3: Note that we have x* = I for each ¢ (h), as might
be expected from examining Table 1. To verify that this really defines a
CC-loop, one may plug the equations directly into LCC and RC'C', but it
is simpler to just verify that [G : N] = 2, and then quote Theorem 3.1 of
Goodaire and Robinson [10], which says that this implies the loop is CC.
The actual construction of this loop is due to Wilson [19].

Next, consider CC-loops of order pg, where p < ¢ are odd primes, with
g — 1 not divisible by p. In the case p = ¢, a non-group CC-loop of order p?
was described in [10]. In the case p < ¢, we shall show there is none at all;
since [10] already proved that any such loop must have a trivial nucleus, it
is not surprising that we begin by proving that the nucleus is non-trivial.

Lemma 4.16 Suppose that |G| = pq, where p < q are odd primes and ¢ — 1
is not divisible by p. If G is not a group, then N(G,-) = Z(G,-), and is
isomorphic to either Z, or Z,.

Proof: Consider the three possibilities for N = N(G, ).

If N=7Z, then G/N is a CC-loop of size p, so G/N = Z,. Then, in view
of Corollary 3.7, every .J, defines an automorphism of N of order p. But,
since p does not divide ¢ — 1, the only such automorphism is the identity, so
every J, is the identity on NV, which means that /V is contained in the center.
The same argument works if N = Z,,

Finally, suppose N = {1}. Then, by Theorems 3.21 and 4.5, each () is a
group of order either p or ¢. Furthermore, the orders of these (x) cannot all
be the same, or Theorem 4.14 would yield a contradiction; hence p < ¢ and
some (x) have order p and some (x) have order ¢. Now, fix a with (a) = Z,.

Then this (a) is characteristic and isolated by Lemma 4.13. In particular,
(a) is nuclear, so by Lemma 3.9, each .J, defines an automorphism of (a).
Furthermore, if © ¢ (a), then 2? = 1, so J? = [ by Lemma 3.22.3, so J,. [ (a)
is the identity. Thus, a commutes with all elements of GG, so that a € N(G)
by Lemma 2.15, a contradiction . O

The proof of the following theorem is patterned after Goodaire and Robin-

son [9][10], from which (1) is immediate, given Lemma 4.16.

Theorem 4.17 Suppose that p < q are odd primes and g—1 is not divisible
by p. Then
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1. p < q: The only CC-loop of order pq is Z,,.

2 There are exactly three CC-loops of order p* besides Z,: and

.p=q:

Lipy X Liy.
Proof: Assume that (G has order pq and is not a group. Do not assume p < ¢,
but assume that ¢ — 1 is not divisible by p, and p — 1 is not divisible by ¢, so
that by Lemma 4.16, we may assume that N = N(G,-) = Z(G, ) = Z,. We
shall now derive a multiplication table in the case p = ¢, and a contradiction
in the case p # q.

Recall that 2% denotes 1 RE, so 2% -2 = 2**1. Note that /N is a CC-loop
of order p, and hence a group, so that for any x,¢, 7, thereisay € N = 7
such that 2' - 27 = 2"y = ya'tI,

For now, fix any b ¢ N. Then b-b* # b°, since otherwise (b) would
be a group (by Lemma 3.20), which would imply that G = Z, x Z,. Let
c=(b-b*)/b° so that b-b* = ¢-b* = b*- c. Note that ¢ € N and ¢ # 1, so
that N = 7 = ().

For any natural numbers r, s, define €(r, s) in the field Z, so that " -b* =
bte . (") Note that €(0,5) = ¢(r,0) = €(r,1) = 0 for any r,s, and our
choice of ¢ implies €(1,2) = 1.

For any s, let a, = R;R;." € AUT(G,-) (applying Corollary 2.7). Note
that ca, = ¢. Define §(s) € Z, so that ba, = b1 /b* =b- %) Since ay is
an automorphism, 0", = b7 /b* = b"¢7%(). That is, we must have (in Z,),
€(r,s) =r-0(s). Note that §(0) =4(1) =0 and §(2) = 1.

Since 0¥ € N, we have 0’ = bPay = bPc¢™P, which is impossible unless
p = q, establishing (1) of the theorem.

We now proceed to examine the possibilities in order ¢*. Fix y € Z, such
that b7 = ¢*. Every element of ¢ is of the form b"¢' for some r,4, and this
representation is unique if we take 0 < r < ¢ and ¢ € Z,. We have a product
on these elements defined by:

T I el L B Ty
c - = br-|—5—q . ci+j+5(r75)+ﬂ lf r —I_ S Z q

Furthermore, it is easy to see that these equations define a loop of size ¢*
(based on the formal symbols &"¢'). It remains to investigate what values of
p and the e(r,s) = r - d(s) really lead to a CC-loop, and what the possible
isomorphism types are.
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To verify that the loop is conjugacy-closed, we simply insert three loop
elements into the equations LOC and RCC'. A straightforward computation
shows that LC'C' is automatically satisfied, and RC'C reduces to:

sO0(r)+td(r+s)=td(r)+sd(r+1t)+1td(s)—sd(t) (R)

Setting r =t =1 yields 6(1+s) = s+3(s), s0 6(s) = s(s—1)/2 (mod ¢), and
hence €(r,t) = rt(t — 1)/2 (mod ¢). It is easy to check that this expression
satisfies (R). So, we have one CC-loop for every choice of u € Z,.

Now, the choice of b ¢ N determined ¢ € N and then p. Let us now
see what other values of p could arise from a different choice, b ¢ N. This
b defines ¢ so that b- b2 = b? - ¢, and then fi € Z, such that b? = ¢, Since
the value of fi only depends on which coset of the nucleus b lies i in, we may
as well assume that b= b", where 1 < n < ¢q. Then b b2 = b>c (i) e(n.2n)
and b = b2 - b = pAnes(nm)te(an, ) so ¢ = cfmn)—e@nn) — @ Algo, bt =
(b™)7 = ™" = "¢’ where v = €(n,n) + €(2n,n) + ...€((¢g — )n,n) =
(g(q — 1)/2) - né(n) = 0 (mod ¢). Thus, i = u/n?, so that the various
possible values of p obtainable from a given loop are all in the ratio of a
perfect square in the field Z,. It follows that up to isomorphism, the three
possibilities for p are 0, 1 (equivalently, any non-zero square), and any non-
square. [

If ¢ is an odd prime and u € Z,, let C(q, 1) denote the CC-loop of order
q? constructed as above. For any loop, ((, ), we may form the mirror, (&, o),
by letting x oy = y - x. A straightforward computation shows that for ¢ > 3,
the mirror of C'(q, i) is isomorphic to C'(q, —u), whereas for ¢ = 3, the mirror
of C(q,p) is isomorphic to C(q, —u + 2).

5 G-loops

It is reasonable to ask to what extent the results of this paper generalize to
G-loops. The results of this section put some limits on this. In Section 3,
we collected a number of results true in all CC-loops. These were mainly
equations, or else implications between equations, such as

Vayzley = yr = w(yz) = y(vz)] (1)

from Lemma 3.4. Here, we show that the only facts of this sort true in all
G-loops are true in all loops.
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An equation is an expression of the form o = 7, where ¢ and 7 are terms
composed of variables, 1, and the functions \, /, . A wuniversal sentence is a
logical sentence of the form Vay--- x,, where v is an equation or a Boolean
combination of equations. Thus, (1) above is a universal sentence.

Theorem 5.1 If ¢ is a universal sentence true in all G-loops, then  is true
in all loops.

Bruck [1] (p. 57) asked if one could find “necessary and sufficient condi-
tions upon the loop G in order that” G be a G-loop. By Theorem 5.1, such
conditions cannot be just universal statements. We do not know whether
such conditions can be first-order. Of course, there are first-order logical
statements true in all G-loops which are not true in all loops. An example
of such a statement is

Vaylry = yz] = Vayzlr(yz) = y(az)] (2)

But, by Theorem 5.1, for a general G-loop, one cannot pin down by a formula
exactly which elements need to commute in order to conclude x(yz) = y(xz).

In proving Theorem 5.1, note first that by the following lemma, it is
sufficient to consider sentences about - and 1:

Lemma 5.2 If ¢ is a universal sentence, then there is a universal sentence
' such that ¢’ does not use \ or [, and such that [¢ <= ¢'] is true in all
loops.

Proof: Replace all occurrences of \ and /, using the observation that in
loops, ¥(x/y) is equivalent to Vz[(zy = ) = ¢¥(z)]. O

Let us call an incomplete binary system a pair (G, 0), where G is a non-
empty set, o : dom(o) — G is a function, and dom(o) C G x G. We use
“roy = z” to abbreviate “(x,y) € dom(o) A x oy = z”. This incomplete
binary system is an incomplete loop iff it contains an element 1 which makes
the loop properties hold as far as o is defined; more formally:

VeeGlzol=1ox = 2]
Vayz € Glroy=z0z = y=z]
Vayz € Glyor =zox = y = z]

Note that if (G,0) is a finite incomplete loop and dom(o) is all of G x G,
then (G, 0) is a loop. By a theorem of Evans, every finite incomplete loop
may be extended to a loop on a possibly larger finite set:
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Lemma 5.3 (Evans [6]) If (G,0) is an incomplete loop, then there is a
loop (H,*) such that G C H, |H| < 2-|G|, and * agrees with o wherever o
is defined.

Now, any universal sentence which fails in some loop fails because of a
finite number of elements — that is, because of some finite incomplete subloop.
This incomplete subloop may then be extended to a finite loop, where the
sentence still fails. Hence,

Lemma 5.4 If ¢ is a universal sentence true in all finite loops, then  is
true in all loops.

Definition 5.5 A loop ((,-) is saturated iff
o (7 is countably infinite.
o Fuery finitely generated subloop of G s finite.

o Whenever (K,%) is a finite loop, H is a subloop of K, and i is an
injective homomorphism from H into G, there is an extension of 1 to
an injective homomorphism from K into G.

The notion of “saturated” is borrowed from model theory [3], but it has
a somewhat different meaning there. Note in particular, with H = {1}, that
a saturated loop contains isomorphic copies of all finite loops. So,

Lemma 5.6 [fthe loop (G, ) is saturated, then every universal sentence true
in (G,-) is true in all loops.

Furthermore, the saturated loop is unique.
Lemma 5.7 There is exactly one saturated loop, up to isomorphism.
Lemma 5.8 The saturated loop is a G-loop.

Proof: It is sufficient to prove that every loop isotope of a saturated loop is
saturated. [

Proof of Theorem 5.1: If ¢ is true in all G-loops, then it is true in the
saturated loop, and hence in all loops. [
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6 Concluding Remarks

We feel that we have demonstrated that CC-loops have a non-trivial struc-
ture, but we have not settled all possible questions. Following Theorems
4.15 and 4.17, one might try to characterize all CC-loops of sizes pg or p°
(for primes p,q). A more general question is whether the nucleus must be
non-trivial. In fact, as pointed out in [10], in all known examples the loop
modulo the nucleus is a commutative group.

In another direction, one might try to develop a structure theory of G-
loops. It is still unknown whether there is a non-group G-loop of order 15.
Perhaps one might extend the results of Section 5 to show that “there is no
structure theory”, but it is not clear exactly what such a statement would
mean.

We do not know whether it pays to study the consequences of LCC
and RCC' separately. Related to this, one might study LCC and RCC
quasigroups. Note that in a quasigroup, RCC implies that there is a left
identity (apply RCC with zy = z to show that yx = « for all ), so that
every C'C' quasigroup is a loop.
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