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Abstract

We use chromatic numbers of hypergraphs to study the Bohr topol-
ogy G# on discrete abelian groups. In particular, if K is an infinite
abelian group of a given prime exponent, we show that G# and K# are
homeomorphic iff G is the product of K and some finite group. Also,
if K is of finite exponent and G is not of finite exponent, then G# is
never topologically embeddable in K#.

1 Introduction

If G is a (discrete) abelian group, then G# denotes GG with its Bohr topol-
ogy. This is the coarsest topology on G which makes each ¢ € Hom(G,T)
continuous. Here, T is the circle group and Hom(G,T) = G is the group of
characters of G. If H is a subgroup of G, then H is closed in G#, and H# is
the same as the subspace topology which H inherits from G*. G is described
in texts on harmonic analysis [6, 9, 13]. For more on G#, see van Douwen [4]
and Dikranjan [1, 2].

It is an open question, first raised by van Douwen, whether one can charac-
terize those G, K such that G* and K# are homeomorphic (just as topological
spaces), by using only basic algebraic properties of G and K. In this paper,
we give such a characterization in the case that G is arbitrary and K is an
infinite abelian group of a given prime exponent (see Corollary 1.4). See [1]
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for a discussion of what else is known about this question; for example, it is
still unknown whether Z# and Q# are homeomorphic.
To describe our results in more detail, we introduce some terminology:

Definition 1.1 " H is the direct sum of k many copies of H. V& = P" Z,,.
V0 is the one-element group.

Here, Z,, = Z/nZ. If p is prime and & is infinite, then V¥ is the unique
abelian group of order x and exponent p; it may be viewed as the vector space
of dimension « over the field Z,. It is already known [3, 11] that (V;)# and
(Vg)# are not homeomorphic whenever p, ¢ are distinct primes. In this paper,
we characterize those G such that G# is embeddable (topologically) into (V£ )#.
In Section 5, we prove:

Theorem 1.2 Let G be any abelian group, k any infinite cardinal, and p any
prime. Then G# is homeomorphic to a subset of (VZ)# iff G is isomorphic to
V]); X F' for some finite F' and some \ < K.

Actually, only the — direction of this theorem requires proof, since the <
direction is immediate from the fact that VZ),‘ is a subgroup of Vi when A < &,
along with:

Lemma 1.3 For abelian group K, F, with K infinite and F finite: K¥ is
homeomorphic to (K x F)*.

For K countable, this lemma is an easy consequence of homogeneity, but
in fact it is true for arbitrary infinite K by Trigos-Arrieta [14], Theorem 6.33
(see also [7], Lemma 3.3.3).

Corollary 1.4 If k is any infinite cardinal, G any abelian group of order k,
and p any prime, then the following are equivalent:

1. G* is homeomorphic to a subset of (V5)#.
2. G* is homeomorphic to (Vi)#.
3. G is isomorphic to Vi X F' for some finite F.

Proof. (2) — (1) is obvious, (3) — (2) is immediate from Lemma 1.3, and
(1) — (3) follows from Theorem 1.2. O

In Section 2, we describe a class of abstract topological spaces constructed
using chromatic numbers of hypergraphs. Some of these hypergraph spaces are
embeddable into many G# (see Section 3), but not into (V#)# (see Section 4).
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This establishes that many G# are not embeddable into (V5)#, which will
prove the — direction of Theorem 1.2 (see Section 5).

A special case of a hypergraph is an ordinary undirected graph, and in this
case, the graph topologies and their embeddings into G* are described in [12].

In Section 5, we also prove some extensions of Theorem 1.2 involving em-
bedding G# into K# in the case that K is an arbitrary abelian group of
finite exponent (see Theorems 5.1 and 5.3). Groups of the form V¥ are key to
understanding general groups of finite exponent by the following well-known
structure theorem:

Theorem 1.5 If K is an abelian group of finite exponent, then K is isomor-
phic to a product of the form:
Kp,i
m v

PEP;0<i<w

where P is the set of primes, and all but finitely many of the k,; are zero.
Furthermore, the sequence of cardinals, (kp; : p € P; 0 < 1 < w), is uniquely
determined by K.

Note that this product is essentially a finite product (= direct sum). The fact
that K can be written as such a direct sum is Theorem 6, p. 17, of Kaplansky
[10]; then, the k,; are unique because they can be determined from the Ulm
invariants of the primary components of K (see [10], p. 27).

2 Hypergraph Topologies

We use the standard Erdés notation, [A]", for the collections of all n-element
subsets of the set A. If ' C [A]", we may view [ as a hypergraph, with node
set A and edges ¢ € ['. We may assign [' a chromatic number, but for n > 2,
there are various possible definitions of “chromatic number” other than the
“standard” one, from Erdds and Hajnal [5], which required only that each
edge get at least two colors. Our definition depends on an ordering of A and
a sequence of coefficients.

Notation 2.1 If A is totally ordered by < and n > 2 then we use ¢ =

{eg,...,en 1} (always written in increasing order) for elements of [A]".
Definition 2.2 A sequence of coefficients is a sequence b = (boy .-y bp_1) of
elements from some fized abelian group, where 2 < n < w, Zj<n bj =0, and

all b; # 0.
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Definition 2.3 Given a set A totally ordered by <, a sequence of coefficients
b= (b(), Caeey bnfl), and T’ g [A]n

[ Alsuccessful coloring for I' in 6 colors is a partition of A into 0 disjoint
sets, A = J,<g Ca, such that for all e = {eg,...,en_1} €T, there is an

o < 0 such that:
Z{bj:ejECa}%O .

CoQ(T), the b-chromatic number of T, is the least 0 such that there is
successful coloring for I' in 0 colors.
C_Iflthe coefficients are in Z, and all b; # 0 mod m, then X;)L“(I‘) is the chro-

matic number computed by regarding each b; as representing an element
of Ly, .

Definition 2.4 Given (A, <) and coefficients b = (by, . .., bp_1):

[T is the topology on the set [A]" U {oo} defined so that:

x the subset [A]" is open and discrete, and
« for all T C [A]": oo € cl(T') iff xz(T') is infinite.
[_Iflthe coefficients are in Z, then 7’5m 15 the topology obtained by regarding
each bj as representing an element of Z,, (using X%”(F) instead of xz(I")).

Lemma 2.5 IfT # 0, then 2 < x3(T') < |A[. If A is infinite, then xz([A]") =
|A[. If the coefficients are in Z, then x7'(I') > x3(I') and T" is coarser than
T;-

Zy, is often represented concretely as {0,1,...,m—1}, so to avoid confusion
when the coefficients are in Z,,, we sometimes write x;'(I') instead of xz(I').

We conclude this section with some examples illustrating the specific cases
of these notions most relevant for the rest of this paper.

Definition 2.6 For a natural number o, the F-coefficients of length 20 is the
sequence b= (—1,...,—1,1,...,1) from Z, where b; = —1 for 0 < j < o and
bj =1 foro <j<20.

Now, with this b, we can compute x;(I), and also x7'(I') > x;(I'), obtained
by viewing the £1 as elements of Z,,
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Example 2.7 Assume that A is ordered by < in type w and that D C A with
D and A\D both infinite. Fiz p,v with0 < p <o and o <v < 20. Let:

Iy = {e€[A] e, €D &e, €D &Vj¢ {uv}e € A\D]}
Iy = {e€[A]:Vj<oale; € D] & Vj>ole; € A\D]} .

Let b be the F-coefficients of length 20. Then X%”(Fl) = xz(I'1) = Ny and
X;(2) = 2. x7'(I'2) = 2 when m t o and x3'(I'2) =R when m | o.

Proof. If A ={]J,_,Cs, with @ finite, then one can fix o, 3 with C;, N D and
CsN(A\D) both infinite. We can then choose ¢ € I'y with e, e, € C,ND and
e; € CgN (A\D) for all j # p,v. This e is not successfully colored. Hence,
;' (F1) = x3(T') = Ro.

Likewise, with the same «, 3, we can choose ¢ € T'y with e; € C, N D for
all j <o and ej € CyN(A\D) for all j > 0. If m | o, then 0 = 0 mod m, so
that this e is not successfully colored mod m. Hence, x7'(I'2) = Ro.

However, if m t o, then A = D U (A\D) is a successtul coloring for I' in 2
colors, so that xi"(I's) = 2. O

3 Embeddings into Groups

Throughout, G is an abelian group. We use our coefficients (Definition 2.2) to
map edges in a hypergraph to elements of GG as follows:

Definition 3.1 Suppose that b = (boy ..., by 1) is a sequence of coefficients
and A C G is totally ordered by <. Fiz e = {ey,...,en_1} € [A]". We define

-

b-e=byeg+ -+ by_16,_1 € G whenever either:

a. The coefficients are in Z or
b. The coefficients are in Z, and mA = {0}.

In either of these two cases, define b-T = {b-¢: e € '} whenever I' C [A]",
and define W : [A]" U {oo} — G by: W(e) =b-e and ¥y(oo) = 0.

Note that there is no presumed relationship between the order < and the
group structure; the order is just used to define the notions b-¢and b-T (which
depend on <). We proceed to show that for certain A, this U; is a topological
embedding with respect to the Bohr topology on G and the topology 7; of
Definition 2.4.
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Definition 3.2 If all b; € Z, then ||b]| = ||b]l, = X250 |bi|. If bi € Zon, we may
view Ly, as {0,1,...,m — 1} and define ||b|| in the same way.

Note that even if b; € Z,,, it is possible that ||b|| > m.

Lemma 3.3 In either of the two cases of Definition 3.1, the map ¥y : [A]™ U
{oo} = G# is continuous with respect to the topology T; on [A]" U {co}.

Proof. It is only necessary to prove continuity at the point oo, since the other
points are isolated. To do this, it is sufficient to fix I' C [A]", assume that
0 ¢ cl(b-T), and show that x;(I') is finite.

First, consider Case (a) of Definition 3.1. If V' C G and r is a positive
integer, let V" = {v; +--- 4 v, : vy, -+, v, € V}. Fix an open neighborhood U
of 0 with b- TN U = . Then fix an open V 3 0 with V = —V and VI¥I C U,
Since the Bohr topology is totally bounded, G can be covered by finitely many
translates of V; say G = |J,_y(V +xq), where @ is finite. The sets (V +z,)NA
may not be disjoint, but by shrinking them if necessary, we may partition A
into Ua<9 C, so that each C, C V + x,. We shall show that this coloring is
successful:

If the coloring is unsuccessful, then fix ¢ = {eg,...,e,_1} € T such that for
every a < 0, > {b; :e; € Co} =0. For each «, let r, =) _{|bj] : ¢; € Cy}, so
that ||b]| = Y acoTa- Then, using Co €V + 24:

Z{bjej 1ej € Ca} e Ve + Z{bjxa 1ej € Oa} = V7 ( |I|

Now, summing over «: b-ec VIE C U, contradicting b-TNU =0.

In Case (b), the proof is essentially the same. We may assume that G =
(A), so that mG = {0}. Then, for equation ([t is sufficient that each
> {b; : e; € C,} = 0 mod m, which will hold if the coloring is unsuccessful
viewing the b; as representing elements of Z,,. ([l

In general, one cannot assert that W; is a topological embedding (i.e., a
homeomorphism onto its range). It is easy to construct examples where W; is
not 1-1, or where W; is 1-1 but is not a homeomorphism. It is an embedding
when A is suitably independent. We consider Case (b) of Definition 3.1 first.
Recall that A C G is called independent iff for all n, all {ey,...,e,—1} € [A]",
and all ¢p,...,c,_1 € Z: if Zj cje; = 0, then every cje; = 0.

Notation 3.4 We represent the circle group, T, as R/Z, so all elements of
T are of the form [z]| for x € R. We use “d” for linear distance, so that

d([z], [y]) = min(jz —y[,1 — |z — y) for z,y € [0,1].
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Lemma 3.5 Suppose that A C G is independent and all elements of A have
order ezactly m, and the coefficients b are in Z,,. Then Uy : [A]"U{c0} — G#
is a topological embedding with respect to the topology T." on [A]" U {o0}.

Proof. Independence implies that Uy is 1-1. Also by independence, for
each a € A, there is a character §, such that d,(a) = [1/m] € T, and 6,(x) =0
for all # € A\{a}. Then for each ¢ = {eq,...,en1} € [A]", Ui(e) = b-eis
isolated in ran(W;) because

{y € G* :¥j < nld(5.,(y) — ., (F-e)) < 1/m]}

is a neighborhood of b - ¢ containing no other element of ran(¥;).

Thus, to prove that ¥ is an embedding, it is sufficient to fix I' C [A]" such
that oo ¢ cl(I") and prove that 0 ¢ Cl(g- I'). Applying the definition of 7",
let (Cy, : @ < B) be a finite successful coloring for I'. For each a < 6, choose
a character ¢, so that p,(z) = [1/m] if z € C, and p,(z) =0 if z € A\C,.
For each ¢ € T, there is an « such that ) {b; : e; € C,} # 0 in Z,,, so that
d(pa(b-¢),0) > 1/m in T. Thus, there is a neighborhood of 0 in G¥# containing
no elements of b - I'. O

When the coefficients are in Z, a similar proof will work if the elements of
A have infinite order and are independent. However, in proving Theorem 1.2,
we will need to get embeddings into groups such as Q and Z, where there are
no independent sets. To handle this, we introduce a variant of the notion of
independence:

Definition 3.6 If ¢ > 0, then A C G s e—free iff whenever 7 : A — T 1is
given, there is a ¢ € Hom(G, T) such that d(7(a), p(a)) < e for all a € A.

Observe that A is e—free for all £ > 0 iff A is independent and all elements
of A have infinite order. However, a weaker condition suffices to make ¥y an
embedding:

Lemma 3.7 Suppose that the coefficients b are in Z and A C G is 1/(4]|b]|)-
free. Then W3 : [A]" U {oco} = G is a topological embedding with respect to
the topology Ty on [A]" U {oo}.

Proof. We plan to show two things:
1. If ' C [A]" and oo ¢ cI(T), then 0 ¢ cl(b-T).

2. If e € [A]", then there is a neighborhood U of b- ¢ in G¥ which does not
contain b - to for any ro € [A]"\{e}.
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By (1) for singleton I" along with (2), Wy is 1-1. Then (2) implies that each
b- e is isolated in ran(W¥;), and then (1) implies that U; is a homeomorphism
onto its range.

Whenever 7: A — T, define 7 : [A]" — T by 7(¢) = >_, b;7(e;); then 7(e) =
7(b-¢) in the case that 7 is the restriction of some 7 € Hom(G, T). Note that if
¢ € Hom(G, T) and d(7(a), p(a)) < £ forall a € A, then d(7(e), p(b-¢)) < ||b|e
for all e € [A]".

For (2): For each i < n, define 7;(e;) = [1/(2b;)] € T and 7;(x) = 0
for © € A\{e;}. Thus, 7;(¢) = [1/2]. Choose ¢; € Hom(G,T) such that
d(7i(x), pi(x)) < 1/(4][B]) for all & € A. Then d(F(w), i(b - w)) < 1/4 for all
t € [A]", so that d(;(b-e),[1/2]) < 1/4. Let

U={yeG* : Vi<nldleiy),[1/2]) <1/4]} .

Fix w € [A]"\{e}, and then fix ¢ with e¢; ¢ w. Then 7;(tv) = 0, so that
d(pi(b-1),0) < 1/4,s0 b-1o & U.

For (1): let (C, : o < 6) be a finite successful coloring for I'. - We shall
produce characters ¢f, for § < 6 and r = £1,+2,.. ., i||g||, so that for each
¢ € ' there are some 3, r with d(gog(l; ¢),0) > 1/4.

For each 3,7, define 75 : A — T so that 75(a) = [1/(2r)] for a € Cp
and 75(a) = 0 for a ¢ Cg. Then fix a character ¢} : G — T such that
d(t5(a), ¥h(a)) < 1/(4)|b]]) for all a € A.

Now fix e = {eg,...,e, 1} €. Say e; € Cy, for j < n. Since the coloring
is successful, fix § with r := ) {b; : a; = B} # 0. Then

= {bj:a;=6}[1/2r)]=11/2] .

and d(%"(e),%(l;- ¢)) < [|B]|/(4]|b]]) = 1/4, so that d(¢}(b-¢),0) > 1/4. O

The following lemma is proved by a case analysis patterned after the proof
that every infinite abelian group contains an infinite Iy-set (Hartman and Ryll-
Nardzewski [8], Theorem 5). Such analyses are further described in [12].

Lemma 3.8 The following are equivalent for any infinite abelian group G:

1. G is not of finite exponent.
2. For all € > 0, G contains an infinite e—free subset.

Proof. For (2) — (1), observe that if mG = {0}, then all character values are
of the form [k/m], so that G cannot have a non-empty 1/(2m)-free subset.
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Now, assume (1). If G is not a torsion group, then Z is a subgroup of G,
and then a suitably thin Hadamard set in Z will be e—free (see [12], §2).

We are left with the case that G is a torsion group but contains elements
of arbitrarily large order. Inductively choose x; for ¢ € w, and let H; be the
subgroup generated by {z; : j < i}; so Hy = {0}. Given H;, choose z; such
that if n; is the least n with nx; € H;, then n; > 1/(2¢).

We now show that A = {z; : i € w} is e-free. Fix7: A — T. We shall
find a ¢ € Hom(G, T) such that that each d(7(z;), ¢(x;)) < € by inductively
defining ¢[H;. Fix i, and assume we have p[H;. Let U = {u € T : nju =
¢(n;z;)}. We may obtain a homomorphism on H;. by setting o(z;) to be
any element of U. Now |U| = n; and adjacent elements of U are distance 1/n;
apart, so we can fix u € U with d(7(z;),u) < 1/(2n;) < €, and set ¢(z;) = u.
Finally, extend ¢ arbitrarily from ({z; : i < w}) to all of G. O

Note that the notion of “free” does not involve any order on A, although
the topology 7; does depend on the order. We may apply Lemma 3.8 to get an
infinite e-free A, and then order A arbitrarily in applying Lemma 3.7, yielding:

Corollary 3.9 Suppose that G is any abelian group which is not of finite expo-
nent and b is a sequence of coefficients in Z. Then there is an infinite A C G
and an ordering < of A in type w such that ¥z : [A]" U {oc} — G¥ is a
topological embedding with respect to the topology Ty on [A]™ U {oo}.

4 Non-Embeddability of Hypergraph Spaces

We begin by proving (Lemma 4.8) that some hypergraph spaces are not em-
beddable in (V5)#, where p is prime. To do this, we use some results from [11]
on normal forms of functions from [A]" to V;.

Definition 4.1 A indezed sequence (w; : j € J) from an abelian group is
independent iff the w; are all non-0, and are distinct (as j varies), and the
set {w; : j € J} is independent in the usual sense.

Definition 4.2 If A is totally ordered by <, ¢ = {eg,...,en 1} € [A]", and
s € [n]", then els = {e; : i € s}.

Definition 4.3 Suppose that A is totally ordered by < and f : [A]" — Vy.
Then f is in normal form iff there is an indezed sequence (w! : i < £ ; t € [A]")
from V& (where £ < w and each r; < n) and elements ki € Z, (for i < ( and
s € [n]") such that:
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[The sequence (wi:i < (; t € [A]") is independent.

[ Fach f(e) ZZk

i<l s€[n

Note that r; may be 0, so that for this ¢, there is only the non-zero element

E V;, and the sum (for this 7) reduces to just k%wé Thus, every constant
functlon is in normal form.

By [11], Theorem 3.4, we have:

Lemma 4.4 Suppose that p is prime, A is totally ordered by < in type w, and
f o [A" — V5. Then there is an infinite A" C A such that f | [A']" is in
normal form.

Now, say we wish to prove that some hypergraph space [A]" U {oo} is
not embeddable into (V;)#, where A is ordered in type w. So, we fix f :
[A]" U {oo} — (VE)# and try to prove that it is not an embedding. By
translating, we may also assume that f(oco) = 0. Further, by Lemma 4.4, we
may assume that f is in normal form. Then, we show (Lemma 4.6) that if f is
not identically 0, then continuity alone allows us to simplify the normal form
to the case where all the r; = 1. To do this, we need the following from [11],
Lemma 4.3:

Lemma 4.5 Fizr > 2, and an infinite A ordered by < in type w. Then there
is a A C [A]" with the following property: Whenever n > r, ) #S C [n]", and
A =ycp Ca with 0 finite, there is some o and an ¢ € [Cy|" such that ezactly
one s € S satisfies e[s € A.

Lemma 4.6 Suppose that A is infinite and totally ordered by <. Let b =
(bo, - .-, bu_1) be a sequence of coefficients from some fized abelian group. As-
sume that f : [A]" U {oo} — (VE)# is such that f(co) = 0 and f | [A]* is in
normal form, using the notation of Definition 4.3. Assume that f is continuous
with respect to T;. Then k! =0 for all i such that r; # 1.

Proof. Fiz i such that r =r; # 1. Let m : Vi — VI be some linear map such
that each m(w!) = w! and each 7(w!) = 0 whenever j # i. Then 7(f(c0)) =0,
and each 7(f(e)) = D2, kiwly,. Also, mo f is continuous because all group
homomorphisms are continuous with respect to the Bohr topology.

From now on, we drop the superscript “i”.

If r =0, then each 7(f(e)) = kywy, and then continuity forces kg = 0.

Now, assume that r > 2. Let S = {s € [n]" : ks # 0}. Assume that S # 0);
we shall derive a contradiction.



4 NON-EMBEDDABILITY OF HYPERGRAPH SPACES 11

Fix A C [A]" as in Lemma 4.5. Let I' = {e € [A]" : Y {ks : e[s € A} #0}.
We contradict continuity by showing that 0 ¢ cl(7(f(I))) but co € cl(I').

Fix ¢ € Hom(Vy, T) so that o(w;) = [1/p] if t € A and o(w;) = 0if t ¢ A.
By the definition of T, o(m(f(e))) # 0 for all e € I". Since the range of ¢ is
finite, this proves that 0 & cl(7(f(T))).

Now, suppose that oo ¢ cl(I'). Then by the definition of 7j, there is a
finite successful coloring for I', A = (J,.,Ca. Applying the property of A
from Lemma 4.5, we can fix o < 6 and ¢ € [C,]" such that exactly one s € S
satisfies e[s € A. Then Y {ks : e[s € A} # 0 since this sum contains exactly
one nonzero term, so that ¢ € ['. But all elements of ¢ have the same color, so
the coloring could not be successful. ([l

We remark that b did not figure explicitly in this proof; we only used the
fact that in a successful coloring, there are no monochromatic edges.

Now, we cannot in general claim that the k! = 0 when r; = 1, since we
know by Lemma 3.5 that hypergraph spaces formed with coefficients from 7Z,
do embed into (VZ)#. However, in the case that b is the F-coefficient sequence

(see Definition 2.6), we can simplify the normal form for continuous functions
into (V5)#:

Lemma 4.7 Let n = 20, and let b be the F-coefficients of length 20. Let T
be either the topology T; on [A]™ U {oo} or the topology T for some m > 2.
Assume that f : [A]" U {oo} — (VE)#, with f(oo) =0, f [ [A]* in normal
form, and f continuous with respect to T . Then either

1. f is identically 0, or
2. there is an independent sequence (v, : a € A) from V5, such that fle) =
> jen bjve; for all e ={eg, ..., en1} € [A]".

Proof. Applying Lemma 4.6 and deleting zero summands, we may assume
that each f(e) = Zz<€ dien Kl ; , where the k% € Z, (for k < £ and j < n),
and the sequence (w) : i < {; a € A) is 1ndependent Identify Z, with {[z/p] :
z € Z} CR/Z =T, so that we can identify Hom(Vy, T) with Hom(V,Z,).

Next, we show that for each i, k), + k;, = 0 whenever 0 < p <o and
o < v < 20. If this fails, fix 7 and fix some p < o and v > o with k), + k;, # 0.
Fix D C A so that both D and A\D are infinite. Let I'; be as in Example
2.7. Then both x3(T'1) and x;*(I'1) are infinite, so oo € cl(I'1). Now, fix
¢ € Hom(V%,7Z,) so that p(w?) =1if a € D and ¢(w?)) = 0 whenever a ¢ D
or i' # i. Then for e € T'y, o(f(e)) = ki, + k,, # 0. Thus 0 ¢ cl(f(I'1)),
contradicting the continuity of f.
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Thus, for each i, there is a ¢ € Z, such that k) = —¢’ when j < o and
k% = ¢ when j > 0, so k! = ¢'b; for each j. We now have

fle) = Z Zcibjwfzj = Zbﬂ’@j ’

i<l j<n j<n

where each v, = >,_, c'w). Furthermore, (v, : a € A) is independent unless
all the ¢® = 0, in which case f is identically 0. O

Lemma 4.8 Suppose that A is infinite and ordered by < in type w. Let p be
prime, and let b be the F-coefficients of length n = 20, where p | 0. Let T be
either the topology T; on [A]™ U {oco} or the topology T, where m to. Then

[A]" U {oo} with topology T cannot be embedded topologically into (Vy)*.

Proof. Assume that f : [A]"U{oo} — (V5)# is such an embedding. Translat-
ing in V; by — f(00), we may assume that f(oo) = 0. Applying Lemma 4.4, we
may assume that f [ [A]" is in normal form. Then, applying Lemma 4.7, we
have an independent (v, : a € A) from Vy; such that each f(e) = > . bjve;.
We now show that f cannot be an embedding. Again, choose D C A such
that D and A\D are infinite, and let I'; be as in Example 2.7. Then x;(I'y) = 2
and xj'(I'2) = 2 (since m { o). Hence, oo ¢ cl(I';) in the topology 7. However,
oo € cl(I';) with respect to the topology 7. because x;(I'z) = Ny (since p | o).
It follows by Lemma 3.5 (applied with G'= V5 and m = p) that 0 € cI(f(I'2))
(since one may identify a € A with v,). Hence, f is not an embedding. O

This lemma is sufficient to prove Theorem 1.2, which involves only embed-
dings into (V;)#. However, we can pursue this analysis further and prove the
non-existence of certain embeddings into arbitrary groups of finite exponent.
These groups are related to groups of the form (VZZ)# by Theorem 1.5. Now,
for £ > 1, we do not have a normal form result like Lemma 4.4 for functions
into V7,. However, if f : [A]"U{oc} — (VZ‘)# is continuous, we may compose
f with the canonical projection into (V7,)/p(Vr,), which is isomorphic to V7,
and apply Lemma 4.4 to the composition. In doing this, the following lemma
will be useful in showing that “independent” lifts:

Lemma 4.9 Let K = V;[, and for x € K, let [x] be the equivalence class of ©
in K/pK. Suppose that ([v,] : a € A) is independent in K/pK. Then each v,
has order p* and the sequence (v, : a € A) is independent in K.

Proof. As usual in a group, p" | £ means that Jy[p"y = z]. Observe that
forx € K and r < ¢: p" | x iff p*"2 = 0. In particular, v, has order pt,
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because otherwise p‘~'v, = 0, and hence p | v,, so that [v,] = 0, contradicting

independence of ([v,] : @ € A) (Definition 4.1).

Now, to prove independence of (v, : a € A), assume that ), cv,, = 0,
where each ¢; € Z. By induction on k < ¢, we show that p* | ¢; for each i;
then, the case k = ¢ implies that each c¢;v,, = 0.

The case £ = 0 is trivial. For the induction step, fix £ < ¢, and assume
that p*=! | ¢; for each i, so we can let ¢; = p"~'d;. Then p*~' > d;v,, = 0
in K, so p*~ "1 | 3. djv,,. Then Y, d;[v,,] = 0 in K/pK. By independence,
p | d;, and hence p* | ¢;, for each 1. a

We can now prove a version of Lemma 4.7 which applies to maps into
arbitrary groups of finite exponent.

Lemma 4.10 Let A be totally ordered by < in type w. Let n = 20, and let b be
the F-coefficients of length 20. Let T be either the topology Ty on [A]" U {oo}
or the topology Tgm for some m > 2. Let K be any abelian group of finite

ezponent. Let f : [A]" U {oo} — K¥ be continuous with respect to T, with
f(00) = 0. Then there is an infinite A" C A such that either

1. f [ [A']" is identically O, or

2. there is an independent sequence (v, : a € A') of elements of the same
order such that f(e) =3_,_, bjve; for all e = {eo, ... ,en 1} € [A]".
Proof. By Theorem 1.5, it is sufficient to prove this in the case that K = VZZ'
We now induct on ¢. For ¢ = 1, the result follows from Lemmas 4.4 and 4.7,
so assume that ¢ > 1. Let 7 : K — K/pK be the canonical projection. Since
K/pK is isomorphic to V5, we may apply the ¢ =1 case to 7o f, obtaining
A’ as above.

If wo f [ [A']" is identically 0, then each f(e) € pK = V7, _, (for e € [A]"),
so the result follows by the inductive hypothesis. Thus, we may assume that
we have a sequence (v, : a € A') in K such that each 7(f(¢)) = >_,_,, bj[ve;]
and such that ([v,] : @ € A’) is independent in K/pK.

Let g(e) = f(e) — > ;. bjve; and g(oo) = 0. Then g : [A']* U {oo} —
(pK)# is continuous by Lemma 3.3. Applying the inductive hypothesis, we
get an A” C A" and a sequence of elements (w, : a € A”) from pK such that
g(e) = >, bjwe; for all e € [A"]", so that f(e) = >, bj(ve; + we;). Since
(Vg +w,] = [v,] in K/pK, ([v,+w,] : a € A”) is independent in K/pK, so that
by Lemma 4.9, (v, + w, : a € A”) is independent in K, and each v, + w, has
order pt. O

Using this, we can prove a result along the lines of Lemma 4.8, refuting
some embeddings of hypergraph spaces into groups of finite exponent.
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Lemma 4.11 Suppose that A is infinite and ordered by < in type w. Let b
be the F-coefficients of length n = 20. Let K be any abelian group such that
oK = {0}. Let T be either the topology Ty on [A]* U {oo} or the topology ",
where m t o. Then [A]"U{oo} with topology T cannot be embedded topologically
into K#.

Proof. Assume that f : [A]"U{oco0} — K7 is such an embedding. Translating,
we may assume that f(oo) = 0. Applying Lemma 4.10, we may assume that
there is an independent sequence (v, : a € A) of elements of K of some fixed
order r such that f(e) =>_._, bjv.; for all e € [A]".

As in the proof of Lemma 4.8, choose D C A such that D and A\D are
infinite, and let I'; be as in Example 2.7. Then x;(I's) = 2 and xj*(I'2) = 2
(since m 1 o). Hence, co ¢ cl(I'z) in the topology 7. However, oo € cl(I'y)
with respect to the topology 7. because X%(FQ) = N (since r | o). Thus, by
Lemma 3.5, 0 € cl(f(T'z)), so that f is not an embedding. O

5 Non-Embeddability of Groups

Proof of Theorem 1.2. For the — direction, assume that G# embeds into
(V%)#, and assume that G is infinite (since otherwise the result is trivial, taking
A=0and F =G).

If G is not of finite exponent, then Corollary 3.9 plus Lemma 4.8 shows that
there is a hypergraph space (using the topology 7;, where bis the F coefficient
sequence of length 2p) which embeds into G# and not into (V%)#.

So, fix r with rG' = {0}. By Theorem 1.5, G = (P,_, Zy,, where each
ne | rand A = |G| < k. If all but finitely many ng = p, then G is isomorphic
to V) x F for some finite F. If not, then fix m # p such that ne = m
for infinitely many . Then (V)% embeds into G# and hence into (V5)#.
However, Lemma 3.5 plus Lemma 4.8 shows that there is a hypergraph space
(now using the topology 7:™) which embeds into (V#)# and not into (V)#,
so we have a contradiction. ([l

A similar proof yields:

Theorem 5.1 If G, K are any abelian groups, where K is of finite exponent
and G is not of finite exponent, then G* is not embeddable into K*.

Proof. Say 0K = {0} and let b be as in Lemma 4.11. The topology T; does
not embed into K#, but it does embed into G# by Corollary 3.9. O
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It is now natural to ask when G# embeds into K# in the case that both
groups have finite exponent. The next theorem gives a complete answer for
countable groups.

Definition 5.2 If K is an infinite abelian group of finite exponent, let eo(K),
the essential order of K, be the least o such that K is of the form F x H,
where F is finite and H is of exponent o.

In the notation of Theorem 1.5, eo(K) = lem{p' : k,; > No}.

Theorem 5.3 If G, K are any countably infinite abelian groups of finite ex-
ponent, then the following are equivalent:

1. G* is homeomorphic to a subset of K*
2. eo(@) | eo(K).

Proof. For (2) — (1): By Theorem 1.5, we have G = G; x G5 and K =
K, x Ks, where G; and K, are finite and G5 is isomorphic to a subgroup of
K5. The result now follows by Lemma 1.3.

For (1) — (2): By Theorem 1.5, it is sufficient to show that (VZZ)# is not
homeomorphic to a subset of K# when oK = {0} and p’ { 0. Let m = pf,
let A be infinite and ordered by < in type w, and let b be the F-coefficients
of length n = 20. By Lemma 4.11, [A]" U {oo} with topology T, does not
embed into K#, whereas it does embed into (V;JZ)# by Lemma 3.5. O

6 Conclusion

The following three kinds of questions about abelian groups are not answered
by the results of this paper:

First, we have no results refuting the embeddability of any G# into any
K#, where K is not of finite exponent.

Second, when GG, K are both of finite exponent, Theorem 5.3 leaves open
many questions about the embeddability of G# into K# when G is uncount-
able. For example, it is not clear whether (V5")# embeds into (V¥ x Vi )#.

Third, all proofs of non-homeomorphism actually prove non-embeddability.
We know of no example where G# and K# are not homeomorphic but each is
embeddable into the other. Specifically, let G = V{ and K = V§ x V{. Then
each is isomorphic to a subgroup of the other, but we do not know whether
G# and K# are homeomorphic.
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