Chromatic Numbers and Bohr Topologies*

Berit Nilsen Givens[†] and Kenneth Kunen^{‡§}
October 16, 2002

Abstract

We use chromatic numbers of hypergraphs to study the Bohr topology $G^{\#}$ on discrete abelian groups. In particular, if K is an infinite abelian group of a given prime exponent, we show that $G^{\#}$ and $K^{\#}$ are homeomorphic iff G is the product of K and some finite group. Also, if K is of finite exponent and G is not of finite exponent, then $G^{\#}$ is never topologically embeddable in $K^{\#}$.

1 Introduction

If G is a (discrete) abelian group, then $G^{\#}$ denotes G with its Bohr topology. This is the coarsest topology on G which makes each $\varphi \in \operatorname{Hom}(G, \mathbb{T})$ continuous. Here, \mathbb{T} is the circle group and $\operatorname{Hom}(G, \mathbb{T}) = \widehat{G}$ is the group of characters of G. If H is a subgroup of G, then H is closed in $G^{\#}$, and $H^{\#}$ is the same as the subspace topology which H inherits from $G^{\#}$. \widehat{G} is described in texts on harmonic analysis [6, 9, 13]. For more on $G^{\#}$, see van Douwen [4] and Dikranjan [1, 2].

It is an open question, first raised by van Douwen, whether one can characterize those G, K such that $G^{\#}$ and $K^{\#}$ are homeomorphic (just as topological spaces), by using only basic algebraic properties of G and K. In this paper, we give such a characterization in the case that G is arbitrary and K is an infinite abelian group of a given prime exponent (see Corollary 1.4). See [1]

^{*2000} Mathematics Subject Classification: Primary 54H11, Secondary 05C15. Key Words and Phrases: Bohr topology, character.

[†]University of Wisconsin, Madison, WI 53706, U.S.A., nilsen@math.wisc.edu

[‡]University of Wisconsin, Madison, WI 53706, U.S.A., kunen@math.wisc.edu

[§]Both authors partially supported by NSF Grant DMS-0097881.

2

for a discussion of what else is known about this question; for example, it is still unknown whether $\mathbb{Z}^{\#}$ and $\mathbb{Q}^{\#}$ are homeomorphic.

To describe our results in more detail, we introduce some terminology:

Definition 1.1 $\bigoplus^{\kappa} H$ is the direct sum of κ many copies of H. $\mathbb{V}_n^{\kappa} = \bigoplus^{\kappa} \mathbb{Z}_n$. \mathbb{V}_n^0 is the one-element group.

Here, $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$. If p is prime and κ is infinite, then \mathbb{V}_p^{κ} is the unique abelian group of order κ and exponent p; it may be viewed as the vector space of dimension κ over the field \mathbb{Z}_p . It is already known [3, 11] that $(\mathbb{V}_p^{\kappa})^{\#}$ and $(\mathbb{V}_q^{\kappa})^{\#}$ are not homeomorphic whenever p, q are distinct primes. In this paper, we characterize those G such that $G^{\#}$ is embeddable (topologically) into $(\mathbb{V}_p^{\kappa})^{\#}$. In Section 5, we prove:

Theorem 1.2 Let G be any abelian group, κ any infinite cardinal, and p any prime. Then $G^{\#}$ is homeomorphic to a subset of $(\mathbb{V}_p^{\kappa})^{\#}$ iff G is isomorphic to $\mathbb{V}_p^{\lambda} \times F$ for some finite F and some $\lambda \leq \kappa$.

Actually, only the \to direction of this theorem requires proof, since the \leftarrow direction is immediate from the fact that \mathbb{V}_p^{λ} is a subgroup of \mathbb{V}_p^{κ} when $\lambda \leq \kappa$, along with:

Lemma 1.3 For abelian group K, F, with K infinite and F finite: $K^{\#}$ is homeomorphic to $(K \times F)^{\#}$.

For K countable, this lemma is an easy consequence of homogeneity, but in fact it is true for arbitrary infinite K by Trigos-Arrieta [14], Theorem 6.33 (see also [7], Lemma 3.3.3).

Corollary 1.4 If κ is any infinite cardinal, G any abelian group of order κ , and p any prime, then the following are equivalent:

- 1. $G^{\#}$ is homeomorphic to a subset of $(\mathbb{V}_p^{\kappa})^{\#}$.
- 2. $G^{\#}$ is homeomorphic to $(\mathbb{V}_{n}^{\kappa})^{\#}$.
- 3. G is isomorphic to $\mathbb{V}_p^{\kappa} \times F$ for some finite F.

Proof. (2) \rightarrow (1) is obvious, (3) \rightarrow (2) is immediate from Lemma 1.3, and (1) \rightarrow (3) follows from Theorem 1.2.

In Section 2, we describe a class of abstract topological spaces constructed using chromatic numbers of hypergraphs. Some of these hypergraph spaces are embeddable into many $G^{\#}$ (see Section 3), but not into $(\mathbb{V}_{n}^{\kappa})^{\#}$ (see Section 4).

This establishes that many $G^{\#}$ are not embeddable into $(\mathbb{V}_p^{\kappa})^{\#}$, which will prove the \to direction of Theorem 1.2 (see Section 5).

A special case of a hypergraph is an ordinary undirected graph, and in this case, the graph topologies and their embeddings into $G^{\#}$ are described in [12].

In Section 5, we also prove some extensions of Theorem 1.2 involving embedding $G^{\#}$ into $K^{\#}$ in the case that K is an arbitrary abelian group of finite exponent (see Theorems 5.1 and 5.3). Groups of the form \mathbb{V}_n^{κ} are key to understanding general groups of finite exponent by the following well-known structure theorem:

Theorem 1.5 If K is an abelian group of finite exponent, then K is isomorphic to a product of the form:

$$\prod_{p \in P \; ; \; 0 < i < \omega} \mathbb{V}_{p^i}^{\kappa_{p,i}} \quad ,$$

where P is the set of primes, and all but finitely many of the $\kappa_{p,i}$ are zero. Furthermore, the sequence of cardinals, $\langle \kappa_{p,i} : p \in P ; 0 < i < \omega \rangle$, is uniquely determined by K.

Note that this product is essentially a finite product (= direct sum). The fact that K can be written as such a direct sum is Theorem 6, p. 17, of Kaplansky [10]; then, the $\kappa_{p,i}$ are unique because they can be determined from the Ulm invariants of the primary components of K (see [10], p. 27).

2 Hypergraph Topologies

We use the standard Erdös notation, $[A]^n$, for the collections of all n-element subsets of the set A. If $\Gamma \subseteq [A]^n$, we may view Γ as a hypergraph, with node set A and edges $\mathfrak{e} \in \Gamma$. We may assign Γ a chromatic number, but for n > 2, there are various possible definitions of "chromatic number" other than the "standard" one, from Erdös and Hajnal [5], which required only that each edge get at least two colors. Our definition depends on an ordering of A and a sequence of coefficients.

Notation 2.1 If A is totally ordered by < and $n \ge 2$ then we use $\mathfrak{e} = \{e_0, \ldots, e_{n-1}\}$ (always written in increasing order) for elements of $[A]^n$.

Definition 2.2 A sequence of coefficients is a sequence $\vec{b} = (b_0, \ldots, b_{n-1})$ of elements from some fixed abelian group, where $2 \le n < \omega$, $\sum_{j < n} b_j = 0$, and all $b_i \ne 0$.

Definition 2.3 Given a set A totally ordered by <, a sequence of coefficients $\vec{b} = (b_0, \ldots, b_{n-1})$, and $\Gamma \subseteq [A]^n$:

$$\sum \{b_j : e_j \in C_\alpha\} \neq 0 .$$

- $\gg \chi_{\vec{b}}(\Gamma)$, the \vec{b} -chromatic number of Γ , is the least θ such that there is successful coloring for Γ in θ colors.

Definition 2.4 Given (A, <) and coefficients $\vec{b} = (b_0, \ldots, b_{n-1})$:

- $=\mathcal{T}_{\vec{b}}$ is the topology on the set $[A]^n \cup \{\infty\}$ defined so that:
 - * the subset $[A]^n$ is open and discrete, and
 - * for all $\Gamma \subseteq [A]^n$: $\infty \in \operatorname{cl}(\Gamma)$ iff $\chi_{\vec{b}}(\Gamma)$ is infinite.
- = If the coefficients are in \mathbb{Z} , then $\mathcal{T}_{\vec{b}}^m$ is the topology obtained by regarding each b_j as representing an element of \mathbb{Z}_m (using $\chi_{\vec{b}}^m(\Gamma)$ instead of $\chi_{\vec{b}}(\Gamma)$).

Lemma 2.5 If $\Gamma \neq \emptyset$, then $2 \leq \chi_{\vec{b}}(\Gamma) \leq |A|$. If A is infinite, then $\chi_{\vec{b}}([A]^n) = |A|$. If the coefficients are in \mathbb{Z} , then $\chi_{\vec{b}}^m(\Gamma) \geq \chi_{\vec{b}}(\Gamma)$ and $\mathcal{T}_{\vec{b}}^m$ is coarser than $\mathcal{T}_{\vec{b}}$.

 \mathbb{Z}_m is often represented concretely as $\{0, 1, \ldots, m-1\}$, so to avoid confusion when the coefficients are in \mathbb{Z}_m , we sometimes write $\chi^m_{\vec{b}}(\Gamma)$ instead of $\chi_{\vec{b}}(\Gamma)$.

We conclude this section with some examples illustrating the specific cases of these notions most relevant for the rest of this paper.

Definition 2.6 For a natural number σ , the \mp -coefficients of length 2σ is the sequence $\vec{b} = (-1, \ldots, -1, 1, \ldots, 1)$ from \mathbb{Z} , where $b_j = -1$ for $0 \leq j < \sigma$ and $b_j = 1$ for $\sigma \leq j < 2\sigma$.

Now, with this \vec{b} , we can compute $\chi_{\vec{b}}(\Gamma)$, and also $\chi_{\vec{b}}^m(\Gamma) \geq \chi_{\vec{b}}(\Gamma)$, obtained by viewing the ± 1 as elements of \mathbb{Z}_m

Example 2.7 Assume that A is ordered by < in type ω and that $D \subset A$ with D and $A \setminus D$ both infinite. Fix μ, ν with $0 \le \mu < \sigma$ and $\sigma \le \nu < 2\sigma$. Let:

$$\Gamma_1 = \{ \mathfrak{e} \in [A]^{2\sigma} : e_{\mu} \in D \& e_{\nu} \in D \& \forall j \notin \{\mu, \nu\} [e_j \in A \setminus D] \}$$

$$\Gamma_2 = \{ \mathfrak{e} \in [A]^{2\sigma} : \forall j < \sigma [e_j \in D] \& \forall j \geq \sigma [e_j \in A \setminus D] \} .$$

Let \vec{b} be the \mp -coefficients of length 2σ . Then $\chi^m_{\vec{b}}(\Gamma_1) = \chi_{\vec{b}}(\Gamma_1) = \aleph_0$ and $\chi^m_{\vec{b}}(\Gamma_2) = 2$. $\chi^m_{\vec{b}}(\Gamma_2) = 2$ when $m \nmid \sigma$ and $\chi^m_{\vec{b}}(\Gamma_2) = \aleph_0$ when $m \mid \sigma$.

Proof. If $A = \bigcup_{\alpha < \theta} C_{\alpha}$, with θ finite, then one can fix α, β with $C_{\alpha} \cap D$ and $C_{\beta} \cap (A \setminus D)$ both infinite. We can then choose $\mathfrak{e} \in \Gamma_1$ with $e_{\mu}, e_{\nu} \in C_{\alpha} \cap D$ and $e_j \in C_{\beta} \cap (A \setminus D)$ for all $j \neq \mu, \nu$. This \mathfrak{e} is not successfully colored. Hence, $\chi_{\vec{b}}^m(\Gamma_1) = \chi_{\vec{b}}(\Gamma_1) = \aleph_0$.

Likewise, with the same α, β , we can choose $\mathfrak{e} \in \Gamma_2$ with $e_j \in C_\alpha \cap D$ for all $j < \sigma$ and $e_j \in C_\beta \cap (A \setminus D)$ for all $j \geq \sigma$. If $m \mid \sigma$, then $\sigma = 0 \mod m$, so that this \mathfrak{e} is not successfully colored mod m. Hence, $\chi^m_{\vec{b}}(\Gamma_2) = \aleph_0$.

However, if $m \nmid \sigma$, then $A = D \cup (A \setminus D)$ is a successful coloring for Γ in 2 colors, so that $\chi_{\overline{b}}^m(\Gamma_2) = 2$.

3 Embeddings into Groups

Throughout, G is an abelian group. We use our coefficients (Definition 2.2) to map edges in a hypergraph to elements of G as follows:

Definition 3.1 Suppose that $\vec{b} = (b_0, \dots, b_{n-1})$ is a sequence of coefficients and $A \subseteq G$ is totally ordered by $\langle Fix \ \mathfrak{e} = \{e_0, \dots, e_{n-1}\} \in [A]^n$. We define $\vec{b} \cdot \mathfrak{e} = b_0 e_0 + \dots + b_{n-1} e_{n-1} \in G$ whenever either:

- a. The coefficients are in \mathbb{Z} or
- b. The coefficients are in \mathbb{Z}_m and $mA = \{0\}$.

In either of these two cases, define $\vec{b} \cdot \Gamma = \{\vec{b} \cdot \mathfrak{e} : \mathfrak{e} \in \Gamma\}$ whenever $\Gamma \subseteq [A]^n$, and define $\Psi_{\vec{b}} : [A]^n \cup \{\infty\} \to G$ by: $\Psi_{\vec{b}}(\mathfrak{e}) = \vec{b} \cdot \mathfrak{e}$ and $\Psi_{\vec{b}}(\infty) = 0$.

Note that there is no presumed relationship between the order < and the group structure; the order is just used to define the notions $\vec{b} \cdot \hat{\mathbf{c}}$ and $\vec{b} \cdot \Gamma$ (which depend on <). We proceed to show that for certain A, this $\Psi_{\vec{b}}$ is a topological embedding with respect to the Bohr topology on G and the topology $\mathcal{T}_{\vec{b}}$ of Definition 2.4.

Definition 3.2 If all $b_i \in \mathbb{Z}$, then $||\vec{b}|| = ||\vec{b}||_1 = \sum_{i=0}^{n-1} |b_i|$. If $b_i \in \mathbb{Z}_m$, we may view \mathbb{Z}_m as $\{0, 1, \ldots, m-1\}$ and define $||\vec{b}||$ in the same way.

Note that even if $b_i \in \mathbb{Z}_m$, it is possible that $||\vec{b}|| > m$.

Lemma 3.3 In either of the two cases of Definition 3.1, the map $\Psi_{\vec{b}}: [A]^n \cup \{\infty\} \to G^{\#}$ is continuous with respect to the topology $\mathcal{T}_{\vec{b}}$ on $[A]^n \cup \{\infty\}$.

Proof. It is only necessary to prove continuity at the point ∞ , since the other points are isolated. To do this, it is sufficient to fix $\Gamma \subseteq [A]^n$, assume that $0 \notin \operatorname{cl}(\vec{b} \cdot \Gamma)$, and show that $\chi_{\vec{b}}(\Gamma)$ is finite.

First, consider Case (a) of Definition 3.1. If $V \subseteq G$ and r is a positive integer, let $V^r = \{v_1 + \dots + v_r : v_1, \dots, v_r \in V\}$. Fix an open neighborhood U of 0 with $\vec{b} \cdot \Gamma \cap U = \emptyset$. Then fix an open $V \ni 0$ with V = -V and $V^{||\vec{b}||} \subseteq U$. Since the Bohr topology is totally bounded, G can be covered by finitely many translates of V; say $G = \bigcup_{\alpha < \theta} (V + x_{\alpha})$, where θ is finite. The sets $(V + x_{\alpha}) \cap A$ may not be disjoint, but by shrinking them if necessary, we may partition A into $\bigcup_{\alpha < \theta} C_{\alpha}$ so that each $C_{\alpha} \subseteq V + x_{\alpha}$. We shall show that this coloring is successful:

If the coloring is unsuccessful, then fix $\mathfrak{e} = \{e_0, \ldots, e_{n-1}\} \in \Gamma$ such that for every $\alpha < \theta$, $\sum \{b_j : e_j \in C_\alpha\} = 0$. For each α , let $r_\alpha = \sum \{|b_j| : e_j \in C_\alpha\}$, so that $||\vec{b}|| = \sum_{\alpha < \theta} r_\alpha$. Then, using $C_\alpha \subseteq V + x_\alpha$:

$$\sum \{b_j e_j : e_j \in C_\alpha\} \in V^{r_\alpha} + \sum \{b_j x_\alpha : e_j \in C_\alpha\} = V^{r_\alpha} . \tag{*}$$

Now, summing over α : $\vec{b} \cdot \mathbf{e} \in V^{||\vec{b}||} \subseteq U$, contradicting $\vec{b} \cdot \Gamma \cap U = \emptyset$.

In Case (b), the proof is essentially the same. We may assume that $G = \langle A \rangle$, so that $mG = \{0\}$. Then, for equation (*), it is sufficient that each $\sum \{b_j : e_j \in C_\alpha\} = 0 \mod m$, which will hold if the coloring is unsuccessful viewing the b_j as representing elements of \mathbb{Z}_m .

In general, one cannot assert that $\Psi_{\vec{b}}$ is a topological embedding (i.e., a homeomorphism onto its range). It is easy to construct examples where $\Psi_{\vec{b}}$ is not 1-1, or where $\Psi_{\vec{b}}$ is 1-1 but is not a homeomorphism. It is an embedding when A is suitably independent. We consider Case (b) of Definition 3.1 first. Recall that $A \subseteq G$ is called *independent* iff for all n, all $\{e_0, \ldots, e_{n-1}\} \in [A]^n$, and all $c_0, \ldots, c_{n-1} \in \mathbb{Z}$: if $\sum_j c_j e_j = 0$, then every $c_j e_j = 0$.

Notation 3.4 We represent the circle group, \mathbb{T} , as \mathbb{R}/\mathbb{Z} , so all elements of \mathbb{T} are of the form [x] for $x \in \mathbb{R}$. We use "d" for linear distance, so that $d([x], [y]) = \min(|x - y|, 1 - |x - y|)$ for $x, y \in [0, 1]$.

Lemma 3.5 Suppose that $A \subseteq G$ is independent and all elements of A have order exactly m, and the coefficients \vec{b} are in \mathbb{Z}_m . Then $\Psi_{\vec{b}} : [A]^n \cup \{\infty\} \to G^{\#}$ is a topological embedding with respect to the topology $\mathcal{T}^m_{\vec{b}}$ on $[A]^n \cup \{\infty\}$.

Proof. Independence implies that $\Psi_{\vec{b}}$ is 1-1. Also by independence, for each $a \in A$, there is a character δ_a such that $\delta_a(a) = [1/m] \in \mathbb{T}$, and $\delta_a(x) = 0$ for all $x \in A \setminus \{a\}$. Then for each $\mathfrak{e} = \{e_0, \ldots, e_{n-1}\} \in [A]^n$, $\Psi_{\vec{b}}(\mathfrak{e}) = \vec{b} \cdot \mathfrak{e}$ is isolated in $\operatorname{ran}(\Psi_{\vec{b}})$ because

$$\{y \in G^{\#}: \forall j < n \left[d(\delta_{e_j}(y) - \delta_{e_j}(\vec{b} \cdot \mathbf{e})) < 1/m\right]\}$$

is a neighborhood of $\vec{b} \cdot \mathfrak{e}$ containing no other element of ran $(\Psi_{\vec{b}})$.

Thus, to prove that $\Psi_{\vec{b}}$ is an embedding, it is sufficient to fix $\Gamma \subseteq [A]^n$ such that $\infty \notin \operatorname{cl}(\Gamma)$ and prove that $0 \notin \operatorname{cl}(\vec{b} \cdot \Gamma)$. Applying the definition of $\mathcal{T}_{\vec{b}}^m$, let $\langle C_\alpha : \alpha < \theta \rangle$ be a finite successful coloring for Γ . For each $\alpha < \theta$, choose a character φ_α so that $\varphi_\alpha(x) = [1/m]$ if $x \in C_\alpha$ and $\varphi_\alpha(x) = 0$ if $x \in A \setminus C_\alpha$. For each $\mathfrak{e} \in \Gamma$, there is an α such that $\sum \{b_j : e_j \in C_\alpha\} \neq 0$ in \mathbb{Z}_m , so that $d(\varphi_\alpha(\vec{b} \cdot \mathfrak{e}), 0) \geq 1/m$ in \mathbb{T} . Thus, there is a neighborhood of 0 in $G^\#$ containing no elements of $\vec{b} \cdot \Gamma$.

When the coefficients are in \mathbb{Z} , a similar proof will work if the elements of A have infinite order and are independent. However, in proving Theorem 1.2, we will need to get embeddings into groups such as \mathbb{Q} and \mathbb{Z} , where there are no independent sets. To handle this, we introduce a variant of the notion of independence:

Definition 3.6 If $\varepsilon > 0$, then $A \subseteq G$ is ε -free iff whenever $\tau : A \to \mathbb{T}$ is given, there is a $\varphi \in \text{Hom}(G, \mathbb{T})$ such that $d(\tau(a), \varphi(a)) < \varepsilon$ for all $a \in A$.

Observe that A is ε -free for all $\varepsilon > 0$ iff A is independent and all elements of A have infinite order. However, a weaker condition suffices to make $\Psi_{\vec{b}}$ an embedding:

Lemma 3.7 Suppose that the coefficients \vec{b} are in \mathbb{Z} and $A \subseteq G$ is $1/(4||\vec{b}||)$ free. Then $\Psi_{\vec{b}}: [A]^n \cup \{\infty\} \to G^{\#}$ is a topological embedding with respect to
the topology $\mathcal{T}_{\vec{b}}$ on $[A]^n \cup \{\infty\}$.

Proof. We plan to show two things:

- 1. If $\Gamma \subseteq [A]^n$ and $\infty \notin \operatorname{cl}(\Gamma)$, then $0 \notin \operatorname{cl}(\vec{b} \cdot \Gamma)$.
- 2. If $\mathfrak{e} \in [A]^n$, then there is a neighborhood U of $\vec{b} \cdot \mathfrak{e}$ in $G^{\#}$ which does not contain $\vec{b} \cdot \mathfrak{w}$ for any $\mathfrak{w} \in [A]^n \setminus {\mathfrak{e}}$.

By (1) for singleton Γ along with (2), $\Psi_{\vec{b}}$ is 1-1. Then (2) implies that each $\vec{b} \cdot \mathfrak{e}$ is isolated in ran($\Psi_{\vec{b}}$), and then (1) implies that $\Psi_{\vec{b}}$ is a homeomorphism onto its range.

Whenever $\tau: A \to \mathbb{T}$, define $\widetilde{\tau}: [A]^n \to \mathbb{T}$ by $\widetilde{\tau}(\mathfrak{e}) = \sum_j b_j \tau(e_j)$; then $\widetilde{\tau}(\mathfrak{e}) = \overline{\tau}(\vec{b} \cdot \mathfrak{e})$ in the case that τ is the restriction of some $\overline{\tau} \in \text{Hom}(G, \mathbb{T})$. Note that if $\varphi \in \text{Hom}(G, \mathbb{T})$ and $d(\tau(a), \varphi(a)) < \varepsilon$ for all $a \in A$, then $d(\widetilde{\tau}(\mathfrak{e}), \varphi(\vec{b} \cdot \mathfrak{e})) < ||\vec{b}|| \varepsilon$ for all $\mathfrak{e} \in [A]^n$.

For (2): For each i < n, define $\tau_i(e_i) = [1/(2b_i)] \in \mathbb{T}$ and $\tau_i(x) = 0$ for $x \in A \setminus \{e_i\}$. Thus, $\widetilde{\tau}_i(\mathfrak{e}) = [1/2]$. Choose $\varphi_i \in \operatorname{Hom}(G, \mathbb{T})$ such that $d(\tau_i(x), \varphi_i(x)) < 1/(4||\vec{b}||)$ for all $x \in A$. Then $d(\widetilde{\tau}_i(\mathfrak{w}), \varphi_i(\vec{b} \cdot \mathfrak{w})) < 1/4$ for all $\mathfrak{w} \in [A]^n$, so that $d(\varphi_i(\vec{b} \cdot \mathfrak{e}), [1/2]) < 1/4$. Let

$$U = \{ y \in G^{\#} : \forall i < n [d(\varphi_i(y), [1/2]) < 1/4] \} .$$

Fix $\mathbf{w} \in [A]^n \setminus \{\mathbf{e}\}$, and then fix i with $e_i \notin \mathbf{w}$. Then $\widetilde{\tau}_i(\mathbf{w}) = 0$, so that $d(\varphi_i(\vec{b} \cdot \mathbf{w}), 0) < 1/4$, so $\vec{b} \cdot \mathbf{w} \notin U$.

For (1): let $\langle C_{\alpha} : \alpha < \theta \rangle$ be a finite successful coloring for Γ . We shall produce characters φ_{β}^{r} , for $\beta < \theta$ and $r = \pm 1, \pm 2, \dots, \pm ||\vec{b}||$, so that for each $\mathfrak{e} \in \Gamma$ there are some β, r with $d(\varphi_{\beta}^{r}(\vec{b} \cdot \mathfrak{e}), 0) > 1/4$.

For each β, r , define $\tau_{\beta}^{r}: A \to \mathbb{T}$ so that $\tau_{\beta}^{r}(a) = [1/(2r)]$ for $a \in C_{\beta}$ and $\tau_{\beta}^{r}(a) = 0$ for $a \notin C_{\beta}$. Then fix a character $\varphi_{\beta}^{r}: G \to \mathbb{T}$ such that $d(\tau_{\beta}^{r}(a), \varphi_{\beta}^{r}(a)) < 1/(4||\vec{b}||)$ for all $a \in A$.

Now fix $\mathfrak{e} = \{e_0, \dots, e_{n-1}\} \in \Gamma$. Say $e_j \in C_{\alpha_j}$ for j < n. Since the coloring is successful, fix β with $r := \sum \{b_j : \alpha_j = \beta\} \neq 0$. Then

$$\widetilde{\tau_{\beta}^{r}}(\mathfrak{e}) = \sum \{b_{j}: \alpha_{j} = \beta\} \left[1/(2r)\right] = [1/2] \ ,$$

$$\text{ and } d(\widetilde{\tau_{\beta}^r}(\boldsymbol{\mathfrak{e}}),\varphi_{\beta}^r(\vec{b}\cdot\boldsymbol{\mathfrak{e}}))<||\vec{b}||/(4||\vec{b}||)=1/4, \text{ so that } d(\varphi_{\beta}^r(\vec{b}\cdot\boldsymbol{\mathfrak{e}}),0)>1/4. \qquad \square$$

The following lemma is proved by a case analysis patterned after the proof that every infinite abelian group contains an infinite I_0 -set (Hartman and Ryll-Nardzewski [8], Theorem 5). Such analyses are further described in [12].

Lemma 3.8 The following are equivalent for any infinite abelian group G:

- 1. G is not of finite exponent.
- 2. For all $\varepsilon > 0$, G contains an infinite ε -free subset.

Proof. For $(2) \to (1)$, observe that if $mG = \{0\}$, then all character values are of the form [k/m], so that G cannot have a non-empty 1/(2m)-free subset.

Now, assume (1). If G is not a torsion group, then \mathbb{Z} is a subgroup of G, and then a suitably thin Hadamard set in \mathbb{Z} will be ε -free (see [12], §2).

We are left with the case that G is a torsion group but contains elements of arbitrarily large order. Inductively choose x_i for $i \in \omega$, and let H_i be the subgroup generated by $\{x_j : j < i\}$; so $H_0 = \{0\}$. Given H_i , choose x_i such that if n_i is the least n with $nx_i \in H_i$, then $n_i > 1/(2\varepsilon)$.

We now show that $A = \{x_i : i \in \omega\}$ is ε -free. Fix $\tau : A \to \mathbb{T}$. We shall find a $\varphi \in \text{Hom}(G, \mathbb{T})$ such that that each $d(\tau(x_i), \varphi(x_i)) < \varepsilon$ by inductively defining $\varphi \upharpoonright H_i$. Fix i, and assume we have $\varphi \upharpoonright H_i$. Let $U = \{u \in \mathbb{T} : n_i u = \varphi(n_i x_i)\}$. We may obtain a homomorphism on H_{i+1} by setting $\varphi(x_i)$ to be any element of U. Now $|U| = n_i$ and adjacent elements of U are distance $1/n_i$ apart, so we can fix $u \in U$ with $d(\tau(x_i), u) \leq 1/(2n_i) < \varepsilon$, and set $\varphi(x_i) = u$. Finally, extend φ arbitrarily from $\langle \{x_i : i < \omega\} \rangle$ to all of G.

Note that the notion of "free" does not involve any order on A, although the topology $\mathcal{T}_{\vec{b}}$ does depend on the order. We may apply Lemma 3.8 to get an infinite ε -free A, and then order A arbitrarily in applying Lemma 3.7, yielding:

Corollary 3.9 Suppose that G is any abelian group which is not of finite exponent and \vec{b} is a sequence of coefficients in \mathbb{Z} . Then there is an infinite $A \subseteq G$ and an ordering $\langle of A \text{ in type } \omega \text{ such that } \Psi_{\vec{b}} : [A]^n \cup \{\infty\} \to G^{\#} \text{ is a topological embedding with respect to the topology } \mathcal{T}_{\vec{b}} \text{ on } [A]^n \cup \{\infty\}.$

4 Non-Embeddability of Hypergraph Spaces

We begin by proving (Lemma 4.8) that some hypergraph spaces are not embeddable in $(\mathbb{V}_p^{\kappa})^{\#}$, where p is prime. To do this, we use some results from [11] on *normal forms* of functions from $[A]^n$ to \mathbb{V}_p^{κ} .

Definition 4.1 A indexed sequence $\langle w_j : j \in J \rangle$ from an abelian group is independent iff the w_j are all non-0, and are distinct (as j varies), and the set $\{w_j : j \in J\}$ is independent in the usual sense.

Definition 4.2 If A is totally ordered by <, $\mathfrak{e} = \{e_0, \dots, e_{n-1}\} \in [A]^n$, and $s \in [n]^r$, then $\mathfrak{e} \upharpoonright s = \{e_i : i \in s\}$.

Definition 4.3 Suppose that A is totally ordered by < and $f:[A]^n \to \mathbb{V}_p^{\kappa}$. Then f is in normal form iff there is an indexed sequence $\langle w_t^i: i < \ell ; t \in [A]^{r_i} \rangle$ from \mathbb{V}_p^{κ} (where $\ell < \omega$ and each $r_i \leq n$) and elements $k_s^i \in \mathbb{Z}_p$ (for $i < \ell$ and $s \in [n]^{r_i}$) such that:

The sequence $\langle w_t^i : i < \ell ; t \in [A]^{r_i} \rangle$ is independent.

$$Each \ f(\mathfrak{e}) = \sum_{i < \ell} \sum_{s \in [n]^{r_i}} k_s^i w_{\mathfrak{e} \upharpoonright s}^i.$$

Note that r_i may be 0, so that for this i, there is only the non-zero element $w_{\emptyset}^i \in \mathbb{V}_p^{\kappa}$, and the sum (for this i) reduces to just $k_{\emptyset}^i w_{\emptyset}^i$. Thus, every constant function is in normal form.

By [11], Theorem 3.4, we have:

Lemma 4.4 Suppose that p is prime, A is totally ordered by < in type ω , and $f: [A]^n \to \mathbb{V}_p^{\kappa}$. Then there is an infinite $A' \subseteq A$ such that $f \upharpoonright [A']^n$ is in normal form.

Now, say we wish to prove that some hypergraph space $[A]^n \cup \{\infty\}$ is not embeddable into $(\mathbb{V}_p^{\kappa})^{\#}$, where A is ordered in type ω . So, we fix $f:[A]^n \cup \{\infty\} \to (\mathbb{V}_p^{\kappa})^{\#}$ and try to prove that it is not an embedding. By translating, we may also assume that $f(\infty) = 0$. Further, by Lemma 4.4, we may assume that f is in normal form. Then, we show (Lemma 4.6) that if f is not identically 0, then continuity alone allows us to simplify the normal form to the case where all the $r_i = 1$. To do this, we need the following from [11], Lemma 4.3:

Lemma 4.5 Fix $r \geq 2$, and an infinite A ordered by < in type ω . Then there is a $\Delta \subseteq [A]^r$ with the following property: Whenever $n \geq r$, $\emptyset \neq S \subseteq [n]^r$, and $A = \bigcup_{\alpha < \theta} C_{\alpha}$ with θ finite, there is some α and an $\mathfrak{e} \in [C_{\alpha}]^n$ such that exactly one $s \in S$ satisfies $\mathfrak{e} \upharpoonright s \in \Delta$.

Lemma 4.6 Suppose that A is infinite and totally ordered by <. Let $\vec{b} = (b_0, \ldots, b_{n-1})$ be a sequence of coefficients from some fixed abelian group. Assume that $f: [A]^n \cup {\infty} \to (\mathbb{V}_p^{\kappa})^{\#}$ is such that $f(\infty) = 0$ and $f \upharpoonright [A]^n$ is in normal form, using the notation of Definition 4.3. Assume that f is continuous with respect to $\mathcal{T}_{\vec{b}}$. Then $k_s^i = 0$ for all i such that $r_i \neq 1$.

Proof. Fix i such that $r = r_i \neq 1$. Let $\pi : \mathbb{V}_p^{\kappa} \to \mathbb{V}_p^{\kappa}$ be some linear map such that each $\pi(w_t^i) = w_t^i$ and each $\pi(w_u^j) = 0$ whenever $j \neq i$. Then $\pi(f(\infty)) = 0$, and each $\pi(f(\mathfrak{e})) = \sum_{s \in [n]^r} k_s^i w_{\mathfrak{e} \upharpoonright s}^i$. Also, $\pi \circ f$ is continuous because all group homomorphisms are continuous with respect to the Bohr topology.

From now on, we drop the superscript "i".

If r = 0, then each $\pi(f(\mathfrak{e})) = k_{\emptyset} w_{\emptyset}$, and then continuity forces $k_{\emptyset} = 0$.

Now, assume that $r \geq 2$. Let $S = \{s \in [n]^r : k_s \neq 0\}$. Assume that $S \neq \emptyset$; we shall derive a contradiction.

Fix $\Delta \subseteq [A]^r$ as in Lemma 4.5. Let $\Gamma = \{ \mathfrak{e} \in [A]^n : \sum \{ k_s : \mathfrak{e} \upharpoonright s \in \Delta \} \neq 0 \}$. We contradict continuity by showing that $0 \notin \operatorname{cl}(\pi(f(\Gamma)))$ but $\infty \in \operatorname{cl}(\Gamma)$.

Fix $\varphi \in \text{Hom}(\mathbb{V}_p^{\kappa}, \mathbb{T})$ so that $\varphi(w_t) = [1/p]$ if $t \in \Delta$ and $\varphi(w_t) = 0$ if $t \notin \Delta$. By the definition of Γ , $\varphi(\pi(f(\mathfrak{e}))) \neq 0$ for all $\mathfrak{e} \in \Gamma$. Since the range of φ is finite, this proves that $0 \notin \text{cl}(\pi(f(\Gamma)))$.

Now, suppose that $\infty \notin \operatorname{cl}(\Gamma)$. Then by the definition of $\mathcal{T}_{\vec{b}}$, there is a finite successful coloring for Γ , $A = \bigcup_{\alpha < \theta} C_{\alpha}$. Applying the property of Δ from Lemma 4.5, we can fix $\alpha < \theta$ and $\mathfrak{e} \in [C_{\alpha}]^n$ such that exactly one $s \in S$ satisfies $\mathfrak{e} \upharpoonright s \in \Delta$. Then $\sum \{k_s : \mathfrak{e} \upharpoonright s \in \Delta\} \neq 0$ since this sum contains exactly one nonzero term, so that $\mathfrak{e} \in \Gamma$. But all elements of \mathfrak{e} have the same color, so the coloring could not be successful.

We remark that \vec{b} did not figure explicitly in this proof; we only used the fact that in a successful coloring, there are no monochromatic edges.

Now, we cannot in general claim that the $k_s^i = 0$ when $r_i = 1$, since we know by Lemma 3.5 that hypergraph spaces formed with coefficients from \mathbb{Z}_p do embed into $(\mathbb{V}_p^{\kappa})^{\#}$. However, in the case that \vec{b} is the \mp -coefficient sequence (see Definition 2.6), we can simplify the normal form for continuous functions into $(\mathbb{V}_p^{\kappa})^{\#}$:

Lemma 4.7 Let $n = 2\sigma$, and let \vec{b} be the \mp -coefficients of length 2σ . Let \mathcal{T} be either the topology $\mathcal{T}_{\vec{b}}$ on $[A]^n \cup \{\infty\}$ or the topology $\mathcal{T}_{\vec{b}}^m$ for some $m \geq 2$. Assume that $f: [A]^n \cup \{\infty\} \to (\mathbb{V}_p^{\kappa})^{\#}$, with $f(\infty) = 0$, $f \upharpoonright [A]^n$ in normal form, and f continuous with respect to \mathcal{T} . Then either

- 1. f is identically 0, or
- 2. there is an independent sequence $\langle v_a : a \in A \rangle$ from \mathbb{V}_p^{κ} such that $f(\mathfrak{e}) = \sum_{j < n} b_j v_{e_j}$ for all $\mathfrak{e} = \{e_0, \dots, e_{n-1}\} \in [A]^n$.

Proof. Applying Lemma 4.6 and deleting zero summands, we may assume that each $f(\mathfrak{e}) = \sum_{i < \ell} \sum_{j < n} k_j^i w_{e_j}^i$, where the $k_j^i \in \mathbb{Z}_p$ (for $k < \ell$ and j < n), and the sequence $\langle w_a^i : i < \ell \ ; \ a \in A \rangle$ is independent. Identify \mathbb{Z}_p with $\{[z/p] : z \in \mathbb{Z}\} \subset \mathbb{R}/\mathbb{Z} = \mathbb{T}$, so that we can identify $\operatorname{Hom}(\mathbb{V}_p^{\kappa}, \mathbb{T})$ with $\operatorname{Hom}(\mathbb{V}_p^{\kappa}, \mathbb{Z}_p)$.

Next, we show that for each i, $k_{\mu}^{i} + k_{\nu}^{i} = 0$ whenever $0 \leq \mu < \sigma$ and $\sigma \leq \nu < 2\sigma$. If this fails, fix i and fix some $\mu < \sigma$ and $\nu \geq \sigma$ with $k_{\mu}^{i} + k_{\nu}^{i} \neq 0$. Fix $D \subset A$ so that both D and $A \setminus D$ are infinite. Let Γ_{1} be as in Example 2.7. Then both $\chi_{\vec{b}}(\Gamma_{1})$ and $\chi_{\vec{b}}^{m}(\Gamma_{1})$ are infinite, so $\infty \in \operatorname{cl}(\Gamma_{1})$. Now, fix $\varphi \in \operatorname{Hom}(\mathbb{V}_{p}^{\kappa}, \mathbb{Z}_{p})$ so that $\varphi(w_{a}^{i}) = 1$ if $a \in D$ and $\varphi(w_{a}^{i'}) = 0$ whenever $a \notin D$ or $i' \neq i$. Then for $\mathfrak{e} \in \Gamma_{1}$, $\varphi(f(\mathfrak{e})) = k_{\mu}^{i} + k_{\nu}^{i} \neq 0$. Thus $0 \notin \operatorname{cl}(f(\Gamma_{1}))$, contradicting the continuity of f.

Thus, for each i, there is a $c^i \in \mathbb{Z}_p$ such that $k^i_j = -c^i$ when $j < \sigma$ and $k^i_j = c^i$ when $j \geq \sigma$, so $k^i_j = c^i b_j$ for each j. We now have

$$f(\mathfrak{e}) = \sum_{i < \ell} \sum_{j < n} c^i b_j w_{e_j}^i = \sum_{j < n} b_j v_{e_j} ,$$

where each $v_a = \sum_{i < \ell} c^i w_a^i$. Furthermore, $\langle v_a : a \in A \rangle$ is independent unless all the $c^i = 0$, in which case f is identically 0.

Lemma 4.8 Suppose that A is infinite and ordered by < in type ω . Let p be prime, and let \vec{b} be the \mp -coefficients of length $n=2\sigma$, where $p \mid \sigma$. Let \mathcal{T} be either the topology $\mathcal{T}_{\vec{b}}$ on $[A]^n \cup \{\infty\}$ or the topology $\mathcal{T}_{\vec{b}}^m$, where $m \nmid \sigma$. Then $[A]^n \cup \{\infty\}$ with topology \mathcal{T} cannot be embedded topologically into $(\mathbb{V}_p^{\kappa})^{\#}$.

Proof. Assume that $f:[A]^n \cup \{\infty\} \to (\mathbb{V}_p^{\kappa})^{\#}$ is such an embedding. Translating in \mathbb{V}_p^{κ} by $-f(\infty)$, we may assume that $f(\infty) = 0$. Applying Lemma 4.4, we may assume that $f \upharpoonright [A]^n$ is in normal form. Then, applying Lemma 4.7, we have an independent $\langle v_a : a \in A \rangle$ from \mathbb{V}_p^{κ} such that each $f(\mathfrak{e}) = \sum_{j < n} b_j v_{e_j}$.

We now show that f cannot be an embedding. Again, choose $D \subset A$ such that D and $A \setminus D$ are infinite, and let Γ_2 be as in Example 2.7. Then $\chi_{\vec{b}}(\Gamma_2) = 2$ and $\chi_{\vec{b}}^m(\Gamma_2) = 2$ (since $m \nmid \sigma$). Hence, $\infty \notin \operatorname{cl}(\Gamma_2)$ in the topology \mathcal{T} . However, $\infty \in \operatorname{cl}(\Gamma_2)$ with respect to the topology $\mathcal{T}_{\vec{b}}^p$ because $\chi_{\vec{b}}^p(\Gamma_2) = \aleph_0$ (since $p \mid \sigma$). It follows by Lemma 3.5 (applied with $G = \mathbb{V}_p^{\kappa}$ and m = p) that $0 \in \operatorname{cl}(f(\Gamma_2))$ (since one may identify $a \in A$ with v_a). Hence, f is not an embedding. \square

This lemma is sufficient to prove Theorem 1.2, which involves only embeddings into $(\mathbb{V}_p^{\kappa})^{\#}$. However, we can pursue this analysis further and prove the non-existence of certain embeddings into arbitrary groups of finite exponent. These groups are related to groups of the form $(\mathbb{V}_{p^{\ell}}^{\kappa})^{\#}$ by Theorem 1.5. Now, for $\ell > 1$, we do not have a normal form result like Lemma 4.4 for functions into $\mathbb{V}_{p^{\ell}}^{\kappa}$. However, if $f: [A]^n \cup \{\infty\} \to (\mathbb{V}_{p^{\ell}}^{\kappa})^{\#}$ is continuous, we may compose f with the canonical projection into $(\mathbb{V}_{p^{\ell}}^{\kappa})/p(\mathbb{V}_{p^{\ell}}^{\kappa})$, which is isomorphic to \mathbb{V}_p^{κ} , and apply Lemma 4.4 to the composition. In doing this, the following lemma will be useful in showing that "independent" lifts:

Lemma 4.9 Let $K = \mathbb{V}_{p^{\ell}}^{\kappa}$, and for $x \in K$, let [x] be the equivalence class of x in K/pK. Suppose that $\langle [v_a] : a \in A \rangle$ is independent in K/pK. Then each v_a has order p^{ℓ} and the sequence $\langle v_a : a \in A \rangle$ is independent in K.

Proof. As usual in a group, $p^r \mid x$ means that $\exists y[p^ry = x]$. Observe that for $x \in K$ and $r \leq \ell$: $p^r \mid x$ iff $p^{\ell-r}x = 0$. In particular, v_a has order p^{ℓ} ,

because otherwise $p^{\ell-1}v_a = 0$, and hence $p \mid v_a$, so that $[v_a] = 0$, contradicting independence of $\langle [v_a] : a \in A \rangle$ (Definition 4.1).

Now, to prove independence of $\langle v_a : a \in A \rangle$, assume that $\sum_i c_i v_{a_i} = 0$, where each $c_i \in \mathbb{Z}$. By induction on $k \leq \ell$, we show that $p^k \mid c_i$ for each i; then, the case $k = \ell$ implies that each $c_i v_{a_i} = 0$.

The case k=0 is trivial. For the induction step, fix $k \leq \ell$, and assume that $p^{k-1} \mid c_i$ for each i, so we can let $c_i = p^{k-1}d_i$. Then $p^{k-1} \sum_i d_i v_{a_i} = 0$ in K, so $p^{\ell-k+1} \mid \sum_i d_i v_{a_i}$. Then $\sum_i d_i [v_{a_i}] = 0$ in K/pK. By independence, $p \mid d_i$, and hence $p^k \mid c_i$, for each i.

We can now prove a version of Lemma 4.7 which applies to maps into arbitrary groups of finite exponent.

Lemma 4.10 Let A be totally ordered by < in type ω . Let $n=2\sigma$, and let \vec{b} be the \mp -coefficients of length 2σ . Let \mathcal{T} be either the topology $\mathcal{T}_{\vec{b}}$ on $[A]^n \cup \{\infty\}$ or the topology $\mathcal{T}_{\vec{b}}^m$ for some $m \geq 2$. Let K be any abelian group of finite exponent. Let $f: [A]^n \cup \{\infty\} \to K^\#$ be continuous with respect to \mathcal{T} , with $f(\infty) = 0$. Then there is an infinite $A' \subseteq A$ such that either

- 1. $f \upharpoonright [A']^n$ is identically 0, or
- 2. there is an independent sequence $\langle v_a : a \in A' \rangle$ of elements of the same order such that $f(\mathfrak{e}) = \sum_{j < n} b_j v_{e_j}$ for all $\mathfrak{e} = \{e_0, \dots, e_{n-1}\} \in [A']^n$.

Proof. By Theorem 1.5, it is sufficient to prove this in the case that $K = \mathbb{V}_{p^{\ell}}^{\kappa}$. We now induct on ℓ . For $\ell = 1$, the result follows from Lemmas 4.4 and 4.7, so assume that $\ell > 1$. Let $\pi : K \to K/pK$ be the canonical projection. Since K/pK is isomorphic to \mathbb{V}_p^{κ} , we may apply the $\ell = 1$ case to $\pi \circ f$, obtaining A' as above.

If $\pi \circ f \upharpoonright [A']^n$ is identically 0, then each $f(\mathfrak{e}) \in pK \cong \mathbb{V}_{p^{\ell-1}}^{\kappa}$ (for $\mathfrak{e} \in [A']^n$), so the result follows by the inductive hypothesis. Thus, we may assume that we have a sequence $\langle v_a : a \in A' \rangle$ in K such that each $\pi(f(\mathfrak{e})) = \sum_{j < n} b_j [v_{e_j}]$ and such that $\langle [v_a] : a \in A' \rangle$ is independent in K/pK.

Let $g(\mathfrak{e}) = f(\mathfrak{e}) - \sum_{j < n} b_j v_{e_j}$ and $g(\infty) = 0$. Then $g : [A']^n \cup \{\infty\} \to (pK)^\#$ is continuous by Lemma 3.3. Applying the inductive hypothesis, we get an $A'' \subseteq A'$ and a sequence of elements $\langle w_a : a \in A'' \rangle$ from pK such that $g(\mathfrak{e}) = \sum_{j < n} b_j w_{e_j}$ for all $\mathfrak{e} \in [A'']^n$, so that $f(\mathfrak{e}) = \sum_{j < n} b_j (v_{e_j} + w_{e_j})$. Since $[v_a + w_a] = [v_a]$ in K/pK, $\langle [v_a + w_a] : a \in A'' \rangle$ is independent in K/pK, so that by Lemma 4.9, $\langle v_a + w_a : a \in A'' \rangle$ is independent in K, and each $V_a + W_a$ has order p^ℓ .

Using this, we can prove a result along the lines of Lemma 4.8, refuting some embeddings of hypergraph spaces into groups of finite exponent.

Lemma 4.11 Suppose that A is infinite and ordered by < in type ω . Let \vec{b} be the \mp -coefficients of length $n=2\sigma$. Let K be any abelian group such that $\sigma K = \{0\}$. Let \mathcal{T} be either the topology $\mathcal{T}_{\vec{b}}$ on $[A]^n \cup \{\infty\}$ or the topology $\mathcal{T}_{\vec{b}}^m$, where $m \nmid \sigma$. Then $[A]^n \cup \{\infty\}$ with topology \mathcal{T} cannot be embedded topologically into $K^{\#}$.

Proof. Assume that $f:[A]^n \cup \{\infty\} \to K^\#$ is such an embedding. Translating, we may assume that $f(\infty) = 0$. Applying Lemma 4.10, we may assume that there is an independent sequence $\langle v_a : a \in A \rangle$ of elements of K of some fixed order r such that $f(\mathfrak{e}) = \sum_{j < n} b_j v_{e_j}$ for all $\mathfrak{e} \in [A]^n$.

As in the proof of Lemma 4.8, choose $D \subset A$ such that D and $A \setminus D$ are infinite, and let Γ_2 be as in Example 2.7. Then $\chi_{\vec{b}}(\Gamma_2) = 2$ and $\chi_{\vec{b}}^m(\Gamma_2) = 2$ (since $m \nmid \sigma$). Hence, $\infty \notin \operatorname{cl}(\Gamma_2)$ in the topology \mathcal{T} . However, $\infty \in \operatorname{cl}(\Gamma_2)$ with respect to the topology $\mathcal{T}_{\vec{b}}^r$ because $\chi_{\vec{b}}^r(\Gamma_2) = \aleph_0$ (since $r \mid \sigma$). Thus, by Lemma 3.5, $0 \in \operatorname{cl}(f(\Gamma_2))$, so that f is not an embedding.

5 Non-Embeddability of Groups

Proof of Theorem 1.2. For the \to direction, assume that $G^{\#}$ embeds into $(\mathbb{V}_p^{\kappa})^{\#}$, and assume that G is infinite (since otherwise the result is trivial, taking $\lambda = 0$ and F = G).

If G is not of finite exponent, then Corollary 3.9 plus Lemma 4.8 shows that there is a hypergraph space (using the topology $\mathcal{T}_{\vec{b}}$, where \vec{b} is the \mp coefficient sequence of length 2p) which embeds into $G^{\#}$ and not into $(\mathbb{V}_{p}^{\kappa})^{\#}$.

So, fix r with $rG = \{0\}$. By Theorem 1.5, $G = \bigoplus_{\xi < \lambda} \mathring{\mathbb{Z}}_{n_{\xi}}$, where each $n_{\xi} \mid r$ and $\lambda = |G| \leq \kappa$. If all but finitely many $n_{\xi} = p$, then G is isomorphic to $\mathbb{V}_p^{\lambda} \times F$ for some finite F. If not, then fix $m \neq p$ such that $n_{\xi} = m$ for infinitely many ξ . Then $(\mathbb{V}_m^{\omega})^{\#}$ embeds into $G^{\#}$ and hence into $(\mathbb{V}_p^{\kappa})^{\#}$. However, Lemma 3.5 plus Lemma 4.8 shows that there is a hypergraph space (now using the topology $\mathcal{T}_{\vec{b}}^m$) which embeds into $(V_m^{\omega})^{\#}$ and not into $(\mathbb{V}_p^{\kappa})^{\#}$, so we have a contradiction.

A similar proof yields:

Theorem 5.1 If G, K are any abelian groups, where K is of finite exponent and G is not of finite exponent, then $G^{\#}$ is not embeddable into $K^{\#}$.

Proof. Say $\sigma K = \{0\}$ and let \vec{b} be as in Lemma 4.11. The topology $\mathcal{T}_{\vec{b}}$ does not embed into $K^{\#}$, but it does embed into $G^{\#}$ by Corollary 3.9.

6 CONCLUSION 15

It is now natural to ask when $G^{\#}$ embeds into $K^{\#}$ in the case that both groups have finite exponent. The next theorem gives a complete answer for countable groups.

Definition 5.2 If K is an infinite abelian group of finite exponent, let eo(K), the essential order of K, be the least σ such that K is of the form $F \times H$, where F is finite and H is of exponent σ .

In the notation of Theorem 1.5, $eo(K) = lcm\{p^i : \kappa_{p,i} \geq \aleph_0\}$.

Theorem 5.3 If G, K are any countably infinite abelian groups of finite exponent, then the following are equivalent:

- 1. $G^{\#}$ is homeomorphic to a subset of $K^{\#}$
- 2. $eo(G) \mid eo(K)$.

Proof. For $(2) \to (1)$: By Theorem 1.5, we have $G \cong G_1 \times G_2$ and $K \cong K_1 \times K_2$, where G_1 and K_1 are finite and G_2 is isomorphic to a subgroup of K_2 . The result now follows by Lemma 1.3.

For (1) \rightarrow (2): By Theorem 1.5, it is sufficient to show that $(\mathbb{V}_{p^{\ell}}^{\omega})^{\#}$ is not homeomorphic to a subset of $K^{\#}$ when $\sigma K = \{0\}$ and $p^{\ell} \nmid \sigma$. Let $m = p^{\ell}$, let A be infinite and ordered by < in type ω , and let \vec{b} be the \mp -coefficients of length $n = 2\sigma$. By Lemma 4.11, $[A]^n \cup \{\infty\}$ with topology $\mathcal{T}_{\vec{b}}^m$ does not embed into $K^{\#}$, whereas it does embed into $(\mathbb{V}_{p^{\ell}}^{\omega})^{\#}$ by Lemma 3.5.

6 Conclusion

The following three kinds of questions about abelian groups are not answered by the results of this paper:

First, we have no results refuting the embeddability of any $G^{\#}$ into any $K^{\#}$, where K is not of finite exponent.

Second, when G,K are both of finite exponent, Theorem 5.3 leaves open many questions about the embeddability of $G^{\#}$ into $K^{\#}$ when G is uncountable. For example, it is not clear whether $(\mathbb{V}_2^{\omega_1})^{\#}$ embeds into $(\mathbb{V}_2^{\omega} \times \mathbb{V}_3^{\omega_1})^{\#}$.

Third, all proofs of non-homeomorphism actually prove non-embeddability. We know of no example where $G^{\#}$ and $K^{\#}$ are not homeomorphic but each is embeddable into the other. Specifically, let $G = \mathbb{V}_4^{\omega}$ and $K = \mathbb{V}_2^{\omega} \times \mathbb{V}_4^{\omega}$. Then each is isomorphic to a subgroup of the other, but we do not know whether $G^{\#}$ and $K^{\#}$ are homeomorphic.

REFERENCES 16

References

[1] D. Dikranjan, Van Douwen's problems related to the Bohr topology, in *Proceedings of the Ninth Prague (2001) Topological Symposium* (P. Simon, ed.), Topology Atlas, http://at.yorku.ca/p/p/a/e/00.htm.

- [2] D. Dikranjan, Continuous maps in the Bohr topology, Appl. Gen. Topol. 2 (2001) 237-270.
- [3] D. Dikranjan and S. Watson, A solution to van Douwen's problem on Bohr topologies. J. Pure Appl. Algebra 163 (2001) 147-158.
- [4] E. K. van Douwen, The maximal totally bounded group topology on G and the biggest minimal G-space for abelian groups G, Topology and its Applications 34 (1990) 69-91.
- [5] P. Erdös and A. Hajnal, On chromatic number of graphs and set-systems, *Acta Math. Acad. Sci. Hungar.* 17 (1966) 61-99.
- [6] G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 1995.
- [7] J. E. Hart and K. Kunen, Bohr compactifications of discrete structures, Fundamenta Mathematicae 160 (1999) 101-151.
- [8] S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions, *Colloq. Math.* 12 (1964) 23-39.
- [9] E. Hewitt and K. A. Ross, *Abstract Harmonic Analysis*, Volume I, Springer-Verlag, 1963.
- [10] I. Kaplansky. Infinite Abelian Groups, Revised edition, The University of Michigan Press, 1969.
- [11] K. Kunen, Bohr topologies and partition theorems for vector spaces, Topology Appl. 90 (1998) 97-107.
- [12] K. Kunen and W. Rudin, Lacunarity and the Bohr topology, *Math. Proc. Cambridge Philos. Soc.* 126 (1999) 117-137.
- [13] W. Rudin, Fourier Analysis on Groups, Interscience Publishers, 1962.
- [14] F. J. Trigos-Arrieta, *Pseudocompactness on Groups*, Doctoral Thesis, Wesleyan University, Middletown, CT, 1991.