Characterizing Subgroups of Compact Abelian Groups

Dikran Dikranjan[∗] and Kenneth Kunen†

December 20, 2005

Abstract

We prove that every countable subgroup of a compact metrizable abelian group has a characterizing set. As an application, we answer several questions on maximally almost periodic (MAP) groups and give a characterization of the class of (necessarily MAP) abelian topological groups whose Bohr topology has countable pseudocharacter.

1 Introduction

We shall write our abelian groups additively, and we view the circle $\mathbb T$ as $\mathbb R/\mathbb Z$; then, for $z \in \mathbb{T}$, $||z||$ is the distance to the nearest integer, so $0 \leq ||z|| \leq 1/2$. All topological groups are assumed to be Hausdorff unless otherwise noted.

For a topological abelian group X, \widehat{X} denotes the group of all continuous characters on X (i.e., the continuous homomorphisms from X to $\mathbb T$), and $\widehat X$ is given the compact open topology. When X is locally compact, the *Pontryagin Duality Theorem* lets us identify X with \hat{X} ; see [19, 22, 27]. For most of the results in this paper, X will be compact, so that \widehat{X} will be discrete.

One can use countable sequences or countable sets of characters to define subgroups of X as follows:

Definition 1.1 Let X be a topological abelian group:

- a. [16] For a sequence $\underline{u} = \langle u_n : n \in \omega \rangle$ of elements of \widehat{X} , let $s_{\underline{u}}(X)$ be the set of all $x \in X$ such that $u_n(x) \to 0$. If $H = s_u(X)$, we say that u characterizes H.
- b. [20, 21] For a countably infinite subset B of \widehat{X} , let $\mathcal{C}_B(X)$ be the set of all $x \in X$ such that $\langle \varphi(x) : \varphi \in B \rangle$ converges to 0 in \mathbb{T} . If $H = \mathcal{C}_B(X)$, we say that B characterizes H.

[∗]Partially supported by INDAM (GNSAGA)

[†]Partially supported by NSF Grant DMS-0097881.

1 INTRODUCTION 2

Note that $s_u(X)$ and $\mathcal{C}_B(X)$ are both subgroups of X. We study here which subgroups of X can be characterized as an $s_u(X)$ or a $\mathcal{C}_B(X)$. Observe that $s_u(X)$ and $\mathcal{C}_B(X)$ are minor variants of the same notion:

Lemma 1.2 Let X be any compact topological abelian group.

- 1. $C_B(X) = s_u(X)$ for any <u>u</u> which is a 1-1 enumeration of B.
- 2. If H is closed and $|X:H|$ is finite, then $H = s_u(X)$ for some u.
- 3. Every $C_B(X)$ is a Haar null set.
- 4. If $|X:H|$ is infinite and $H = s_u(X)$, then $H = \mathcal{C}_B(X)$ for some B.

Proof. (1) is clear from the definitions. For (2), $H^{\perp} = {\varphi \in \hat{X} : \varphi(H) = \{0\}}$ is finite (of size $|X : H|$), and $H = s_u(X)$ for any $u : \omega \to H^{\perp}$ which lists each character in H^{\perp} infinitely often. (3) follows easily from the orthogonality of the characters; see, e.g., [4, 13, 21]. (4) will be proved in Section 2.

Note also that every $C_B(X)$ and $s_u(X)$ is a Borel set (in fact, an $F_{\sigma\delta}$), and every Borel subgroup of finite index is closed and open and of positive Haar measure. By Lemma 1.2, characterization as an $s_u(X)$ is equivalent to characterization as a $\mathcal{C}_B(X)$ except in the trivial case of subgroups of finite index.

The subgroups $s_u(X)$ have been studied by many authors, especially in the case $X = \mathbb{T}$, where \widehat{X} is identified with \mathbb{Z} (see [1, 6, 7, 10, 11, 15, 18, 24, 25]). When $x \in \mathbb{T}$ is a non-torsion element, the behavior of the sequences of the form $\langle u_n(x) : n \in \omega \rangle$ is related to Diophantine approximation and dynamical systems (more specifically, the Sturmian flow [26]), as well as to the study of precompact group topologies with converging sequences [4, 5, 16].

Some instances of characterization in $\mathbb T$ were described in Armacost's book [1], although this book predates the "characterization" terminology. Specifically, for each prime p, the Prüfer subgroup $\mathbb{Z}_{p^{\infty}}$ of $\mathbb T$ is characterized by $\{p^n : n \in \omega\}$. Also, let $D = \{n : n \in \omega\}$. Then the set of rational points of \mathbb{T} (i.e., \mathbb{Q}/\mathbb{Z}) is properly contained in \mathcal{C}_D (in fact, this \mathcal{C}_D is uncountable). The elements of \mathcal{C}_D are called the topologically torsion elements of $\mathbb T$ in [1]; they are described further in [14, 15, 17].

It is easy to see that \mathbb{Q}/\mathbb{Z} can be characterized by some set of characters:

Proposition 1.3 If $B = \{k \cdot n! : 0 < k \le n \in \omega\}$, then $\mathbb{Q}/\mathbb{Z} = C_B(\mathbb{T})$.

It is not always so easy to write down a characterizing set explicitly, but we shall show:

Theorem 1.4 Every countably infinite subgroup of a compact metrizable abelian $group X$ has a characterizing set.

1 INTRODUCTION 3

This theorem resolves Problem 5.3 from [16]. The proposition and theorem will be proved in Section 2. A number of important special cases of the theorem are already in the literature. In particular, when $X = \mathbb{T}$, it was proved by Bíró, Deshouillers, and Sós [10]. Earlier results by Larcher [25] and Kraaikamp and Liardet [24] relate the characterizability of infinite cyclic subgroups $\langle \alpha \rangle$ of T to the continued fraction representation of α ; see also [6]. It was proved in [16] that every cyclic subgroup of the group $\widehat{\mathbb{Z}_{p^{\infty}}}$ of p-adic integers has a characterizing set. Furthermore, Bíró $[9]$ has proved Theorem 1.4 in the case that the subgroup is dense in X , finitely generated, and torsion-free. Also, Beiglböck, Steineder, and Winkler $[8]$ have independently proved Theorem 1.4 by a different method.

Note that in Theorem 1.4, X must be metrizable (equivalently, second countable), since $\mathcal{C}_B(X)$ always contains $\bigcap_{\varphi \in B} \ker(\varphi)$, and this set will be uncountable if X is not metrizable. We do not know a simple general criterion for deciding whether $H \leq X$ is characterizable. For closed H, this is easy; H is of the form $s_u(X)$ iff H is a G_{δ} (see Proposition 1.8 below), and then, applying Lemma 1.2, H is of the form $\mathcal{C}_B(X)$ iff H is a G_{δ} of infinite index in X. In Section 2, we shall prove the following theorem, which shows that not all F_{σ} subgroups can be characterized, even in metrizable compact groups:

Theorem 1.5 Suppose that X is a compact abelian group and $H = \bigcup_n F_n$, where each $F_n \leq X$ is closed and each $F_n \nleq F_{n+1}$. Then the following are equivalent:

- a. $H = \mathcal{C}_B(X)$ for some countably infinite $B \subseteq \widehat{X}$.
- b. $H = s_{\underline{u}}(X)$ for some $\underline{u} : \omega \to \widehat{X}$.
- c. For some m: X/F_m is metrizable and $|F_{n+1}:F_n|$ is finite for all $n \geq m$.

Next, we give an application of Theorem 1.4 to non-compact groups. If (G, τ) is a topological abelian group, we let (G, τ^+) be its *Bohr modification*. So, τ^+ is the coarsest topology which makes all (continuous) characters of (G, τ) continuous. Clearly, τ^+ is coarser than τ . When τ is clear from context, we refer to (G, τ^+) as G^+ . It is easy to find Hausdorff G for which G^+ is indiscrete, but we are primarily interested in the case where G^+ is also Hausdorff; such G are called MAP (maximally almost periodic).

A topological space X has *countable pseudocharacter* iff every singleton $\{x\}$ is a G_{δ} set. This implies that X is a T_1 space, which, in the case of topological groups, is equivalent to being Hausdorff.

Corollary 1.6 For a MAP topological abelian group G the following are equivalent:

- a. Every countable $H \leq G$ is of the form $s_{\underline{u}}(G)$ for some $\underline{u} : \omega \to \widehat{G}$.
- b. Some countable $H \leq G$ is of the form $s_{\underline{u}}(G)$ for some $\underline{u} : \omega \to \widehat{G}$.
- $c. G⁺$ has countable pseudocharacter.

Proof. (a) \rightarrow (b) is obvious. For (b) \rightarrow (c), note that $K = \bigcap_n \ker(u_n)$ is a G_δ set in G^+ , and $K \leq H$, so K is countable. Since G^+ is Hausdorff, it follows that $\{0\}$ is a G_{δ} set in G^{+} .

For $(c) \rightarrow (a)$: Since $\{0\}$ is a G_{δ} set in G^{+} , there is a countable $\Phi \subseteq \widehat{G}$ such that $\{0\} = \bigcap \{\ker(\varphi) : \varphi \in \Phi\}$. Let $\Delta : G \to \mathbb{T}^{\Phi}$ be the evaluation map: $\Delta(x)(\varphi) =$ $\varphi(x)$. Then Δ is 1-1 and continuous. Applying Theorem 1.4 and Lemma 1.2.1, let $\underline{v} = \langle v_n : n \in \omega \rangle$ be a sequence of characters of \mathbb{T}^{Φ} such that $\Delta(H) = s_{\underline{v}}(\mathbb{T}^{\Phi})$. If $u_n = v_n \circ \Delta$, then $H = s_u(G)$. \Box

Note that if we did not assume that G is MAP in Corollary 1.6, either of condition (a) (just using $\{0\} = s_u(G)$) or condition (c) would imply that G is MAP anyway.

Since having a characterizing sequence (or set) is a rather restrictive property, one can relax it in the following way, following [16]:

Definition 1.7 For a subgroup H of a topological abelian group X,

$$
\gcd(H) = \bigcap \left\{ s_{\underline{u}}(X) : u : \omega \to \widehat{X} \ \& \ H \subseteq s_{\underline{u}}(X) \right\}
$$

H is g-closed iff $\text{gcd}(H) = H$.

Of course, H is g-closed whenever $H = s_u(X)$ for some u , but a g-closed subgroup need not be of the form $s_u(X)$. For example,

Proposition 1.8 Suppose that H is a closed subgroup of the compact X. Then:

1. H is $\mathfrak{q}\text{-closed}$. 2. $H = s_u(X)$ for some <u>u</u> iff H is a G_δ set.

Proof. For (1), fix $x \notin H$, and then fix $\varphi \in \hat{X}$ with $\varphi(x) \neq 0$ but $\varphi(H) = \{0\}$. If $u_n = \varphi$ for all n, then $x \notin s_u(X)$. Thus, $x \notin \text{gel}(H)$. For $(2) \leftarrow$, if H is a closed G_{δ} , then $H^{\perp} = {\varphi \in \hat{X} : \varphi(H) = {0}}$ is countable, and then $H = s_{\underline{u}}(X)$ for any $\underline{u}: \omega \to H^{\perp}$ which lists each character in H^{\perp} infinitely often. For $(\overline{2}) \to$, let $K = \bigcap_n \ker(u_n)$, and let $\pi: X \to X/K$ be the natural quotient map. Then X/K is second countable, and $\pi(H)$ is closed and hence a G_{δ} in X/K , so $H = \pi^{-1}\pi(H)$ is a G_{δ} in X. \mathbf{I}

Likewise, Theorem 1.4 holds only for compact metrizable X , but metrizability is not needed for:

Corollary 1.9 Every countably infinite subgroup of a compact abelian group X is g-closed.

.

1 INTRODUCTION 5

Proof. Fix a countable H and $x \notin H$. Then, let Γ be a countable subgroup of \widehat{X} which separates the elements of $H \cup \{x\}$, let $K = \bigcap {\rm ker}(\psi) : \psi \in \Gamma$, and let $\pi: X \to X/K$ be the natural quotient map. Then π is 1-1 on $H \cup \{x\}$, and one can apply Theorem 1.4 in X/K to fix $B \subseteq \overline{X}/\overline{K}$ with $\pi(H) = \mathcal{C}_B(X/K)$. If $\{v_n : n \in \omega\}$ is a 1-1 listing of B and $u_n = v_n \circ \pi$, then $H \leq s_u(X)$ and $x \notin s_u(X)$. \Box

This generalizes Theorem 1.2 of [16], which proved the result for cyclic subgroups, and it answers Problem 5.1 and Question 5.2 of [16]. Note that Corollary 1.9 actually holds for all MAP X, since one can apply the corollary in the Bohr compactification, b(X). We do not know if every F_{σ} subgroup of a compact X is g-closed, although, in contrast to Theorem 1.5,

Proposition 1.10 Suppose that X is a compact abelian group and $H = \bigcup_n F_n$, where each $F_n \leq X$ is closed and each $F_n \leq F_{n+1}$. Then H is g-closed.

Proof. Fix $x \in X \backslash H$. Since F_n is closed, we can choose $u_n \in \hat{X}$ such that $F_n \leq \ker(u_n)$ and $||u_n(x)|| \geq 1/4$. Then $H \leq s_u(X)$ and $x \notin s_u(X)$. \Box

 $F_{\sigma\delta}$ subgroups certainly need not be g-closed. In fact, whenever X is infinite, there is an $F_{\sigma\delta}$ subgroup H such that H is a Haar null set and $\mathfrak{gl}(H) = X$; see [21], which extends earlier arguments in [4, 20].

The next corollary says that every totally bounded countable metrizable group topology can be "encoded" by means of a *single* τ -convergent zero-sequence:

Corollary 1.11 Let (G, τ) be a countable totally bounded metrizable abelian group. Then there exists a sequence $\underline{u} = \langle u_n : n \in \omega \rangle$ with $u_n \to 0$ in (G, τ) such that τ is the finest totally bounded group topology on G in which $u_n \to 0$.

Proof. Let G_d denote the group G with the discrete topology, and let $X = \widehat{(G_d)}$. Let $H \leq X$ be the set of $\varphi : G \to \mathbb{T}$ which are τ -continuous. Then H is countable and X is metrizable. Identifying G_d with \widehat{X} , apply Theorem 1.4 to fix $u_n \in G$ with $H = s_u(X)$. Now, suppose that τ' is a strictly finer totally bounded group topology on G. Then there is a τ' -continuous character x of G which is not τ -continuous, so that $x \in X$ but $x \notin H$. Then $x(u_n) = u_n(x) \nightharpoonup 0$ in \mathbb{T} , so $u_n \nightharpoonup 0$ in (G, τ') . \perp

It is easy to see that countability is necessary; that is, if (G, τ) is a totally bounded metrizable abelian group such that τ is the finest totally bounded group topology on G in which some sequence $u_n \to 0$, then G is countable.

Corollary 1.11 should be compared to the fact that the finest *Hausdorff* group topology that makes a given sequence converge to 0 is never Fréchet-Urysohn $[28]$. In the case $G = \mathbb{Z}$, the encoding sequence <u>u</u> can often be displayed explicitly. For example, if τ is the p-adic topology, one can take $u_n = p^n$. If τ is the profinite topology, then one can let u enumerate $\{k \cdot n! : 0 \le k \le n \in \omega\}$ by Proposition 1.3.

2 The Proofs

We begin by relating characterizable subgroups of N to characterizable subgroups of X, where N is a subgroup of X :

Lemma 2.1 Suppose that $H \leq N \leq X$, where X is a compact abelian group, N is closed in X, X/N is metrizable, and $H = \mathcal{C}_B(N)$ for some countably infinite $B \subseteq \widehat{N}$. Then $H = C_D(X)$ for some countably infinite $D \subseteq \widehat{X}$.

Proof. Let $N^{\perp} = {\varphi \in \hat{X} : \varphi(N) = \{0\}}$, which is countable.

If $|N^{\perp}| = \aleph_0$: For $\varphi \in B$, choose $\widetilde{\varphi} \in \widehat{X}$ such that $\widetilde{\varphi}|N = \varphi$. Let $D = {\widetilde{\varphi}}$: $\varphi \in B$ $\cup N^{\perp}$. Then $\mathcal{C}_D^X \cap N = \mathcal{C}_B^N$, and if $y \in X \backslash N$, then $y \notin \mathcal{C}_{N^{\perp}}^X$, so $y \notin \mathcal{C}_D^X$.

If $|N^{\perp}| = k < \aleph_0$: Then $|X : N| = k$. Let $D = \{ \psi \in \widehat{X} : \psi \upharpoonright N \in B \}$. For $\varphi \in B, |\{\psi \in D : \psi \mid N = \varphi\}| = k$, so $\mathcal{C}_D^X \cap N = \mathcal{C}_B^N$. Now, fix $y \in X \backslash N$, and fix any $\alpha \in N^{\perp}$ such that $\alpha(y) \neq 0$. Note that $\psi \in D$ iff $\alpha + \psi \in D$, so $\langle \psi(y) : \psi \in D \rangle$ cannot converge to 0. \Box

Proof of Lemma 1.2.4. We have X compact, $H \leq X$, $|X : H|$ infinite, and $H = s_{\underline{u}}(X)$. We shall produce a countably infinite $D \subseteq \widehat{X}$ such that $H = \mathcal{C}_D(X)$. Let $N = \overline{H}$ and let $K = \bigcap {\rm{ker}}(u_n) : n \in \omega$. Then $K \leq H \leq N \leq X$, and X/K is metrizable. If H is closed in X, then X/H is metrizable and infinite, so $H = \mathcal{C}_{H^{\perp}}(X).$

Now, assume that H is not closed, so $H \neq N$. Let $v_n = u_n \upharpoonright N$, so $H = s_{\underline{v}}(N)$. Let $B = \{v_n : n \in \omega\} \subseteq \widehat{N}$. Then B is infinite (since otherwise \underline{H} would be closed), and $\{n : u_n = \psi\}$ is finite for each non-zero $\psi \in \widehat{N}$ (since $N = \overline{H}$), so $H = \mathcal{C}_B(N)$. We are now done by Lemma 2.1.

Proof of Proposition 1.3. It is clear that $\mathbb{Q}/\mathbb{Z} \subseteq \mathcal{C}_B(\mathbb{T})$. Now, any $x \in [0,1]$ can be written in a factorial expansion as $x = \sum_{n=1}^{\infty} c_n/(n+1)!$, where the integers c_n satisfy $0 \leq c_n \leq n$. Note that $\sum_{n=k}^{\infty} n/(n+1)! = 1/k!$. Thus, if $x \notin \mathbb{Q}$, then $c_n \notin \{0, n\}$ for infinitely many n. For any n, we have $n! x \equiv y_n \pmod{1}$, where $y_n = n! \sum_{m=n}^{\infty} c_m/(m+1)!$. When $c_n \notin \{0, n\},$

$$
\frac{1}{n+1} = n! \left[\frac{1}{(n+1)!} \right] \le y_n \le n! \left[\frac{n-1}{(n+1)!} + \frac{1}{(n+1)!} \right] = \frac{n}{n+1} ,
$$

so we can find a k with $0 < k \leq n$ such that $||kn!x|| = ||kn!y_n|| \geq 1/4$. When $x \notin \mathbb{Q}$, there are infinitely many such k, n, so $x \notin C_B(\mathbb{T})$. \Box

We now prove three lemmas for Theorem 1.4. As is common in metric spaces, $B(x; \varepsilon)$ denotes an open ball, and $N(F; \varepsilon)$ denotes the open set $\bigcup \{B(x; \varepsilon) : x \in F\}.$

2 THE PROOFS 7

Lemma 2.2 Let $(X; d)$ be a metric space, F any countably infinite subset of X, and F_n finite subsets such that $F_n \nearrow F$. Then there are positive $\varepsilon_n \searrow 0$ such that for all $x \notin F$, there are infinitely many n with $x \notin N(F_n; \varepsilon_n)$.

Proof. Choose $\varepsilon_n \searrow 0$ so that $2\varepsilon_n < d(u, v)$ whenever u, v are distinct elements of F_{n+1} . Now, fix m and assume that $x \in N(F_n; \varepsilon_n)$ for all $n \geq m$; we show that $x \in F$. For each $n \geq m$, choose $u_n \in F_n$ such that $d(x, u_n) < \varepsilon_n$. Then $d(u_n, u_{n+1}) \leq d(x, u_n) + d(x, u_{n+1}) < \varepsilon_n + \varepsilon_{n+1} \leq 2\varepsilon_n$, so $u_n = u_{n+1}$. Thus, the u_n are all equal to some $u \in F$, and $x = u$.

If G is a discrete group, then G is dense in its Bohr compactification; if this fact is stated in terms of the compact group $X = \widehat{G}$, we get the following lemma, which generalizes an old result of Kronecker; see [12, p. 1188], [22, Cor. 26.16], or [23].

Lemma 2.3 Let X be a compact abelian group, x_1, \ldots, x_t a finite list of elements of X, $\psi: X \to \mathbb{T}$ a possibly discontinuous homomorphism, and $\delta > 0$. Then there is a $\varphi \in \widehat{X}$ such that $\|\psi(x_i) - \varphi(x_i)\| < \delta$ for $i = 1, \ldots, t$.

Using this, one can give a direct proof of Corollary 1.9, without using Theorem 1.4. We have $H < X$, where H is countable and X is compact. Fix $x \notin H$ and list H as $\{e_n : n \in \omega\}$. For each $n, x \notin \langle e_0, e_1, \ldots, e_n \rangle$ implies that there is a homomorphism $\psi_n : X \to \mathbb{T}$ such that $\|\psi_n(x)\| > 1/4$ and $\ker(\psi_n)$ contains e_0, e_1, \ldots, e_n . By Lemma 2.3, there is a $u_n \in \hat{X}$ such that $||u_n(x)|| > 1/4$ and $||u_n(e_j)|| < 1/n$ for $j = 0, 1, \ldots, n$. Then $H \leq s_{\underline{u}}(X)$ and $x \notin s_{\underline{u}}(X)$.

Definition 2.4 Let X be any topological abelian group and $E \subseteq X$. The m-quasiconvex hull $\operatorname{qc}_m(E)$ of E is the set

$$
\left\{ x \in X : \ \forall \varphi \in \widehat{X} \ [\forall e \in E \ [\|\varphi(e)\| \le 2^{-m-2}] \implies \|\varphi(x)\| \le 1/4 \right] \right\}
$$

 $\mathrm{qc}(E) = \mathrm{qc}_0(E).$

The quasi-convex hull $\operatorname{qc}(E)$ is discussed in [2, 3]. Note that $\operatorname{qc}_m(E)$ gets bigger as m gets bigger, and $E \subseteq \text{qc}_0(E)$.

Lemma 2.5 Let $m \in \omega$ and let E be a finite subset of a compact abelian group X. Then:

a. $\operatorname{qc}_m(E) \subseteq \langle E \rangle$. b. $\operatorname{qc}_m(E)$ is finite.

2 THE PROOFS 8

Proof. For (a), fix $x \notin \langle E \rangle$. There exists a possibly discontinuous homomorphism ψ such that $\psi(E) = \{0\}$ and $\|\psi(x)\| > 1/4$. Apply Lemma 2.3 to find a $\varphi \in \hat{X}$ with $|\varphi(e)| < 2^{-m-2}$ for each $e \in E$ and $\|\varphi(x)\| > 1/4$, so that $x \notin \mathrm{qc}_m(E)$.

For (b), let $H = \langle E \rangle$. Then H is an internal direct product of cyclic groups; say $H \cong \langle a_1 \rangle \times \cdots \times \langle a_n \rangle$, where $a_1, \ldots, a_n \in H$. For each j, the order $o(a_i)$ is either a positive integer or ∞ . Fix a positive integer $M \ge \max\{o(a_j) : o(a_j) \ne \infty\}$ such that also each $e \in E$ is of the form $\sum_{j=1}^n \mu_j a_j$, where each $|\mu_j| \leq M$. Let F_0 be the set of all elements $\sum_{j=1}^{n} \nu_j a_j$ such that each $|\nu_j| \leq 2^{m+1}M$. Then F_0 is finite, and we show $\operatorname{qc}_m(E) \subseteq F_0$.

Fix $x = \sum_{j=1}^{n} \nu_j a_j \notin F_0$, with each $|\nu_j| < o(a_j)$. Then, fix ℓ such that $|\nu_\ell| >$ $2^{m+1}M$. Then $o(a_{\ell}) > |\nu_{\ell}| > M$, so $o(a_{\ell}) = \infty$. We can then define $\psi \in \text{Hom}(H, \mathbb{T})$ so that $\psi(\sum_{j=1}^n \mu_j a_j) = \mu_\ell/(2\nu_\ell) \pmod{1}$ for all $\sum_{j=1}^n \mu_j a_j \in H$. Then $\psi(x) = 1/2$, but for each $e = \sum_{j=1}^{n} \mu_j a_j \in E$, we have $\|\psi(e)\| < M \cdot 1/(2^{m+2}M) = 2^{-m-2}$. By Lemma 2.3, there is a $\varphi \in \hat{X}$ such that $\|\varphi(x)\| > 1/4$, but $\|\varphi(e)\| < 2^{-m-2}$ for each $e \in E$. Thus, $x \notin \mathrm{qc}_m(E)$. \square

This lemma actually holds for all MAP X, since one can apply the lemma in $\mathbf{b}(X)$. For $m = 0$, this lemma was proved in [2] (see Lemma 7.10 and Theorem 7.11).

The inclusion $\operatorname{qc}_m(E) \subseteq \langle E \rangle$ can fail when E is infinite. For example, $\operatorname{qc}_m(E)$ = E for every $m \in \omega$ whenever $E = \langle E \rangle \leq X$.

Proof of Theorem 1.4. Let X be a compact metric abelian group with $G = \hat{X}$. Let E a countably infinite subgroup of X . In view of Lemma 2.1, we may assume that E is dense in X. Let $E_n \nearrow E$, with each E_n finite. Let $F_n = \text{qc}_n(E_n)$. Then $E_n \subseteq F_n \subseteq E$, $F_n \nearrow E$, and F_n is finite by Lemma 2.5. Let d be a metric for X. Applying Lemma 2.2, choose positive $\varepsilon_n \searrow 0$ such that for all $x \notin E$, there are infinitely many n with $x \notin N(F_n; \varepsilon_n)$.

Let $A_n = \{ \varphi \in \hat{X} : \forall e \in E_n \, [\|\varphi(e)\| \leq 2^{-n-2}] \}.$ Applying the definition of $\operatorname{qc}_n(E_n),$

 $\forall x \notin F_n \exists \varphi \in A_n \ [\|\varphi(x)\| > 1/4] \ .$

Hence, $\bigcup_{\varphi \in A_n} \{x \in X : ||\varphi(x)|| > 1/4 \} \supseteq X \setminus N(F_n; \varepsilon_n)$. Since $X \setminus N(F_n; \varepsilon_n)$ is compact, we can choose a finite $B_n \subseteq A_n$ such that

$$
\forall x \notin N(F_n, \varepsilon_n) \exists \varphi \in B_n \left[\|\varphi(x)\| > 1/4 \right] .
$$

Set $B = \bigcup_{n \in \omega} B_n$ and note that B must be infinite, since (using $\overline{E} = X$)

$$
\forall \varphi \neq 0 \; [|\{ n : \varphi \in A_n \}| < \aleph_0] \; . \tag{*}
$$

Clearly, $E \subseteq \mathcal{C}_B$. To prove that $E = \mathcal{C}_B$ fix $x \notin E$. Then $x \notin N(F_n; \varepsilon_n)$ for infinitely many n. For these n, choose $\varphi_n \in B_n$ so that $\|\varphi_n(x)\| > 1/4$. By $(*)$, $\{\varphi_n : x \notin N(F_n; \varepsilon_n)\}\$ is infinite, so $x \notin \mathcal{C}_B$. \square

Next, we prove three lemmas for Theorem 1.5.

Lemma 2.6 Suppose that X is a compact abelian group, F a closed subgroup, and B a countably infinite subset of \widehat{X} . Then $F \leq C_B$ iff $F \leq \text{ker}(\varphi)$ for all but finitely many $\varphi \in B$.

Proof. For the non-trivial direction, assume that $F \leq C_B$ but $F \nleq \text{ker}(\varphi)$ for infinitely many $\varphi \in B$. Since \mathcal{C}_B gets bigger as B gets smaller, we may assume that $\varphi \mid F \neq 0$ for all $\varphi \in B$, and that one of the following two cases holds:

Case I: The $\varphi \restriction F = \psi \in \widehat{F}$ for all $\varphi \in B$: But then any $x \in F \setminus \ker(\psi)$ will be in $F \backslash \mathcal{C}_B$, contradicting $F \leq \mathcal{C}_B$.

Case II: The $\varphi \restriction F$ for $\varphi \in B$ are all different: Let $D = {\varphi \restriction F : \varphi \in B}$. Then $\mathcal{C}_B \cap F = \mathcal{C}_D$, which is a null set in F by Lemma 1.2, contradicting $F \leq \mathcal{C}_B$.

Lemma 2.7 Suppose that X is a compact metric abelian group, with an invariant metric d. Let $H \leq X$, where $H = \bigcup_n F_n$, each F_n is closed, and each $F_n < F_{n+1}$ X. Assume that $y_n \in F_{n+1} \backslash F_n$ are chosen so that each $d(y_{n+1}, 0) \leq (d(y_n, F_n))/3$. Define $x = \sum_{k=0}^{\infty} y_k$. Then $x \notin H$.

Proof. By induction on k, we have $d(y_{n+k}, 0) \leq (d(y_n, F_n)) \cdot 3^{-k}$ for all $n \geq 0$ and $k > 0$. This shows that the sum defining x really converges, and also lets us define $x_n = \sum_{k=n}^{\infty} y_k$; so $x = x_0$. Now, fix n, and we show that $x \notin F_n$. Since $(x-x_n) \in F_n$, it is sufficient to show that $x_n \notin F_n$. Now $y_n \notin F_n$ and $x_n = y_n + x_{n+1}$. Also, $d(x_{n+1}, 0) \leq \sum_{k=1}^{\infty} d(y_{n+k}, 0) \leq d(y_n, F_n) \cdot \sum_{k=1}^{\infty} 3^{-k} = d(y_n, F_n)/2$. Thus, $d(x_n, F_n) \geq d(y_n, F_n) - d(x_{n+1}, 0) \geq d(y_n, F_n)/2 > 0.$

Finally, we need the (trivial) converse to Lemma 2.1:

Lemma 2.8 Suppose that $H \leq N \leq X$, where X is a compact abelian group, N is closed in X, H is not closed in X, and $H = \mathcal{C}_D(X)$ for some countably infinite $D \subseteq \widehat{X}$. Then $H = \mathcal{C}_B(N)$ for some countably infinite $B \subseteq \widehat{N}$.

Proof. By Lemma 1.2.1, $H = s_{\underline{u}}(X)$, where each $u_n \in \widehat{X}$. But then also $H = s_{\underline{v}}(N)$, where each $v_n = u_n \upharpoonright N \in \widehat{N}$. We now get B by Lemma 1.2.4.

Proof of Theorem 1.5. (a) \leftrightarrow (b) follows from Lemma 1.2, since $|X : H|$ is infinite. For $(c) \rightarrow (a)$, we may, replacing X by X/F_m assume that $F_m = \{0\}$. But then H is countable, so the result follows by Theorem 1.4.

For $(a) \to (c)$: Assume (a) , and let $K = \bigcap {\rm ker}(\varphi) : \varphi \in B$. Then $K \leq H$ and X/K is metrizable. Observe that $K \leq F_m$ for some m; otherwise, we have $K \cap F_n \nearrow K$, where each $K \cap F_n \nleq K$. If some $|K : K \cap F_n|$ is finite, this is clearly a contradiction, while if all $|K : K \cap F_n|$ are infinite, this is a contradiction by the Baire Category Theorem.

We are now done if we can show that $|F_{n+1}: F_n|$ is finite for all but finitely many n; so, assume that this is false and we shall derive a contradiction. Re-indexing, we

REFERENCES 10

may assume that $|F_{n+1}: F_n|$ infinite for each n, and we may assume that $F_0 = \{0\}.$ We may also assume that $X = \overline{H}$; if not, replace X by $N = \overline{H}$ and apply Lemma 2.8. Then $\hat{X} = F_0^{\perp} > F_1^{\perp} > F_2^{\perp} \cdots$, and $\bigcap_n F_n^{\perp} = \{0\}.$

We may assume that X is metrizable; otherwise replace X by X/K . We may assume that $0 \notin B$, so that $B = \bigcup_n B_n$, where $B_n = B \cap F_n^{\perp} \backslash F_{n+1}^{\perp}$. By Lemma 2.6, each B_n is finite.

We shall now produce an $x \in C_B(X) \backslash H$, contradicting $H = C_B(X)$.

Let d be an invariant metric for X. Inductively choose $y_n \in F_{n+1} \backslash F_n$ so that $\|\varphi(y_n)\| \leq 2^{-n}$ for all $\varphi \in B_0 \cup \cdots \cup B_n$ and each $d(y_{n+1}, 0) \leq (d(y_n, F_n))/3$; this is possible because each F_n is nowhere dense in F_{n+1} . Let $x = \sum_{k=0}^{\infty} y_k$. Then $x \notin H$ by Lemma 2.7.

If $\varphi \in B_n$, then $\|\varphi(x)\| \le \sum_{k=0}^{\infty} \|\varphi(y_k)\| = \sum_{k=n}^{\infty} \|\varphi(y_k)\| \le \sum_{k=n}^{\infty} 2^{-k} = 2^{1-n}$. Thus $\langle \varphi(x) : \varphi \in B \rangle$ converges to 0 in T. \Box

References

- [1] D. L. Armacost, The structure of locally compact Abelian groups, Monographs and Textbooks in Pure and Applied Mathematics, **68**, Marcel Dekker, Inc., New York, 1981.
- [2] L. Aussenhofer, Contributions to the duality theory of abelian topological groups and to the theory of nuclear groups, Dissertationes Math. (Rozprawy Mat.) 384 (1999).
- [3] W. Banaszczyk, Additive subgroups of topological vector spaces, Lecture Notes in Mathematics, 1466. Springer-Verlag, Berlin, 1991.
- [4] G. Barbieri, D. Dikranjan, C. Milan and H. Weber, Answer to Raczkowski's questions on convergent sequences, Topology Appl. **132** (2003), 89–101.
- [5] G. Barbieri, D. Dikranjan, C. Milan and H. Weber, Convergent sequences in precompact group topologies, Applied General Topology **6** (2005), no. 2, 149– 169.
- [6] G. Barbieri, D. Dikranjan, C. Milan and H. Weber, Topological torsion related to some recursive sequences of integers, submitted.
- [7] G. Barbieri, D. Dikranjan, C. Milan and H. Weber, t-dense subgroups of topological Abelian groups, submitted.
- [8] M. Beiglböck, C. Steineder, and R. Winkler, Sequences of characters characterizing countable groups, Topology Appl., to appear.
- [9] A. Bíró, *Strong characterizing sequences for subgroups of compact groups*, J. Number Theory, to appear.
- [10] A. Bíró, J.-M. Deshouillers and V. Sós, *Good approximation and characteriza*tion of subgroups of R/Z, Studia Sci. Math. Hungar. **38** (2001), 97–113.
- $[11]$ A. Biró and V. Sós, *Strong characterizing sequences in simultaneous Diophan*tine approximation, J. Number Theory **99** (2003), 405–414.
- [12] W. W. Comfort Topological groups, in: Handbook of Set-Theoretic Topology, edited by K. Kunen and J. E. Vaughan, North Holland, Amsterdam (1984), pp. 1143–1263.
- [13] W. W. Comfort, F. J. Trigos-Arrieta and T.S. Wu, The Bohr compactification, modulo a metrizable subgroup, Fundamenta Math. **143** (1993), 119-136, Correction: **152** (1997), 97-98.
- [14] D. Dikranjan, Topologically torsion elements of topological groups, Topology Proc. **26** (2001-2002), 505–532.
- [15] D. Dikranjan and R. Di Santo, On Armacost's quest on topologically torsion elements, Communications Algebra, **32** (2004), 133–146.
- [16] D. Dikranjan, C. Milan and A. Tonolo, A characterization of the MAP abelian groups, J. Pure Appl. Algebra **197** (2005), no. 1-3, 23–41.
- [17] D. Dikranjan, Iv. Prodanov and L. Stoyanov, Topological groups. Characters, dualities and minimal group topologies, Monographs and Textbooks in Pure and Applied Mathematics **130**, Marcel Dekker, Inc., New York, 1990.
- [18] H.G. Eggleston, Sets of fractional dimensions which occur in some problems of number theory, Proc. London Math. Soc. (2) **54**, (1952) 42–93.
- [19] G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 1995.
- [20] J. Hart and K. Kunen, Limits in function spaces and compact groups, Topology Appl. **151** (2005), no. 1-3, 157–168.
- [21] J. Hart and K. Kunen, Limits in compact abelian groups, to appear.
- [22] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Volume I, Springer-Verlag, Berlin-Göttingen-Heidelberg 1979.
- [23] E. Hewitt and H. Zuckerman, A group-theoretic method in approximation theory, Ann. of Math. (2) **52** (1950), 557–567.
- [24] C. Kraaikamp and P. Liardet, Good approximations and continued fractions, Proc. Amer. Math. Soc. **112** (1991), 303–309.
- [25] G. Larcher, A convergence problem connected with the continued fractions, Proc. Amer. Math. Soc. **103** (1988), 718-722.
- [26] K. Petersen and L. Shapiro, Induced flows, Trans. Amer. Math. Soc. **177** (1973), 375–390.
- [27] W. Rudin, Fourier Analysis on Groups, Interscience Publishers, 1962.
- [28] E. G. Zelenyuk and I. V. Protasov, Topologies on abelian groups, Math. USSR Izvestiya **37** (1991), 445–460. Russian original: Izvestia Akad. Nauk SSSR **54** (1990), 1090–1107.

Dipartimento di Matematica e Informatica, Universita di Udine, ` Via della Scienze 206, 33100 Udine, Italy Email address: dikranja@dimi.uniud.it

Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA

Email address: kunen@math.wisc.edu $URL: \text{http://www.math.wisc.edu/~kunen}$