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ABSTRACT

Let X be a compact Hausdor� space and M a metric space� E��X�M� is the set
of f � C�X�M� such that there is a dense set of points x � X with f constant
on some neighborhood of x� We describe some general classes of X for which
E��X�M� is all of C�X�M�� These include �NnN� any nowhere separable LOTS�
and anyX such that forcing with the open subsets of X does not add reals� In the
case thatM is a Banach space� we discuss the properties of E��X�M� as a normed
linear space� We also build three �rst countable Eberlein compact spaces� F�G�H�
with variousE� properties� For all metricM � E��F�M� contains only the constant
functions� and E��G�M� � C�G�M�� If M is the Hilbert cube or any in�nite
dimensional Banach space� E��H�M� �� C�H�M�� but E��H�M� � C�H�M�
whenever M � Rn for some �nite n�

x�� Introduction� If X is a compact Hausdor� space and M is a metric space� let
C�X�M� be the space of all continuous functions from X into M � C�X�M� is a metric
space under the sup norm� C�X� denotes C�X�R�� which is a �real� Banach algebra�
Following 	
� �� �� 
�� 
��� if f � C�X�M�� let �f be the union of all open U � X such
that f is constant on U � Then� E��X�M� is the set of all f � C�X�M� such that �f is
dense in X� these functions are called �locally constant on a dense set�� E��X� denotes
E��X�R��

Clearly� E��X� is a subalgebra of C�X� and contains all the constant functions� As
Bernard and Sidney point out 	�� �� 
��� if X is compact metric with no isolated points�
then E��X� is a proper dense subspace of C�X�� In this paper� we study the two extreme
situations� where E��X� contains only the constant functions� and where E��X� � C�X��
In x
� we give some justi�cation for studying these two extremes�

A standard example of elementary analysis is a monotonic f � C�	�� 
�� which does
all its growing on a Cantor set� then f is a nonconstant function in E��	�� 
��� More
generally� for �many�X� E��X� separates points inX� and hence �by the Stone�Weierstrass
Theorem�� is dense in C�X�� Speci�cally�

���� Theorem� If X is compact Hausdor� and E��X� is not dense in C�X�� then
a� X has a family of ��� disjoint nonempty open subsets�
b� X is not locally connected�
c� X is not zero�dimensional�

�
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Part �c� of the Theorem is obvious� Parts �a� and �b� are due to M� E� Rudin and W�
Rudin 	
��� and generalize earlier results of Bernard and Sidney that if X is compact and
second countable� then E��X� is dense in C�X��

However� �rst countable is not enough� In x�� we produce a �rst countable compact X
such that E��X� contains only the constant functions� A non �rst countable example was
constructed in 	
��� Our result is patterned after 	
��� Roughly� we replace the family of
Cantor sets used in their construction by a disjoint family� This adds some complexity to
the construction� However� we also simplify the geometry of the construction by building
the space inside a Hilbert space� Our space will be compact in the weak topology� and
hence a uniform Eberlein compact �that is� a weakly compact subspace of a Hilbert space��
One may use the approach of x� to simplify the construction of 	
�� and to demonstrate
that their space is also a uniform Eberlein compact�

In x�� we look at the other extreme� there are many familiar compact X for which
E��X� is all of C�X�� such as �NnN and a Suslin line� For some classes of spaces� such as
compact ordered spaces and compact extremally disconnected spaces� we present simple
necessary and su�cient conditions for E��X� � C�X��

In xx���� we also consider E��X�M� for other metric spaces M � It is easy to see
that E��X� C � � C�X� C � i� E��X�R� � C�X�R�� and E��X� C � is dense in C�X� C � i�
E��X�R� is dense in C�X�R�� but the situation for general M is a bit more complex� In
particular� in x�� we produce a uniform Eberlein compactX such that E��X�R� � C�X�R�
but E��X�Q� �� C�X�Q�� where Q is the Hilbert cube� In x
� we let M be a Banach space�
and consider the properties of E��X�M� as a normed linear space�

Also in x
� we show that E��X� is a proper dense subspace of C�X� whenever X is a
nontrivial in�nite product�

In x
� we prove some preliminary results on Cantor sets used in our construction in
x��

Independently of Bernard and Sidney� Bella� Hager� Martinez� Woodward� and Zhou
	�� �� 
�� de�ned the space E��X� �they called it dc�X��� and showed �in the spirit of
Theorem ��
� that E��X� is dense in C�X� in many cases� We comment further on their
work at the end of x��

x�� Cantor Sets� By a closed interval we mean any compact space homeomorphic
to 	�� 
� � R� By a Cantor set we mean any space homeomorphic to the usual Cantor set
in R� equivalently� homeomorphic to ��� where � � f�� 
g has the discrete topology� The
following lemma was used also in 	
���

���� Lemma� If J is a closed interval� f � C�J�� and f is not constant� then there
is a Cantor set H � J such that f is 
� 
 on H�

In our construction� we need a uniform version of this� If H is a subset of a product
X � J � we use Hx to denote fy � J � �x� y� � Hg�

���� Lemma� Suppose J is a closed interval and X is a compact zero�dimensional
Hausdor� space� and suppose f � C�X � J� is such that for every x � X� f � �fxg � J� is
not constant� Then there is a set H � X � J such that�

�



�
� Hx is a Cantor set for every x � X�
��� f is 
� 
 on fxg �Hx for every x � X�
��� There is a continuous � � H � �� such that the map �x� y� �� �x���x� y�� is a

homeomorphism from H onto X � ���

Some remarks� Lemma 
�
 is the special case of Lemma 
�� where X is a singleton� If
we deleted ���� then 
�� would be immediate from 
�
� using the Axiom of Choice� without
any assumption on X� But ��� says that we can choose the Cantor sets continuously� As
stated� the Theorem requires X to be zero�dimensional� For example� suppose X � J �
	�� 
�� and we take f to be constant on the strip f�x� y� � jx � yj � �

�
g� Then H must be

disjoint from the strip� which is easily seen to contradict ���� Of course� �
� follows from
����

Lemma 
�
 may be proved by a binary tree argument� and we prove Lemma 
�� by
showing how to build this tree �uniformly� for all x � X� A simpler proof of Lemma 
�

in 	
�� takes advantage of the ordering on R� but this proof does not easily generalize to
a proof of Lemma 
��� Moreover� the tree argument extends to non�ordered spaces� For
example� in Lemma 
��� J could be any compact metric space which is connected and
locally connected� and f could be any map into a Hausdor� space�

The following general tree notation will be used here and in xx���� If � is some index
set� then ��� denotes the tree of all �nite sequences from �� this is the complete ��ary
tree of height �� For s � ���� let lh�s� � � be its length� We use �� to denote the empty
sequence� If i 	 lh�s�� let s � i be the sequence of length i consisting of the �rst i elements
of s� t � s i� t � s � i for some i 	 lh�s�� Let t� denote the sequence of length lh�t� � 

obtained by appending � to t� Note that ���� ordered by �� is a tree with root ��� and
the nodes immediately above s are the s� for � � �� We say s� t � ��� are compatible

i� s � t or t � s� We let s 
 t abbreviate the statement that s� t are incompatible �not
compatible��

A path in ��� is a chain� P � such that s� � P implies s � P for all s and �� A
path may be empty or �nite or countably in�nite� The in�nite paths are all of the form
f� � n � n � �g where � � � � �� In particular� for binary trees� � � � � f�� 
g� and the
in�nite paths through the Cantor tree� ���� are associated with the points in the Cantor
set� ���

To prove 
��� �x a metric on J � For E � J � let diam�E� be the diameter of E with
respect to this metric� Call a subset of X � J simple i� it is of the form

S
i�k Qi � Ii�

where k is �nite� the Qi for i � k form a disjoint family of clopen sets whose union is X�
and each Ii is a closed interval� We prove 
�� by iterating the following splitting lemma�

���� Lemma� Let J�X� f be as in 
�� and let 	 
 �� Then there are simple A�� A� �
X � J such that the following hold�
�a� A� � A� � ��
�b� For each x � X� f�fxg � �A��x� � f�fxg � �A��x� � ��
�c� For each x � X and � � �� 
� diam��A��x� 	 	�
�d� For each x � X and � � �� 
� f � �fxg � �A��x� is not constant�

Proof� For each z � X� f � �fzg � J� is a nonconstant map from an interval
into an interval� so we may choose disjoint closed intervals I��z�� I��z� � J such that
f�fzg� I��z��� f�fzg� I��z�� � �� diam�I��z�� 	 	� and f � �fzg� I��z�� is not constant

�



�� � �� 
�� By continuity� there is a neighborhood Uz of z such that for all x � Uz�
f�fxg � I��z�� � f�fxg � I��z�� � � and f � �fxg � I��z�� is not constant� Since X is
compact and zero�dimensional� there are a �nite k� points zi � X �i � k�� and clopen

Qi � Uzi such that the Qi form a partition of X� Then let A� �
S
i�k Qi � I��zi�� ��

�
�

Proof of ���� For s � ���� choose simple As � X � J such that
�a� For each s � ���� As� �As� � ��
�b� For each x � X and s � ��� � f�fxg � �As��x� � f�fxg � �As��x� � ��
�c� For each x � X and t � ���� diam��At�x� 	 
�lh�t��
�d� For each x � X and t � ���� f � �fxg � �At�x� is not constant�
We may take A�
 � X � J � then� for t � ��� �c� is vacuous and �d� follows from the
hypothesis of 
��� Given As� we obtain As� and As� by applying 
�� to each box making
up As� Let H �

T
n��

SfAs � lh�s� � ng� Let ��x� y� be the �unique� � � �� such that

�x� y� � A��n for all n � �� ��
�
�

x�� Making E��X� Small� We describe how to construct a �rst countable compact
space L� such that E��L�� contains only the constant functions� Let D � C be the closed
unit disk� D will be a subspace of L�� We shall �rst focus on the easier task of constructing
a space L� such that D � L� and each f � E��L�� is constant on D� After explaining this�
we shall iterate the procedure to produce L��

Before we build L�� we shall show that every nonconstant function f � C�D� is 
� 

on �many� disjoint Cantor sets� Then� by gluing new disks on those Cantor sets to form
L�� we can make sure that no such f can extend to a function in E��L���

For 
 � 	�� ���� let R� denote the ray fz � D � z �� �� arg�z� � 
g� Let c � ����

���� Lemma� If f � C�D� is nonconstant� then there are c distinct 
 such that f is
nonconstant on R��

Proof� The set of all such 
 is open� ��
�
�

We identify c with a von Neumann ordinal� so that we may use c also as an index set�

���� Lemma� There is a disjoint family fK� � Dnf�g � � � cg of c Cantor sets� with
the following property� For each nonconstant f � C�D�� there is a Cantor set Hf � Dnf�g
such that f is 
� 
 on Hf and such that A � f� � c � K� � Hfg has size c�

Proof� First� applying Lemma ��
 and trans�nite induction� choose� for each noncon�
stant f � C�D�� a distinct 
f � 	�� ��� such that f is nonconstant on R�f � Then� applying
Lemma 
�
� choose a Cantor set Hf � R�f such that f is 
� 
 on Hf � Partition each Hf

into c disjoint Cantor sets� Since the Hf are all disjoint� this gives us the desired family

of c 
 c � c Cantor sets� ��
�
�

Informally� we now replace each K� by a copy of K� �D� identifying K� � f�g with
the old K�� For di�erent �� we want the K� �D to point in �perpendicular directions��
To make the notion of �perpendicular� formal� we simply embed L� into a Hilbert space�
Since we want each �direction� to be a whole disk� we use a complex Hilbert space to
simplify the notation� One could use a real Hilbert space instead by replacing each unit

�



vector in the following proof by a pair of unit vectors� In either case� the following simple
criterion can be used to verify �rst countability�

���� Lemma� If B is a Hilbert space and X � B is compact in the weak topology�
then X is �rst countable in the weak topology i� for each �x � X� there is a countable �or
�nite� C�x � B such that no �v � Xnf�xg satis�es ��c � C�x��x 
 �c � �v 
 �c��

Proof� By de�nition of the weak topology� the stated condition is equivalent to each

f�xg being a G	 set in X� which is equivalent to �rst countability in a compact space� ��
�
�

We remark that the condition of Lemma ��� need not imply �rst countability when
X is not weakly compact�

���� Lemma� There is a �rst countable uniform Eberlein compact space L� such
that D is a retract of L� and each f � E��L�� is constant on D�

Proof� Let B be a complex Hilbert space with an orthonormal basis consisting of c

unit vectors �e�� for � � c� together with one more� �e� We identify D with its homeomorphic
copy� D� � fz�e � jzj 	 
g � B � Let � be the perpendicular projection from B onto the
one�dimensional subspace spanned by �e�

Let the K� � D�nf��g be as in Lemma ��� �replacing the D there by D��� Let L� be
the set of all �x � B that satisfy �
� � ����

�
� j�x 
 �ej 	 
� and� for each � � c� j�x 
 �e�j 	 �
�
�

��� For all distinct �� �� either �x 
 �e� � � or �x 
 �e
 � ��
��� For all �� either �x 
 �e� � � or ���x� � K��

So� points of L� are either of the form z�e� with jzj 	 
� or of the form z�e � w�e�� where
jzj 	 
� jwj 	 �

�
� and z�e � K�� In particular� D� � ��L�� � L��

We give L� the topology inherited from the weak topology on B � Note that L� is
weakly closed� Since L� is also norm bounded� L� is compact� To see that L� is �rst
countable� apply Lemma ���� If ���x� is in no K�� set C�x � f�eg� while if ���x� is in some
K�� this � is unique �by the disjointness of the K��� and we set C�x � f�e��e�g�

Let U� � L� � ����K��nK� � f�x � L� � �x 
 �e� �� �g� Observe�
i� U� is an open subset of L�� but
ii� For each �x � K�� L� � ����f�xg� is nowhere dense in L��

Now� suppose f � E��L��� We show that f is constant on D�� If not� �x a Cantor set
H � D� such that f is 
� 
 on H and such that A � f� � c � K� � Hg has size c� Since
f � E��L��� we may� for each � � A� choose a nonempty open W� � U� such that f is
constant on W�� Then� applying �ii� above� choose two distinct points �x� and �y� in W�

such that ���x�� �� ���y���
For each � � A� ����x��� ���y��� is a point in f��v� �w� � H � H � �v �� �wg� which is a

second countable space� Since A is uncountable� these points have a limit point in the
same space� so we may �x distinct �v� �w � H and a sequence of distinct elements �n in
A �n � �� such that the ���x�n � converge to �v and the ���y�n � converge to �w� Hence� in
the weak topology of B and L�� the �x�n converge to �v and the �y�n converge to �w� Since

f��x�n � � f��y�n �� we have f��v� � f��w�� contradicting that f was 
� 
 on H� ��
�
�

A similar use of Cantor sets occurs in the construction in 	
��� with the following
di�erences� Their K� were not disjoint� in fact� in 	
�� it appears necessary that every






Cantor set gets listed uncountably many times� As a result� the space constructed was not
�rst countable� However� if one does not care about disjointness� there is no advantage
to using a disk� so 	
�� used an interval where we used D� The extra dimension in D lets
us prove Lemma ���� which is easily seen to be false of 	�� 
�� Actually� when the K� are
disjoint� condition ��� above is redundant� since it follows from ���� but if the K� are not
disjoint� ��� is required to guarantee that L� is norm bounded�

By iterating our construction� we now prove the following theorem�

���� Theorem� There is a �rst countable uniform Eberlein compact space L� such
that every function in E��L�� is constant�

Observe that this is not true for the L� of Lemma ���� For example� let g � E��D�
be nonconstant� and de�ne f by f��x� � g��x 
 �e��� Then f � E��L��� and is not constant
on U�� To prevent such functions from existing� we shall� for each �� take disjoint Cantor
sets K�
 � U�� and� for each �� attach a new disk going o� in a new direction� labeled by
a unit vector �e�
� This would create a space L�� But now� we must iterate this procedure�
to take care of functions on these new disks� Iterating � times� we have unit vectors �et
indexed by �nite sequences from c�

To describe L�� we use the same tree notation as in x
� where now c is our index
set� For the rest of this section� let B be a complex Hilbert space with an orthonormal
basis consisting of unit vectors f�es � s � c

��g� We shall use �e to abbreviate �e�
 and �e� to
abbreviate �e��
� Let �n be the perpendicular projection from B onto the subspace spanned

by f�es � lh�s� � ng� In particular� ����x� � �� for all �x� and �� is the projection onto the
one�dimensional subspace spanned by �e�

If lh�s� � n� let Ds be the set of vectors of the form
P

i�n zi�es�i� where each jzij 	 ��i�
Since Ds is �nite dimensional� the weak and norm topologies agree on Ds� and Ds is
homeomorphic to Dn��� In particular� D�
 � fz�e � jzj 	 
g plays the role of the D� in the
proof of Lemma ���� Note that if i 	 n� then �i���Ds� � Ds�i�

We begin by enumerating enough of the conditions required of the Cantor sets Kt

�t � c
��� to de�ne L�� Then� after de�ning L�� we prove a sequence of lemmas� adding

conditions on the Kt as necessary� to show L� has the desired properties�

��	� Basic requirements on the Kt�

Ra� K�
 � f��g�

Rb� For each s� the Ks� for � � c are disjoint closed subsets of Ds� and �x 
 �es �� � for

all �x � Ks��

Rc� For each s and each �� if n � lh�s�� then �n�Ks
� � Ks�

In particular� for s � ��� we have K� � D�
� as in the proof of Lemma ���� Now� we

iterate that construction by using the K�
� K�
�� etc� The K�
 � f��g plays no role in the
de�nition of L�� but is included to make some of the notation more uniform� Item �Rc�
for n � � says nothing� for n � 
� ���K�
� � K� corresponds to the informal idea above
that the K�
 are chosen inside U��

We shall need to add conditions �Rd��Re� to �Ra��Rb��Rc� later�

�



��� De
nition� L� is the set of all �x � B that satisfy �
� � ����
�
� For each s� j�x 
 �esj 	 ��lh�s
�
��� For all s� t such that s 
 t� �x 
 �es � � or �x 
 �et � ��
��� For all t� if n � lh�t�� then either �x 
 �et � � or �n��x� � Kt�
We give L� the weak topology� Ln � �n�L��� For �x � L�� P ��x� � fs � c

�� � �x 
 �es �� �g�
For t � c

�� and n � lh�t�� set Ut � L� � ����n �Kt�nKt��

���� Lemma� Each Ln is a closed subset of L� and
S
n�� Ln is dense in L��

Proof� Ln � L� holds because each of �
�� ���� ��� is preserved under �n� Density
follows because for every �x � B � the �n��x� converge weakly �and in norm� to �x� Ln is

closed in L� because �n�B � is weakly closed in B � ��
�
�

We think of the Ln as the levels in the construction� L� � K�
� L� � D�
� L� is
exactly the space constructed in the proof of Lemma ���� The Ut will play the same role
here as the U� did there� Elements of L�nL� are of the form r��e � r��e� � r��e�
� where
� � jrij 	 ��i for each i� r��e � K�� and r��e � r��e� � K�
�

���� Lemma�
i� For each �x � L�� P ��x� is a path in c

�� �
ii� For each �x � L�� k�xk� 	 �

�
�

iii� L� is weakly closed in B �
iv� L� is �rst countable and compact�
v� Each Ut is open in L��

Proof For �i�� use items ������� in the de�nition of L� and the fact that �x 
�es �� � for
all �x � Ks�� Now� �ii� follows by item �
�� �iii� is immediate from the de�nition of L��
and compactness of L� follows by �iii� and �ii�� First countability follows from Lemma ����
C�x � f�es � s � P ��x�g� unless P ��x� is �nite with maximal element s and �x � Ks�� in which

case C�x � f�es � s � P ��x�g � f�es�g� For �v�� note that Ut � f�x � L� � �x 
 �et �� �g� ��
�
�

Applying conditions �Rc� and �Rb� on the Ks� we have the following lemma�

����� Lemma�
i� For each t� if n 	 lh�t� and s � t � n� then Ks � �n�Kt��
ii� Each Kt � Llh�t
�

If the K� are chosen as in the proof of Lemma ���� then every f � E��L�� will be
constant on D�
� We must be careful not to destroy this property in choosing the K�


and passing to L�� In the proof of Lemma ���� it was important that each ����f�xg� was
nowhere dense� Now� L� � ����f�xg� will still be nowhere dense in L�� but depending on
how the K�
 meet this set� L� � ����f�xg� might have interior points� To handle this� we
assume the following product structure on the Ks�


Rd� For each s of length n � � and each �� there are a nonempty relatively clopen
subset P � Ks and a homeomorphism � from P � �� onto Ks�� satisfying
�n����x� y�� � �x for all �x � P and all y � ���

Note that �Rd� implies that �n�Ks�� � P � Induction on lh�s� establishes the next lemma�

����� Lemma� Ks is a Cantor set whenever lh�s� 
 ��

�



����� Lemma� Suppose that m 
 � and C is a closed subset of Lm such that C
is nowhere dense �in the relative topology of Lm� and C � Ks is nowhere dense �in the
relative topology� in Ks for all s of length m� Then L� � ���m �C� is nowhere dense in L��
In particular� L� � ���m �f�xg� is nowhere dense in L� for all �x � Lm�

Proof� The �in particular� follows from Lemma ��

� which implies that C � f�xg
satis�es the hypotheses of Lemma ��
�� Now set Cn � Ln � ���m �C� for each n � m� so
Cm � C� To prove ��
�� since

S
n�� Ln is dense in L�� it su�ces to prove claim �i� below�

To do this� we prove claims �i� and �ii� together� by induction on n �m�

i� For each n �m� Cn is nowhere dense in Ln�
ii� Whenever lh�s� � n� Cn �Ks is nowhere dense in Ks�

Claim �ii� for n� 
 follows from �ii� for n plus assumption �Rd� on the Ks� and claim �i�

for n� 
 follows from �i� and �ii� for n �just using �Ra���Rb���Rc��� ��
�
�

For each s � c
�� � with lh�s� � n� let

�Ks � f�v � z�es � �v � Ks� jzj 	 ��ng �

Note that �Ks is homeomorphic to Ks �D and is a subset of L�� If H � �Ks and �v � Ks�
let H�v be the �vertical slice�� f�v � z�es � jzj 	 ��ng� Call a function f s�level�constant i�
f only depends on the �v here� that is� f is constant on each � �Ks��v� In particular� f is
���level�constant i� f is constant on D�
� and the K� chosen as in the proof of Lemma ���
will ensure that every f � E��L�� is ���level�constant� Likewise� we shall choose the Ks�

to ensure that every f � E��L�� is s�level�constant� Note �rst that if we do this for all s�
then f is constant�

����� Lemma� If f � C�L�� is s�level�constant for all s � c
��� then f is constant�

Proof� By induction on n� f is constant on each Ln� The result follows becauseS
n�� Ln is dense in L�� ��

�
�

Now we list the �nal condition on the Ks��


Re� For each s of length n and each f � C�L��� If f is not s�level�constant� then there
are a nonempty clopen set P � Ks� a Cantor set H � f�v � z�es � �v � P � jzj 	
��ng� and uncountably many di�erent � such that Ks� � H� and for each �v � P �
f is 
� 
 on H�v�

We must verify that we may choose the Kt to meet all �ve conditions �Ra�� �Rb��
�Rc�� �Rd�� �Re�� We choose these by induction on lh�t�� Condition �Ra� speci�es K�
�
and the K� will be exactly as in the proof of Lemma ���� these were chosen by applying
Lemma ���� Likewise� given Ks with lh�s� 
 �� we choose the Ks� by applying the next
lemma to �Ks� In fact� we modify the proof of Lemma ���� replacing Lemma 
�
 by Lemma

��� to prove this lemma�

����� Lemma� Let fE	 � � � cg be a partition of �� into c Cantor sets� If K is a
Cantor set� then there is a disjoint family fK� � K � �Dnf�g� � � � cg of c Cantor sets
with the following property� For each f � C�K �D� with f � �fxg �D� nonconstant for

�



some x � K� there are a nonempty clopen P � K and an H � P � �Dnf�g� that satisfy
conditions �
� � ����
�
� Hx is a Cantor set for every x � P �
��� f is 
� 
 on fxg �Hx for every x � P �
��� There is a continuous � � H � �� such that the map �x� y� �� �x���x� y�� is a

homeomorphism from H onto P � ���
��� For each � � c� the set f�x� y� � H � ��x� y� � E	g is one of the K��

Proof� First� for each such f � apply continuity to choose a nonempty clopen Pf � K
such that for c di�erent 
 � 	�� ���� f � �fxg�R�� fails to be constant for all x � Pf � Then�
by trans�nite induction� choose a distinct 
f for each such f such that f � �fxg � R�f �
is not constant for all x � Pf � Then� choose Hf � Pf � R�f such that �
�� ���� and ���
hold� this is possible by Lemma 
��� Of course� � � �f depends on f � Finally� let the K�

enumerate all the sets f�x� y� � Hf � �f �x� y� � E	g as f and � vary� ��
�
�

Now we complete the proof of Theorem ��
�

Proof of Theorem ���� Construct L� as above� Suppose f � E��L��� By Lemma
��
�� it su�ces to prove that f is s�level�constant for each s� Suppose not� Fix H�P
as in condition �Re� above� so that A � f� � Ks� � Hg is uncountable� For � � A�
choose a nonempty open W� such that W� �W� � Us� and f is constant on W�� Then
�n���W�� � Ks� � H and �n�W�� � �n�Ks�� � P � Ks � Ln� Choose �x� and �y�
in W� such that �n��x�� � �n��y�� but �n����x�� �� �n����y��� this is possible because
�n���W�� is closed in Ks� and� by Lemma ��
�� is not nowhere dense in Ks�� As in the
proof of Lemma ���� there are distinct �v� �w � H and a sequence of distinct elements �k in
A �k � �� such that the �n����x�k � converge to �v and the �n����y�k � converge to �w� Then�
in the weak topology� the �x�k converge to �v and the �y�k converge to �w� So� f��v� � f��w��

while �n��v� � �n��w� � �n�H� � P � contradicting that f is 
� 
 on H�n��v
�
��
�
�

Finally� we remark on E��X�M� for other M �

����� Lemma� If X is a compact Hausdor� space and M is any Hausdor� space�
then

�
� E��X�R� contains only the constant functions
implies

��� E��X�M� contains only the constant functions�
If M contains a closed interval� then ��� implies �
��

Proof� For �
� � ���� �x f � E��X�M�� We may assume M � f�X�� whence M is
compact� For each g � M � 	�� 
�� g � f is in E��X�R� and hence constant� which implies
that f is constant� For ��
� � ����� if g maps R homeomorphically into M and f is a

nonconstant function in E��X�R�� then g � f is a nonconstant function in E��X�M�� ��
�
�

In particular� in making E�X� � E��X�R� small� we also make E��X� C � small� Note
that ��

 can fail if M does not contain an interval� since then� if X is a closed interval�
E��X�M� � C�X�M� contains only the constant functions �since every arc contains a
simple arc�� while E��X�R� is dense in C�X�R�� We do not study ��

 for such M in
detail here� but it seems to involve the geometric�topological properties of X and M �

�



x�� Making E��X� Big� Here� we consider spaces X for which E��X�M� �
C�X�M�� This turns out to be an interesting topological property of X� We begin with a
simple remark�

The condition E��X�M� � C�X�M� is not hereditary to closed subsets of X� but it
is� in many cases� hereditary to regular closed subsets  that is� to subsets of the form U �
where U is open in X�

���� Lemma� Suppose that X is a compact Hausdor� space� E��X�R� � C�X�R��
and Y is a regular closed subspace of X� Then E��Y�R� � C�Y�R��

Proof� Say Y � U � where U is open� Suppose g � C�Y�R�� By the Tietze Extension
Theorem� g can be extended to an f � C�X�R�� Then �g �U � �f �U � Since E��X�R� �

C�X�R�� we have that �f is dense in X� so �g is dense in Y � ��
�
�

We remark that in Lemma ��
� one can replace R by any Banach space �using a
slightly longer proof�� but not by an arbitrary metric space M � For a counter�example�
let M be a Cantor set and let X be the cone over M � Then E��X�M� � C�X�M�
contains only constant functions� But X contains a regular closed Y homeomorphic to
M � 	�� 
�� and E��Y�M� �� C�Y�M�� Also� even in the simple case M � R� the property
E��Y�R� � C�Y�R� holds for all closed Y � X i� X is scattered� if X is not scattered�
then X will contain a closed subset Y which is separable with no isolated points� which
implies E��Y�R� �� C�Y�R� �by ��� � �
� of Theorem ��� below��

Now� to study the property E��X�M� � C�X�M�� it is convenient to generalize our
notions in two ways�

First� although X will always be compact and M will always be metric� we look at
more general functions from X into M � In particular recall that f � X � M is called
Borel measurable i� the inverse image of every open set is a Borel subset of X� and Baire

measurable i� the inverse image of every open set is a Baire subset of X� the Baire sets
are the ��algebra generated by the open F
 sets� The Baire measurable functions into a
separable Banach space form the least class of functions containing the continuous functions
and closed under pointwise limits�

Second� we consider also b�f � which we de�ne to be the union of all open U � X such
that for some �rst category set C � X� f is constant on UnC� Note that regardless of f �

�f �de�ned in the Introduction� and b�f are open� with �f � b�f � If f is continuous� then

�f � b�f �
The property E��X�R� � C�X�R� is just one of a sequence of related properties�


�




�� Every nonempty open subset of X is either nonseparable or contains an isolated point�

�� E��X�R� � C�X�R��
��� For all metric spaces M � E��X�M� � C�X�M��

���� For all separable metric spaces M and all Baire measurable f � X �M � b�f is dense
in X�

����� For all separable metric spaces M and all Baire measurable f � X �M � �f is dense
in X�


�� For all separable metric spaces M and all Borel measurable f � X �M � b�f is dense
in X�


�� For all separable metric spaces M and all Borel measurable f � X �M � �f is dense
in X�


	� In X� every nonempty G	 set has a nonempty interior�

��� In X� every �rst category set is nowhere dense�

Conditions �
�  ��� are listed in order of increasing strength� Condition ��� does not
�t into the sequence� but is relevant by the next Theorem�

���� Theorem� Suppose X is compact Hausdor�� Then

��� � �
� � ��� � ��� � ���� � ����� � ��� � �
� �

Furthermore �
� is equivalent to ��� plus ����
Proof� For ��� � �
�� assume �
� fails� so there is nonempty open U which is

separable and has no isolated points� Let Y � U � By Lemma ��
� it is su�cient to
produce an f � C�Y�R� nE��Y�R�� Let fpn � n � �g be dense in U � hence in Y � For each
distinct m�n� ff � C�Y�R� � f�pm� �� f�pn�g is dense and open in C�Y�R� �in the usual
norm topology�� so by the Baire Category Theorem� there is an f � C�Y�R� such that
f�pm� �� f�pn� whenever m �� n� But then for each r � R� f��frg contains at most one
pn� and is hence nowhere dense in Y � since Y has no isolated points� Thus� f �� E��Y�R��

Clearly� ����� � ���� � ���� so to prove these three are equivalent� we assume ����
�x a Baire measurable f � X � M � and show that �f is dense in X� Since M can be
embedded into a separable Banach space� we may assume that M is a Banach space� now�
we can let gn � X � M � for n � �� be continuous functions such that f can be obtained
from the gn by some trans�nite iteration of taking pointwise limits� De�ne g � X � M�

by� g�x�n � gn�x�� Then �g � �f � and� by ���� �g is dense in X�
To prove ��� � �
�� observe that for any compact X� if H is a nonempty closed G	

and f is a Borel measurable map into a second countable space� there is always a nonempty
closed G	 set K � H such that f is constant on K�

The rest of the chain of implications from ��� down to �
� are now trivial� To see that
�
� � ���� let C be �rst category� then C � Sn��Kn� where each Kn is closed nowhere
dense� De�ne f � X � �� so that f�x�n is 
 if x � Kn and � if x �� Kn� Then �f is dense
and open� and is disjoint from all the Kn� so C is nowhere dense�

To see that ��� plus ��� implies �
�� we let f be Borel measurable� to prove �f dense�
we �x a nonempty open V and try to �nd a nonempty open U � V such that f is constant







on U � By ���� there is a nonempty open W � V such that f is constant on WnC for some

�rst category C� By ���� C is nowhere dense� so let U � WnC� ��
�
�

A familiar example of a space satisfying ��� is �NnN�
Conditions �
�� ���� ������ and ���� involve arbitrary Baire or Borel measurable maps�

Each of these conditions is equivalent to the restatement we obtain by replacing M by
the Cantor set ��� This is easily seen by translating the condition to one involving an
��sequence of Borel or Baire sets� For example� �
� is equivalent to the statement that
given Borel sets Bn �n � ��� the union of all open U such that �n�U � Bn or U �Bn � ��
is dense in X�

This is not true for ���� which involves continuous functions� For example� if X is
connected� then� trivially� E��X� ��� � C�X� ���� whereas E��X�R� need not be all of
C�X�R�� If X is zero�dimensional� then E��X� ��� � C�X� ��� does imply ���� In fact� for
zero�dimensional spaces� ��� has a restatement in terms of sequences of clopen sets �see
the proof of Theorem ����c� below��

Regarding ��� � ���� if E��X�M� � C�X�M� for any M containing an interval�
then ��� holds� In x�� we show that ��� does not imply ���� although it is easy to see that
��� implies that E��X�R

n� � C�X�Rn� for each �nite n� Counter�examples to the other
implications of Theorem ��� reversing are provided by some fairly familiar spaces� as we
point out below� However� the implications do reverse for certain families of spaces� In
particular� we consider the cases when X is extremally disconnected �e�d��� when X is an
Eberlein compact� when X is a LOTS� and when has the ccc� X is called e�d� i� the closure
of every open subset of X is clopen� X is an Eberlein compact i� X is homeomorphic to
a weakly compact subspace of a Banach space� X is a LOTS i� X is a totally ordered set�
given the order topology� X has the ccc i� there is no uncountable family of disjoint open
sets in X�

The following theorem summarizes what we know for these and some other simple
classes�

���� Theorem� Let X be compact Hausdor��
a� If X is metric� then �
� � �
�� and �
�  �
� hold i� the isolated points of X are

dense in X�
b� If X is e�d�� then ��� � ����
c� If X is zero�dimensional� then ��� � ����
d� If X is ccc� then ��� � �
��
e� If X is Eberlein compact� then ��� � �
�� and ���  �
� hold i� the isolated points of

X are dense in X�
f� If X is a LOTS� then �
� � ����
Proof� �a� is immediate from the fact that compact metric spaces are separable�
For �b�� assume ���� and let f � X � M be Borel measurable� Let fBn � n � �g be

an open base for M � Since each f���Bn� is a Borel set� there are open Ui � X� for i � ��
such that each f���Bn� is in the ��algebra generated by fUi � i � �g� Let Ki � U i� which
is clopen� De�ne g � X � �� so that g�x�i � 
 i� x � Ki� Since �� is embeddable in R�

��� implies that �g is dense� Since
S
i���KinUi� is �rst category� �g � b�f � so b�f is dense�


�



For �c�� assume ���� and let f � X �M be continuous� Let the Bn be as in the proof
of �b�� Since each f���Bn� is an open F
 set� there are clopen sets Ki � X for i � � such
that each f���Bn� is a union of some subfamily of the Ki� Now� construct g as in the
proof of �b�� and note that �g � �f �

For �d�� assume ������ and let f � X �M be Borel measurable� Since X is ccc� there is
a Baire measurable g � X �M and a Baire �rst category set C such that f�x� � g�x� for
all x �� C� De�ne h � X �M�f�� 
g so that h�x� � �g�x�� �� if x �� C� and h�x� � �g�x�� 
�
if x � C� Then� applying ����� to h� �h is dense in X� Since �h � �g and �h � C � �� �f

is dense in X�
For �e�� assume that X is Eberlein compact and satis�es ���� we prove that the isolated

points are dense� By a result of Benyamini� Rudin� and Wage 	��� there is a dense G	 set
Y � X such that Y is metrizable in its relative topology� Fix some metric on Y � then
for E � Y � diam�E� denotes the diameter of E with respect to this metric� For each n�
let Wn be a maximal disjoint family of open nonempty subsets of Y of diameter 	 ��n�
then Wn �

SfW � W � Wng is open and dense� Assume also that each Wn�� re�nes Wn

in the sense that �W � Wn���V � Wn�W � V �� and for each V � Wn which is not a
singleton� there are at least two W � Wn�� such that W � V � Let Z �

T
nWn� then Z is

also a dense G	 subset of X� For each n� let fn � Z � � be any function such that fn is
constant on every W � Wn�� and fn is constant on no V � Wn unless V is a singleton�
This de�nes f � Z � �� by f�z�n � fn�z�� Let M be the disjoint sum of �� and a single
point� p� and extend f to a function !f � X � M by mapping XnZ to p� Then !f is Borel

measurable� and every point in b� �f is isolated in X�
For �f�� assume �
�� and �x f � C�X�M�� we must show that �f is dense� So� �x a

nonempty open interval �a� b� � X� We must produce a nonempty open W � �a� b� such
that f is constant on W � This is trivial if �a� b� contains an isolated point� so assume that
�a� b� contains no isolated points� and hence is nonseparable� For each n� there is a �nite
cover of 	a� b� by open intervals� In� � I

n
� � � � � such that each diam�f�Inj �� 	 
�n� Since �a� b�

is nonseparable� we can choose W � �a� b� to be an open interval which contains none of
the endpoints of any Inj � Then for each n�W is a subset of some Inj � so diam�f�W �� 	 
�n�

Thus� f is constant on W � ��
�
�

A �compact� Suslin line in which every open interval is nonseparable is a ccc LOTS
which satis�es �
�� and hence �
�� applying �d� and �f� of the Theorem� Of course� the
Suslin line does not satisfy ���� The absolute �or projective cover� of a Suslin line is a
compact ccc e�d� space which satis�es �
� but not ���� So is �N� but this example is
�trivial� because the isolated points are dense� Note� however� that it is consistent with
the axioms of set theory that there are no Suslin lines� in which case �
� for a ccc space
would imply that the isolated points are dense�

In general� for a LOTS� �
� need not imply ���� A simple counter�example is X �
	�� 
��� ordered lexically� ��� is refuted by f�x� �

P
n�� xn 
 ��n� One can replace 	�� 
� by

the Cantor set here to get a zero�dimensional LOTS� providing also a counter�example to
�c� extending to ��� � ����

The Stone space of an atomless probability algebra is a compact e�d� space which
satis�es �
� but not ���� To refute ���� let the Ki �i � �� be clopen independent events of


�



probability �
�
� and construct g as in the proof of �b� above� This provides a counter�example

to replacing ��� by �
� in either �b� or �c��
Conditions ���� ���� and �
� are equivalent to algebraic conditions on the Boolean

algebra of regular open subsets of X �see 	�� 

��� in particular� each condition holds for
X i� it holds for the absolute of X� Condition ��� is equivalent to the ����� � distributive
law� �

n��

�
i��

bn�i �
���

n��

bn���n
 � � � ��
�

�

Condition ��� is equivalent to the weak ����� � distributive law� that is� for each cardinal
�� �

n��

�
���

bn�� �
���

n��

�
����n


bn�� � � � �	������
�

�

Here� 	���� is the set of �nite subsets of �� Condition �
� is simply ��� plus ��� by Theorem
���� which is equivalent to the standard ����� � distributive law�

Proceeding completely o� the deep end� we may regard the open �or regular open�
subsets of X as a forcing order �see a set theory text� such as 	
�� or 	

��� Then ��� is
simply the statement that the order adds no reals� while �
� is the stronger statement
that the order adds no � � sequences� Condition ��� is the �nite approximation property
familiar from random real forcing or Sacks forcing� that is� for each � and each � � � � �
in the generic extension� there is a � � � � 	���� in the ground model such that each
��n� � ��n�� Prikry forcing at a measurable cardinal �see x�� of 	
��� is an example of a
forcing order �and hence� by the standard translation� a compact e�d� space� which satis�es
��� but not ���� and hence not �
�� Another such example is Namba forcing �see x�� of
	
����

Returning temporarily to Earth� it is natural to ask which of the properties� �
�  
���� ���� are preserved by �nite products� Now� �
� and ��� are� trivially� We don"t know
about ���� but ��� is� to see this� identify C�X � Y�M� with C�X�C�Y�M��� and note
that C�Y�M� is another metric space� Finally� �
� � ��� � ��� is refuted by a well known
forcing order� Let S � �� be stationary and co�stationary� Let P�Q be Jensen"s forcings
for shooting a club through S���nS� respectively �see VII�H�
 of 	

��� Then P�Q each
satisfy �
�� while P� Q collapses ��� and hence satis�es neither ��� nor ���� One may
now translate P�Q into compact e�d� spaces �by the standard translation�� or into Corson
compacta �using the fact that these partial orders have no decreasing �� chains��

Preservation by in�nite products is uninteresting� If X is an in�nite product of spaces
with more than one point� then all of ���  ��� fail� as does ���� whereas �
� will hold if�
for example� in�nitely many of the Xn are nonseparable� See Theorem 
�� for more about
such products�

Some of the results in in this section overlap results of Bella� Hager� Martinez� Wood�
ward� and Zhou 	�� �� 
��� They also de�ned E��X�R� �which they called dc�X��� and they
considered spaces with our property ���� which they called DC�spaces� With somewhat
di�erent terminology� they prove what amounts to the fact that ��� implies ���� and that
�
� and ��� are equivalent when X is a LOTS�


�



x�� On Eberlein Compacta� Here we consider the properties �
�  ��� of x� in the
case that X is an Eberlein compact� We already know by Theorem ��� that the stronger
conditions ��� or �
� can hold only in the trivial case that the isolated points of X are
dense in X� it is easy to see that ��� holds i� X is �nite� Thus� only �
�� ���� and ���
are of interest� and for these� the Eberlein compacta can be tailored to satisfy whatever
we want� The one we constructed in x� satis�es �
�� but not ���� We now describe two
modi�cations of this construction� producing Eberlein compacta which satisfy ��� but not
��� �this is easy�� and then ��� but not ��� �this requires more work��

For the �rst example� since we already know that ��� cannot hold unless the isolated
points are dense� it su�ces to prove the following�

���� Theorem� There is a �rst countable uniform Eberlein compact space X such
that X has no isolated points and E��X�M� � C�X�M� for all metric spaces M �

Proof� Follow exactly the notation in x�� so that X will be the L� there� Choose
sets Kt for t � c

�� so that conditions �Ra��Rb��Rc� of x��� hold� so that all the lemmas
through Lemma ��
� still apply� But� replace �Rd��Re� by


Rf� Each Ks is a singleton� and the Ks�� for � � c� enumerate all the singletons in
�KsnKs�

As before� Ut � X � ����n �Kt�nKt� where n � lh�t��
Now� �x f � C�L��M�� where M is metric�
Note� f is constant on Ut for all but countably many t� If not� we could �nd an s

and an uncountable A � c such that f is not constant on Us� for all � � A� For � � A�
let Ks� � f�x�g� and choose �y� � Us� such that f��y�� �� f��x��� Since the range of f
is compact� and hence second countable� we may� as in the last paragraph of the proof
of Lemma ���� �x distinct p� q � M and distinct �n � A �n � �� such that the f��x�n �
converge to p and the f��y�n � converge to q� Now� the points �x�n are in Ks� which is
compact metric� so� by passing to a subsequence� we may assume that the �x�n converge to
some point �x � Ks� Hence� in the weak topology� since �n����y�� � �x�� the �y�n converge
to �x also� Applying f to these sequences� f��x� � p �� q � f��x�� a contradiction�

It follows that �f is dense in X� since every nonempty open set in X contains un�
countably many Ut �to see this� apply the above �note� and the fact that the co�zero sets

of continuous functions form a basis for X�� ��
�
�

We remark that in the above �note�� we used the same method to prove E��X� big as
we used in Lemma ��� to prove E��X� small� we have simply reversed the roles of f and
��

Also� it is possible to make the space of Theorem ��
 zero�dimensional by restricting
the coordinates to lie in a Cantor set� This would not be possible for the spaces of x�� or
the space used for Theorem ����b� below�

Observe that in the proof of Theorem ��
� the Hilbert space B can be either complex
or real� since unlike in x�� we no longer need the �es direction to be two dimensional� This
holds in the next construction as well� although we shall need that the base level L� be
in�nite dimensional�

Also observe that if the Ks� were not singletons� the above proof would establish a
modi�ed �note�� for all but countably many t� f��y� � f��n��y�� for all �y � Ut� This is the







key to building a space satisfying ��� but not ���� We shall make sure that �Ks has �large
dimension�� so that any real�valued function will be constant on many subsets of �Ks� and
these subsets will be the Ks�� this will ensure that E��X�R� � C�X�R�� However� if M
itself has �large dimension�� then this argument will fail� so that E��X�M� �� C�X�M��

The following de�nition and theorem pin down precisely for whichM we can conclude
E��X�M� � C�X�M� from E��X�R� � C�X�R�� It su�ces to consider only compact M �
since the range of each continuous map is compact� Let F� be the collection of all zero or
one point spaces� For an ordinal � 
 �� let F� be the class of all compact metric spaces
M such that there is a � � C�M� 	�� 
��� with ���frg � S	�� F	 for every r � 	�� 
�� So�
for example� induction on n � � shows that 	�� 
�n � Fn� Then� if M is the one�point
compacti�cation of the disjoint union of the 	�� 
�n� we may let � map M to a simple
sequence to conclude that M � F�� De�ne F �

S
	�ON F	� where ON is the class of

ordinals� Actually� since every compact metric space has at most c closed subspaces�
F �

S
	�c

� F	�
���� Theorem�

a� If X is compact Hausdor�� E��X�R� � C�X�R�� and M � F � then E��X�M� �
C�X�M��

b� There is a �rst countable uniform Eberlein compact X such that E��X�R� � C�X�R��
but for all compact metric spaces M �� F � E��X�M� �� C�X�M��

So� if we �x any compact metric space M �� F � we get an X satisfying condition ��� of
x�� but not ���� Of course� we need to know that such an M exists� but that follows by
a theorem of Levshenko� There is a class of strongly in�nite dimensional spaces which
includes the Hilbert cube� 	�� 
��� Levshenko showed that if M is a strongly in�nite dimen�
sional compact metric space and � � C�M� 	�� 
��� then some ���frg is strongly in�nite
dimensional �see 	
��� This gives us the following lemma�

���� Lemma� If M � F � then M is not strongly in�nite dimensional�
Proof� By induction on ordinals �� prove that every M � F� is not strongly in�nite

dimensional� ��
�
�

The de�nition of F gives us the following easy inductive proof of Theorem ����a��

Proof of Theorem ���
a�� Suppose that M � F�� and suppose �inductively� that
the result holds for all M � � S	�� F	� Suppose X is compact Hausdor� and E��X�R� �
C�X�R�� Fix f � C�X�M�� To prove f � E��X�M�� we �x a nonempty open U � X� and
we produce a nonempty open V � U such that f is constant on V � Applying the de�nition
of F�� �x � � C�M� 	�� 
�� such that for each r � 	�� 
� ���frg � S	�� F	� Then � � f �
C�X�R� � E��X�R�� so �x a nonempty open set W � U such that ��f has some constant
value r on W � Now ���frg � F	� for some � � �� and E��W�R� � C�W�R� �by Lemma
��
�� Applying the induction hypothesis� f � W � C�W����frg� � E��W����frg�� so we

may choose choose a nonempty open subset V �W such that f � V is constant� ��
�
�

To prove Theorem ����b�� we �rst prove some more lemmas about F � Then� rather
than construct a space X which works for every compact metric space M �� F � we present
Lemma ���� which allows us to construct a separate XM for each M � To construct each


�



XM � we proceed as in x�� that is� each XM will be an L�� constructed using somewhat
modi�ed conditions on the sets Kt� We then glue these XM together to complete the proof
of Theorem ����b��

We begin with the lemmas about F � First� another simple induction yields closure
under subsets�

���� Lemma� If M � F and H is a closed subset of M � then H � F �

We also get closure under �nite unions�

���� Lemma� Suppose that M is compact metric and M � H �K� where H�K are
closed subsets of M and H�K � F � Then M � F �

Proof� Since H is a closed G	� �x � � C�M� 	�� 
�� such that ���f�g � H� Then�
���f�g � F � For r 
 �� we have ���frg � K� so ���frg � F by Lemma ���� So�

���frg � F for each r � 	�� 
�� which implies that M � F � ��
�
�

Call M nowhere in F i� M is nonempty and for each nonempty open V � M � we
have V �� F � Note that such an M has no isolated points� since F contains all one point
spaces�

��	� Lemma� If M is a compact metric space and M �� F � then there is a closed set
K �M such that K is nowhere in F �

Proof� Let U � fU �M � U is open and U � Fg� and let K � M nSU �
First� note that K is nonempty� If K were empty� then� by compactness�M would be

covered by a �nite subfamily of U � which would imply M � F by Lemma ��
�
To prove thatK is nowhere in F � it su�ces �by Lemma ���� to prove that B�p� 	��K ��

F whenever p � K and 	 
 �� Note that B�p� 	� and its closure are computed in M � not
K� Let N � B�p� 	�� Fix � � C�N� 	�� 
�� such that ���f�g � N �K� Since B�p� 	� �K is
nonempty� N �� F � so there must be some r � 	�� 
� such that ���frg �� F � However� for
r 
 �� ���frg is compact and disjoint from K� so it is covered by a �nite subfamily of U �
and hence� as above� is in F � So� r must be �� so N �K �� F � ��

�
�

Let N �K� be the family of all compact H � K such that H is nowhere in F � The
following lemma is trivial� given the above results� but we state it to emphasize the abstract
properties of our construction�

���� Lemma� If K is compact metric and nowhere in F � then

� N �K� is a family of nonempty closed subspaces of K�
�� K � N �K��
�� For each H � N �K� and each nonempty relatively open U � H� there is an L � N �K�

with L � U �

Most of the proof of Theorem ����b� proceeds using just the conclusion to Lemma
���� without any reference to F � Note that if K is a singleton� and N �K� is rede�ned to
be fKg� we also have the conclusion to Lemma ���� and the proof of ����b� then reproves
Theorem ��
�

Now� as promised earlier� we present Lemma ���� which reduces our construction to a
modi�cation of that of x��


�



���� Lemma� If fX� � � � cg is a collection of nonempty �rst countable uniform
Eberlein compacta� then there is a �rst countable uniform Eberlein compact space X� with
disjoint clopen subsets J� homeomorphic to X�� such that

S
��c J� is dense in X�

Proof� We may assume that each X� is a weakly compact subset of the closed unit
ball of the Hilbert space B � � and that B � is a closed linear subspace of the Hilbert space
B � which contains unit vectors �m��� � c� and �b� all orthogonal to each other and to B � �

Let r�� for � � c� enumerate ��� 
�� Let J� � X��r��b��m�� Then J� is homeomorphic

to X� �via translation�� Let X be the union of the J�� together with all r�b for r � 	�� 
��
ThenX is norm bounded �by

p
��� and is weakly closed� since any limit of points in distinct

J� must be of the form r�b� the existence of these limits also shows that the union of the
J� is dense in X� The space X is �rst countable by Lemma ���� To see that the J� are

disjoint and �weakly� clopen in X� project along the �m� direction� ��
�
�

We remark that translating along the �b direction made X �rst countable� If we just
let J� � X� � �m�� and let X be the union of the J� plus f��g� then X would be simply
the one�point compacti�cation of the disjoint union of the X�� Of course� we could build
the one�point compacti�cation even if there are more than c X�� in which case one cannot
make X �rst countable �by Arkhangel"ski#$"s Theorem��

We now construct the space XM � Applying Lemma ���� let K be a closed subset
of M which is nowhere in F � Let B be a real Hilbert space with an orthonormal basis
consisting of unit vectors f�es � s � c

��gSf�bi � i � �g� Let Bn be the closed linear span of

f�es � lh�s� � ng � f�bi � i � �g� Since B � is in�nite dimensional� we can embed K in the
�rst level of our space� To do so we replace condition �Ra� of x��� by the following�

Ra�� K�
 is a weakly compact subset of the closed unit ball of B � � and K�
 is homeo�

morphic to K�
Actually� we could also make K�
 norm compact� but this is unnecessary�

Let �n be the perpendicular projection from B onto B n � If lh�s� � n� let Ds be the
set of vectors of the form �v�

P
i�n ri�es�i� where �v � K�
 and each jrij 	 ��i� In particular�

D�
 is homeomorphic to K � 	�
� 
�� As in x�� the product with 	�
� 
� allows us to make
the K� disjoint subsets of D�
� As before� if i 	 n� then �i���Ds� � Ds�i�

We will choose the Kt for t � c
�� so that they satisfy condition 
Ra��� along with


Rb� and 
Rc� of x���� Now� de�ne XM � L� to be the set of �x � B satisfying conditions
�
�� ���� and ��� of x���� along with condition ���� ����x� � K�
�

As before� for t � c
�� and n � lh�t�� Ut � L� � ����n �Kt�nKt�� So U�
 � L� nK�
 �

f�x � L� � �x 
 �e �� �g� In this construction� we still have the levels Ln � �n�L��� with
L� � K�
 and L� � D�
� Now� elements of level L�nL� are of the form �v�r��e�r��e��r��e�
�
where � � jrij 	 ��i for each i� �v � K�
� �v � r��e � K�� and �v � r��e� r��e� � K�
�

This L� still satis�es Lemmas ���� ���� and ��
�� provided we replace the bound in
����ii� by �

� � The proofs are the same� except for the proof of ����iv�� where we join

f�bi � i � �g to each C�x�
Now� we utilize N �K�
� to choose the Ks� Let �us� be of the form �us � rs��es� with

�u�
 � ��� Choose the Ks so that they satisfy� in addition to 
Ra��� 
Rb�� and 
Rc�� three
more conditions�


�




Rg� Each Ks is of the form Hs � �us� where Hs � N �K�
��

Rh� For each s and each L � N �K�
� such that L � Hs� Ks� � L � �us� for some

� � c�

Ri� For each s and each nonempty relatively open V � �Ks� there are uncountably

many � such that Ks� � V �
So� �Rg� says that each Ks is a translate of a subset of K�
� The �Ks is de�ned precisely as

in x�� so that conditions �Ra��� �Rb�� �Rc� already imply that Ks� � �Ks� Condition �Rg�
guarantees that� unlike in x�� the projection �� � Kt � K�
 is 
�
 for each t �and its inverse
is translation by �ut�� Using Lemma ���� it is easy to see that conditions �Ra��� �Rb�� �Rc��
�Rg�� �Rh�� �Ri� can all be met�

If f is a function on L� and n � lh�t�� we shall say that f is t�extension�constant i�
for all �x � Kt and all �y � L� ����n f�xg� f��y� � f��x�� By repeating the proof of the �note�
in the proof of Theorem ��
� we see the following�

���� Lemma� If M is metric and f � C�L��M�� then f is t�extension�constant for
all but countably many t�

In the next lemma� we use condition �Ri� to show that the Ut form a pi�base�

����� Lemma� If V is open and nonempty in L�� then for some t� Ut � V �
Proof� We may assume that V � f�x � L� � f��x� �� �g� where f � C�L��R�� First

�x s such that V � �Ks is nonempty� and then apply condition �Ri� plus Lemma ��� to set

t � s�� where � is chosen so that Ks� � V � �Ks and f is s��extension�constant� ��
�
�

In the case of Theorem ��
� all the Kt were singletons� so �t�extension�constant� meant
�constant�� and the instance of Lemma ��
� used there was simple enough that we omitted
the proof of it� In general� we cannot improve Lemma ��� to conclude that f is constant
on any open set� For example� the projection �� is 
�
 on each Kt� so cannot be constant
on Kt unless Kt is a singleton� Applying Lemma ��
�� we get our last lemma�

����� Lemma� If N �K�
� contains no singletons� then �� � C�L��K�
� and ��� � ��
Note� by condition �Ri�� however� that N �K�
� contains no singletons i� no set in

N �K�
� has any isolated points� Of course� this is certainly true with N meaning �nowhere
in F �� The speci�c features of this N appear in the conclusion of our proof�

Proof of Theorem ���
b�� By Lemma ��� and the fact that there are only c compact
metric spaces �up to homeomorphism�� it su�ces to �x an M �� F and verify that for the
space L� constructed above� E��L��R� � C�L��R�� but E��L��M� �� C�L��M�� Here�
L� was constructed with K�
 homeomorphic to a subset of M which was nowhere in F � so
that E��L��M� �� C�L��M� follows from Lemma ��

�

Now� �x f � C�L��R�� In view of Lemma ��
�� to prove that f � E��L��R�� it
su�ces to �x an s and �nd a nonempty open V � Us on which f is constant� By Lemma
��
�� �x � such that f is s��extension�constant� By condition �Rg�� Ks� � Hs� � �us��
where Hs� � N �K�
�� Now� applying the properties of N � we can choose an L � N �K�
�
such that L � Hs� and f is constant on L� �us�� Applying condition �Rh� to s�� we can

choose a � such that Hs�
 � L� �us�
� So let V � Us�
� ��
�
�


�



x�� On Banach Spaces� In this section� we make a few remarks on E��X�M� in
the case that X is an arbitrary compact Hausdor� space and M is a Banach space� For
de�niteness� we take the scalar �eld to be R� but all the results are unchanged if we replace
R by C �

First� as we have seen in x�� there are many X for which E��X�M� � C�X�M��
For a given X� this can depend on M � but in view of x� and the fact that every in�nite
dimensional Banach space contains a homeomorphic copy of the Hilbert cube� there are
only three possibilities�

� E��X�M� � C�X�M� for all Banach spaces M �
�� E��X�M� � C�X�M� for all �nite dimensionalM � but not for any in�nite dimensional

M �
�� E��X�M� �� C�X�M� for all Banach spaces M �

Furthermore� there are Eberlein compact X with no isolated points realizing each of these
possibilities ���� is trivial� see x� for �
� and �����

Second� in studying the properties of E��X�M� as a normed linear space� we can
isolate the two properties which are of fundamental importance� If f� g�� g� � C�X�M��
let us say that f is re�ned by g�� g� i� for all x� y � X� if g��x� � g��y� and g��x� � g��y�
then f�x� � f�y�� A linear subspace E � C�X�M� has the re�nement property i� for
all f� g�� g� � C�X�M�� if g�� g� � E and f is re�ned by g�� g�� then f � E� We say
that E has the disjoint summation property i� whenever

P
i�� fi � f in C�X�M�� each

fi � E� and the sets fx � fi�x� �� �g� for i � �� are all disjoint� then f � E� The set of
polynomial functions in C�	�� 
��R� has the disjoint summation property �trivially� but not
the re�nement property� while the set of functions which are constant in some neighborhood
of �

�
has the re�nement property but not the disjoint summation property� Let us call E

a nice subspace of C�X�M� i� E has both properties� Examples of nice E are E��X�M��
C�X�M�� and the space of all constant functions� Or� one may �x any open U � X�
then ff � C�X�M� � U � �fg is nice� Another example is the functions of essentially
countable range� that is� let � be a Baire measure on X� and then let D�X�M��� be the
set of f � C�X�M� such that for some ��null�set S � X� f�XnS� is countable� Another is
the category analog of this  the set of f � C�X�M� such that for some countable P �M �Sfint�f��fpg� � p � Pg is dense in X �int denotes �interior���

One advantage of studying nice E is that we may restrict our attention to the case
where E separates the points of X� In general� given E � C�X�M�� we may de�ne an
equivalence relation � on X by x � y i� f�x� � f�y� for all f � E� Let Y be the
quotient� X� �� then Y is a compact Hausdor� space� and there is a canonical projection�
�� from Y onto X� Let E� � fg � C�Y�M� � g � � � Eg� Then E� is isometric to E�
and E� separates the points of Y � Further� both the re�nement property and the disjoint
summation property are preserved here� so if E is nice� then so is E��

Some examples� when we start with E � E��X�M�� For the spaces constructed in x��
If X � L�� then Y is a singleton� If X � L�� then Y is obtained by collapsing L� to a
point� In these two cases� E� � E��Y�M�� but this is not in general true� For example� let
Q be any dense subset of 	�� 
�� and form X by attaching a copy of the L� of x� to each
q � Q� where each copy goes o� in some perpendicular direction� There is then a natural
retraction� r � X � 	�� 
�� and E��X�R� consists of all functions of the form f � r� where

��



f � C�	�� 
��R�� So� we may identify Y with 	�� 
� and � with r� and E� is C�Y�R�� not
E��Y�R��

Third� we remark on some consequences of assuming that E � C�X�M� has the re�
�nement property� If � � C�M�M� and f � E� then � � f � E �since � � f is re�ned by
f� f�� If M � R� and we view C�X�M� as a Banach algebra �under pointwise multipli�
cation�� then E is a subalgebra� More generally� if we �x any non�zero vector �v � M � we
may let �E � C�X�R� be the set of all g � C�X�R� such that the map x �� g�x��v is in E�
Note that this does not depend on the �v chosen� and if g � �E and f � E� then gf � E�
Note also that �E is nice�

It follows that if E � C�X�M� has the re�nement property and separates the points
of X� then E is dense in C�X�M�� To see this� �x f � C�X�M�� IfM � Rn� just apply the
Stone�Weierstrass Theorem to f composed with the projections onto n one�dimensional
subspaces� Then� for a general M � �rst approximate f arbitrarily closely by a map into a
�nite�dimensional subspace�

Actually� one can get more than just what is provided by a simple application of the
Stone�Weierstrass Theorem� For example� we can arrange for the approximating function
to be identically zero wherever f is zero�

���� Lemma� Suppose E � C�X�M� has the re�nement property and separates the
points of X� Fix f � C�X�M� and �x 	 
 �� Then there is a g � E with kg � fk 	 	�
kgk � kfk� and kg�x�k � kf�x�k for all x such that kf�x�k equals either � or kfk�

Proof� Assume 	 � kfk� Fix h � E with kh � fk 	 	��� Then� let � � M � M be
any continuous map such that for all �v � M � k���v�� �vk 	 	��� ���v� � �� when k�vk 	 	���
and ���v� � kfk when j k�vk � kfk j 	 	�� �� can just move each �v radially�� Then� let

g � � � h� ��
�
�

Fourth� is E��X�M� a Banach space% Certainly it is in the extreme cases where it is
all of C�X�M� and where it contains only the constant functions� To analyze the general
situation� we may� as pointed out above� just consider the case where E � C�X�M� is nice
and separates the points of X� Then� clearly� E a Banach space in the standard norm i�
it is all of C�X�M�� Furthermore� if E is not all of C�X�M�� then� following Bernard and
Sidney 	��
��� it is not even Banachizable� that is� there is no norm which makes E into a
Banach space and gives E a topology �ner than the one inherited from C�X�M�� In fact�
every nice E is barreled � which is a stronger property� There are a number of equivalents
to being barreled� discussed in 	
��� One is that for every linear space L with E � L � E�
L is not Banachizable �E is the completion of E� here� E � C�X�M��� Another is the
�weak sequential property� for E� which is the conclusion of the next Lemma� this is a
convenient way of establishing barreledness� The proof of the next Lemma is very similar
in spirit to that of Theorem � of 	
��� but we include it because at �rst sight� the proof as
stated in 	
�� might appear to require some additional assumptions about E and X� The
two examples above of subspaces of C�	�� 
��R� show that neither of the two components
of �nice�� �re�nement property� and �disjoint summation property�� is su�cient here�

���� Lemma� Let X be compact and let M be a Banach space� Suppose that E is a
nice subspace of C�X�M�� Let &n� for n � �� be in the dual space� E�� Assume that for
every g � E� &n�g�� �� Then supn k&nk ���

�




Proof� As pointed out above� we may assume also that E is dense in C�X�M�� so
we may consider &n to be in C�X�M�� � Note that if E � C�X�M�� the conclusion is
immediate by the Banach�Steinhaus Theorem� In any case� whenever H is a closed linear
subspace of C�X�M� such that H � E�

supfj&n�h�j � h � H � B��� 
� � n � �g �� � �
�

Here� B��� 
� is the closed unit ball of C�X�M�� Now� assume that supn k&nk � �� We
shall get a contradiction by applying �
��

For any f � C�X�M�� let supt�f� be the closure of fx � X � f�x� �� ��g� By
compactness of X� we may �x a point p such that for all neighborhoods V of p�

supfj&n�f�j � f � B��� 
� � n � � � supt�f� � V g �� �

By Lemma 
�
 �applied to �E  see above�� let g � �E be such that kgk � 
� g�p� � 
� and
supt�g� � V � Then H � fg�v � �v � Mg is a closed linear subspace of C�X�M� �isometric
to M� such that H � E� so we may apply �
� above� It follows� by considering functions
of the form x �� f�x� � g�x�f�p�� that for all neighborhoods V of p�

supfj&n�f�j � f � B��� 
� � n � � � supt�f� � V � f�p� � ��g �� �

Next� we show that for all neighborhoods V of p�

supfj&n�g�j � g � B��� 
� �E � n � � � supt�g� � V nfpgg �� �

To see this� �x K 
 �� and then �x n and f � C�X�M� such that kfk 	 
� supt�f� � V �
f�p� � ��� and j&n�f�j � �K� Let f � � C�X�M� be such that kf �k 	 
� supt�f �� � V � f �

vanishes in some neighborhood of p� and kf � � fk 	 K�k&nk� Applying Lemma 
�
 to f ��
let g � E be such that kgk 	 
� supt�g� � V � g vanishes in some neighborhood of p� and
kg � f �k 	 K�k&nk� Then j&n�g�j � K�

Thus� we may inductively choose open neighborhoods Vj of p� nj � �� and hj � E
such that each V j�� � Vj � supt�hj� � VjnV j��� khjk � 
� and j&nj�hj�j � j� Let H be
the closed linear span in C�X�M� of the hj � Since the hj are disjointly supported� H � E

�and H is isometric to c��� so we have a contradiction to �
� above� ��
�
�

Fifth� isE��X�M� �rst category in itself% We ask this because ifE��X�M� is of second
category� then Lemma 
�� becomes trivial by the Banach�Steinhaus Theorem� Fortunately�
E��X�M� is �rst category in many cases� for example� when X contains a nonempty sepa�
rable open subset with no isolated points �see the proof of ��� � �
� of Theorem ����� In
fact� as pointed out by Bernard and Sidney� the original interest of E��X� was that it pro�
vided examples of �rst category normed linear spaces which satisfy the Banach�Steinhaus
Theorem� as well as a number of other results usually proved by category arguments� The
following lemma describes some other situations in which E��X�M� is of �rst category�

��



���� Lemma� Let X be compact and let M be a Banach space� Suppose that
E��X�M� is not a Banach space� Then E��X�M� is of �rst category in itself if either of
the following hold�
a� M is in�nite dimensional�
b� X is zero�dimensional�

Proof� First� as indicated above� we may pass to a quotient and consider a nice
E � C�X�M� which is dense in C�X�M� but not all of C�X�M�� of course� in �b��
this quotient operation is trivial� Now� we need only show that E is of �rst category in
C�X�M��

Whenever H and K are closed subsets of X� let U�H�K� � fg � C�X�M� � g�H� �
g�K� � �g� Note that U�H�K� is always open in C�X�M�� If H and K are disjoint� then
either �a� or �b� guarantees that U�H�K� is dense in C�X�M��

Fix an f � C�X�M�nE� Since f�X� is second countable� there are closedHn�Kn � X
for n � � such that each Hn �Kn � �� and for all x� y � X� if f�x� �� f�y�� then for some
n� x � Hn and y � Kn� Let G �

T
n�� U�Hn�Kn�� Then G is a dense G	� and f is re�ned

by g� g for all g � G� so G is disjoint from E� ��
�
�

The situation for �nite dimensional M seems more complicated� We do not actually
have an example of an E��X�R� which is second category but not a Banach space� although
it is easy to produce a consistent example of this by forcing 	
�� 

�� In the ground model�
V � let X � L� be the space constructed in the proof of Theorem ����b�� so E��X�R� �
C�X�R�� Let V 	G� add one Cohen real� Then� in V 	G�� E��X�R� is of second category�
since it contains the ground model C�X�R�� which is of second category with this forcing�
However� in V 	G�� E��X�R� is not all of C�X�R�� since V 	G� will contain a g � C�K�
�R�
which is 
�
 on K�
 � V � if f � g � �� � C�X�R�� then �f � �� To verify the details of
this construction� one must compare X and C�X�R� in both models� V and V 	G�� this is
described in x� of 	���

The following lemma yields a class of examples where E��X�R� is of �rst category�

���� Theorem� Let M be any Banach space� and let X �
Q

i��Xi� where each Xi

is compact Hausdor� and has more than one point� Then E��X�M� is of �rst category�
and is dense in C�X�M��

Proof� Let Pn �
Qn

i��Xi� and let �n be the projection from X onto Pn� Call a
function f on X n�supported i� f � g � �n for some function g on Pn�

To prove that E��X�M� dense in C�X�M�� it is su�cient to show that E��X�R�
separates points� Fix two distinct points� x� y � X� Since an in�nite product has no
isolated points� we may assume �by partitioning the index set into in�nitely many in�nite
sets� that each Xi has no isolated points� We may also assume that ���x� �� ���y�� We
now produce an f in E��X�R� which separates x� y�

Note that if �n��f � � Pn for all n� then �f will be dense� To obtain this situation�
we shall focus on the dyadic rationals� Let Dn � fj 
 ��n � � 	 j 	 �ng� so� D� � f�� 
g
and D� � f�� �

� � 
g� Inductively choose fn � C�X� 	�� 
�� so that�


� x � int�f��� f�g� and y � int�f��� f
g��
�� fn is n�supported�
�� kfn�� � fnk 	 ��n�

��



�� f��n fqg � f��n��fqg whenever q � Dn�


�
Sf�n�int�f��n��fqg�� � q � Dn��g � Pn�

Let f � limnfn� This limit exists by ���� �n��f � � Pn for all n by ����
�� f separates
x� y by �
�� Condition ��� allows the inductive construction of fn���

Now� we prove that E��X�M� is of �rst category in C�X�M�� For each n� let Un be the
set of all f � C�X�M� such that for all z � Pn� f is not constant on fx � X � �n�x� � zg�
Then Un is dense and open in C�X�M�� and �f � � whenever f � Sn�� Un�

��
�
�

We remark that the space D�X�M��� de�ned above is always dense in C�X�M� �by
modifying the proof of the Urysohn Separation Theorem�� and is always of �rst category�
except in the trivial case that � is a countable sum of point masses� where D�X�M��� �
C�X�M��
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