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Abstract

Let @ be a conjugacy closed loop, and N(Q) its nucleus. Then
Z(N(Q)) contains all associators of elements of ). If in addition @ is
diassociative (i.e., an extra loop), then all these associators have order 2.
If @ is power-associative and |@Q)| is finite and relatively prime to 6, then
@ is a group. If @ is a finite non-associative extra loop, then 16 | |Q].

1 Introduction

The notion of a conjugacy closed loop (CC-loop) is due to Goodaire and Robin-
son [10], and independently to Coiiruc [18], with somewhat different terminol-
ogy. Following, approximately, [10]:

Definition 1.1 A loop (Q,-) is conjugacy closed (or a CC-loop) if and only if
there are functions f,qg: Q X QQ — @ such that for all x,y, z:

RCC: z-yz= f(z,y) xz LCC: zy-xz=zx-qg(r,y)

As usual, define the left and right multiplications by zy = 2R, = yL,, so
that R, and L, are permutations of the set (). Using these, we can express
“CC-loop” in terms of conjugations:

Lemma 1.2 A loop Q is a CC-loop if and only if there exist functions f,g :
@ x QQ — Q such that

L;'LyL, =Ly,  and  R;'RyR, = Ry,
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Proof. RCC and LCC assert that LyL, = LyLj,) and RyR, = R, Ryzy). O

Thus, in a CC-loop, the left multiplications are closed under conjugation
and the right multiplications are closed under conjugation; hence the name
“conjugacy-closed”.

These loops have a number of interesting properties, surveyed in Sections
2 and 3; for example, by [10], the left and right inner mappings are automor-
phisms. These properties allow a rather detailed structural analysis to be made;
in particular, all CC-loops of orders p? and 2p (for primes p) are known (see
[13]). This paper yields additional structural information about CC-loops —
especially for the ones which are power-associative (that is, each (x) is a group)
or diassociative (that is, each (z,y) is a group).

It is shown in [11] that the CC-loops which are diassociative (equivalently,
Moufang) are the extra loops studied by Fenyves [8, 9]. By [9], if @ is an
extra loop, then QQ/N(Q) is a boolean group (where N (@) is the nucleus). It
is immediate that a finite extra loop of odd order is a group. We show here
(Corollary 8.7) that a finite power-associative CC-loop of order relatively prime
to 6 is a group. The “6” cannot be improved, since there are non-associative
power-associative CC-loops of order 16 (e.g., the Cayley loop) and of order 27
(see Section 10) (we do not know if there are ones of order divisible by 6 but
not by 4 or 9). Also, one cannot drop the “power-associative”, since by [10],
there are non—power-associative CC-loops of order p? for every odd prime p.

More generally, we show that every power-associative CC-loop satisfies a
weakening of diassociativity — namely, (x,y) is a group whenever z is a cube
and y is a square. Then, if |@Q| is relatively prime to 6, every element must be
a sixth power by the Lagrange property, so that () is diassociative, and hence
an extra loop of odd order, and hence a group. Of course, we must verify that
the Lagrange property really holds for CC-loops, since it can fail for loops in
general. This is easy to do (see Corollary 3.2) using the result of Bacapa® [2].
He showed that for any CC-loop, @/N(Q) is an abelian group (this answers a
question from [10]); we include a proof of this here (see Theorem 3.1), since it
is fairly short using the notion of autotopy (see Bemoycos [3] I1§3 or Bruck [5]
VII§2), together with some facts about the autotopies of CC-loops proved by
Goodaire and Robinson (see [10] and Section 2).

We also establish two theorems about general CC-loops. First, whenever
S C @ and S associates in the sense that x-yz = zy - z holds for all x,y,z € S,
we prove that (S) also associates, and hence is a group (see Corollary 6.4).
Second (see Theorems 7.8 and 7.10), we use this fact to show that (b, ¢*) and
(b%, ¢) are groups whenever (b) and (c) are groups and c satisfies c¢:((zc)\1) = z\1
(such c are called WIP elements; see Definition 2.17).
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Finally, in a power-associative CC-loop, we show that all cubes are WIP
elements (see Section 8), so that the subloop generated by a square and a cube
always is a group.

Our investigations were aided by the computer programs OTTER, developed
by McCune [14], and SEM, developed by J. Zhang and H. Zhang [19].

2 Background

Let Q be a loop. We shall reformulate the notion of CC-loop in terms of
autotopisms, the definition of which we now recall.

Definition 2.1 Let Sym(Q) denote the group of all permutations of the set @,
and let I denote the identity element of Sym(Q). A triple (o, 3,7) € (Sym(Q))?
is an autotopism of Q if yo - 28 = (yz)y for all y,z € Q. Let Atop(Q) denote
the set of all autotopisms of Q.

It is easy to see that Atop(Q) is a subgroup of (Sym(Q))3.

Lemma 2.2 A loop @ is a CC-loop if and only if there exist mappings F,G :
Q — Sym(Q) such that

(FCE7LCE7LCE) a‘nd (Rl')GCE7RCE)

are in Atop(Q). In this case, F, and G, are given by: yF, = f(z,y) and
yG, = g(z,y) (see Definition 1.1).

We shall also use the division and the left and right inverse permutations:

Definition 2.3 In any loop Q, define permutations p and A, along with D, for
r € Q, by:

yA=1/y  yp=y\l  yDy=y\z .
We write y*,y” for y\,yp, respectively; when these values are the same, they
are denoted by y~'. If y» = y” for all y, we let J = \ = p.

Note that yD,' = z/y, p= D;, and A = D;’'. These permutations are used
in the following explicit expressions for F), and G, which are obtained from
Definition 1.1:

Lemma 2.4 For all z in a CC-loop,

F,=R,L,R;! =D,L,D;} and G,=L,R,L;}=D;'R.D,,.
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In particular,

fley) = (@y)/z = z-yzr = z/(xy’) = [zy\a")]
F, = L,R-' = RwL, = pL,D:' = DL, \
glz,y) = 2\(yx) = 2My-x = (Ya)\z = [(@/y)z]

G, = R,L;' = LaR, = AR,D,

DI_AIRx P

Proof. F, = R,L,R;} is immediate from RCC. Replacing the z in RCC by
y\z we obtain zz = f(z,y) - x(y\z), which yields F, = D,L,D_.}. The rest of
the expressions for F, are obtained by setting z to equal either 1 or z”. The
expressions for G, are likewise obtained from LCC. O

Corollary 2.5 In every CC-loop, F,G, = G F, = 1.

The following lemma lists some additional conjugation relations among the
left and right translations; (3) and (4) are from [13], Lemma 3.1:

Lemma 2.6 In any CC-loop:

LwLyL;1 = Ly(ay) R:L‘RyR;l = Rf(ay)
z-g(@,y)z=y-z2 2f(xy)-x=zx-y
L;'RyLy = R;'Ryy = Ry ;' R;'LyRy = L' Lyy = Ly, Ly
LyRyL;' = R;) Ry = Ryow R, RyLyR;' = L Ly, = Ly, L7}

==

Proof. For (1), use Lemma 1.2 and Corollary 2.5. (2) is equivalent to (1). For
the first equality of (3), use Lemma 2.4 and Corollary 2.5 to get

R,L;'R.L, = GuR,L, = F.'R.L, = R,, .

For the second one, use (1) and Lemma 2.4 to get RyRy/po Ry = Ry(zy/zr) =
Ry,. For the first equality of (4), use Lemma 2.4 with z replaced by z\z to
obtain Ry L, R, = R, .L,. For the second equality, use Lemmas 1.2 and 2.4:
R;PIRm\waf’ = Ry(ar,2\y) = Ryar- O

The left nucleus (NV,), the middle nucleus (N,), the right nucleus (N,), and
the nucleus (V) are defined by:

Definition 2.7 Let () be a loop.

Ny(Q) = {a€eQ:Vr,yeQla-zy=az-y]}
NuQ) = {acQ:VryeQua y=1-ay])
Ny(Q) == {a€Q:Vr,yeQlz-ya=wy-al}
N(Q) = Ni(Q)NN.Q)NNyQ)
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It is easy to verify the following equivalents, in terms of autotopy.

Lemma 2.8 For any loop Q:

Q)={acQ: (L, I, L, € Atop(Q)}.
M@ ={a€Q: (R, Lo, ]) € Atop(Q)}.
N,(Q)={aeQ:(I,R, R,) € Atop(Q)}.
2. If (a, I,7) € Atop(Q), then o =, la € N\(Q) and a = Ly,.

Proof. For (2), xa -y = (xy)7, so taking y = 1 gives & = . Then let a = la
and x = 1 to obtain ay = ya, so that ax -y =a-zy. O

Definition 2.9 For any loop Q, Z(Q) = {zx € N(Q) : Yy[zy = yzx|},
By Goodaire and Robinson [10]:

Theorem 2.10 In any CC-loop @, N(Q) = Nx(Q) = N,(Q) = N,(Q) and
N(Q) is a normal subloop of Q. Also, Z(Q) = {x € Q : Vy[zry = yz]}, so that
every commutative CC-loop is a group.

Autotopies are useful for producing automorphisms:

Lemma 2.11 In any loop Q, if la = 1 and either (o, 3,a) € Atop(Q) or
(B, a, ) € Atop(Q), then o = 8 and « is an automorphism.

Proof. If (o, B, ) € Atop(Q), we have za -y = (zy)a. Setting z = 1 yields
a=04£. 0

Following Bruck [5] §IV.1, define the generators of the right and left inner
mapping groups by:
Definition 2.12 R(z,y) := R, R, R, and L(z,y) := L,L,L,,.

Lemma 2.13 ([10]) In any CC-loop, R(x,y) and L(z,y) are automorphisms
for all x,y.

Proof. By Lemma 2.2, (R(z,y),G.G,G,,, R(z,y)) € Atop(Q). Now apply
Lemma 2.11. O

The following definitions will be useful in Sections 7 and 8:

Definition 2.14 E, = R(z,2”) = RyRy».
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Definition 2.15 «a is a power-associative element if (a) is a group. A loop is
power-associative iff every element is power-associative.

By ([13], Lemma 3.20):

Lemma 2.16 Let (Q be a CC-loop. The following are equivalent for an element
a € Q: (i) a is power-associative; (ii) 1/a = a\l; (iii) a - aa = aa -a. In
particular, () is power-associative if and only if p = .

Following Osborn [15]:

Definition 2.17 ¢ is a WIP element (briefly: ¢ is WIP) iff AR.p = L;'. A
loop has the weak inverse property iff every element is WIP.

For convenience, we collect the following easy equivalents of WIP.

Lemma 2.18 In any loop, each of the following four equations is equivalent to
the statement that ¢ is a WIP element:

AR.p= L7 pL.\ = R7!
RepLe = p LAR. =\

3 Q/N@Q)
Theorem 3.1 (Bacapab [2]) For a CC-loop Q, Q/N(Q) is an abelian group.

Proof. By Goodaire and Robinson [10], every CC-loop is a G-loop; that is, it is
isomorphic to all its loop isotopes. In particular, for any element v, the isotope
(Q; 0) defined by z oy = x - (v\y) satisfies RCC"

z - (V\(y - (v\2))) = h(z,y,v) - (v\(z - (v\7))) ,
where 7 : Q* — Q. Replacing = by vz, this simplifies to:
z- (V\(y-2)) = h(z,y,v) - (v\(z-2)) .
We may set z = 1 to get h(z,y, v) = (z(v\y))/(v\z), so we have
z- (V\(y - 2)) = [(z(v\y))/(v\2)] - [v\(z - 2)] ,

which implies that (L;ILIR;\II, L.L;"Y, L;'L,) € Atop(Q) for all z and v.
Since also (F,F, ', L,L;', L,L;') € Atop(Q) by Lemma 2.2, we have

(F,F,'L'L,R! I, L,L;'L;"'L,) € Atop(Q) .

v\z’
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Then, by Lemma 2.8, 1 F,F, L' LR, = (2(v\1))/(v\z) € NA(Q). Ap-
plying Theorem 2.10, Q/N(Q) is a CC-loop satisfying the additional equation
(z(v\1))/(v\z) =1, or zv” = v\z. Hence, in Q/N(Q), we have (using Lemma
2.4) f(v,y) =v-yv” =y, so that RCC becomes z - yz =y - xz. Setting z = 1,
we get xy = yx, so that QQ/N(Q) is commutative and satisfies the associative

law, x - zy = xz-y. O

This is roughly the proof in [2], although Bacapa6 studies in more detail
those loops @ such that ) and all its loop isotopes satisfy RCC.

Recall that a finite loop has the weak Lagrange property if the order of any
subloop divides the order of the loop, and a finite loop has the strong Lagrange
property if every subloop has the weak Lagrange property [16]. In general if
H is a normal subloop of @), and H and @Q/H both have the strong Lagrange
property, then so does @ (see Bruck [5], §V.2, Lemma 2.1; see also [7]). It is
now immediate from Theorem 3.1 that:

Corollary 3.2 Fvery finite CC-loop has the strong Lagrange property.

Corollary 3.3 If Q) is a finite power-associative CC-loop and |Q| is relatively
prime to n, then every element of Q is an n'™ power.

The following Cauchy property is also immediate from Theorem 3.1:

Corollary 3.4 If Q is a finite power-associative CC-loop and |Q| is divisible
by a prime p, then @ contains an element of order p.

Also, the fact that finite p-groups have non-trivial centers generalizes to:

Corollary 3.5 If Q is a CC-loop of order p" for some prime p and n > 0, then

1. 1Z(Q)| =p", wherer #0 and r #n — 1.
2. For all m <n, @ has a normal subloop of order p™.

Proof. For (1): Let N be the nucleus. For x € Q, let T, = R,L;". By [10], each
T, | N is an automorphism of N. Furthermore, if we define 7 : QQ — Aut(N)
by T(z) = T, | N, then 7 is a homomorphism by [13], Corollary 3.7. Thus,
T(Q) is a subgroup of Sym(N), and |7(Q)] is a power of p, so the size of each
orbit is a power of p. Since |N| = p’ for some ¢ > 0, there must be at least p
elements y whose orbit is a singleton (equivalently, y € Z(Q)). Hence r # 0.

If r > n—1, then Q@ = (Z(Q) U {a}) for any a # Z(Q), but then Q is
commutative, so r = n.

For (2): Let P be a subgroup of Z(Q) of order p. Then the m = 1 case is
immediate, using P, and the case 1 < m < n follows by applying induction to

Q/P. O
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4 Associators and Inner Mappings
Definition 4.1 In a loop (), associators are denoted by:
(T,y,2) = (x-y2)\(zy-2)  [2,9y,2]:=(v-yz)/(zy-2)

Since the two notions of “associator” are mirrors of each other, we concen-
trate on (z,y, z) in the following:

Lemma 4.2 In any loop (Q with nucleus N, if a € N, then

(i) (az,y,2) = (2,9, 2)
(ii) (za,y,z) = (z,ay,2)
(iii) (x,ya,z) = (x,y,az)
(iv) (z,y,2a) =a '(z,y,2)a

In addition, if N is normal in QQ, then

(v) (za,y,2) = (z,y, 2)
(vi) (z,ya,z2) = (z,y, 2)
(vii) a= "z, y,2)a = (x,vy, 2)

Proof. (i)-(iv) are straightforward consequences of the definitions. Now assume
N is normal in Q). Then for u € @, ua = bu for some b € N. Thus (v) follows
from (i), (vi) follows from (ii) and (v), and (vii) follow from (iv), (iii), and (vi).
U

Theorem 3.1 implies that associators are nuclear, so we have:

Corollary 4.3 The nucleus of a nonassociative CC-loop has a nontrivial center
which contains the subgroup generated by the associators.

Theorem 4.4 In a CC-loop, the associators (x,y,z) and [x,y, z] are invariant
under all permutations of the set {x,y, z}.

Proof. Tt is enough to prove that (z,y,z2) = (y,z,2) and (z,y,2) = (x, z,y),
since the transpositions (z y) and (y z) generate Sym({x,y, z}).
For (z,y,2) = (y,x,2): x-yz = f(x,y) -2z by RCC and zy-z = f(z,y)x -z
by Lemma 2.4, so (z,y,2) = (f(x,y),x, z). By Theorem 3.1, there exists a € N
such that f(z,y) = ay, so (f(z,y),z,2) = (ay, z,2z) = (y,x, z) by Lemma 4.2(i).
For (z,y,z) = (x, z,y): Apply a similar argument, using LCC. 0O
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Lemma 4.5 In a CC-loop,
2Ly, x) = z(w,y,2)""  aR(y,2) = [z,y,2] "'z .
Proof. We have:

(@-y2)(w,y,2) = (wy-2) 2,9, 2l(zy - 2) = (- y2) -

Since associators are nuclear, this can be rewritten as

{z(z,y,2)}o(y,2) =2z A{lz,y 2a}R(y, 2) =2 .

Now use the fact that L(y,z) and R(y,z) are automorphisms which fix all
elements of the nucleus. O

Applying Theorem 4.4:
Corollary 4.6 In a CC-loop, L(z,y) = L(y,x) and R(z,y) = R(y, z).

Furthermore, the L(z,y) and R(u,v) all commute with each other; more
generally, they commute with all nuclear automorphisms:

Definition 4.7 Let Q be a loop with nucleus N. An automorphism a of Q is
nuclear iff xaw € xN for each x € Q). NAut(Q) is the set of nuclear automor-

phisms of Q).
Lemma 4.8 NAut(Q) is a normal subgroup of Aut(Q).

Theorem 4.9 Let Q be a CC-loop. Then Z(NAut(Q)) contains all R(z,y) and
L(z,y).

Proof. The R(z,y) and L(x,y) are automorphisms by Lemma 2.13 and nuclear
by Theorem 3.1. Now, if « is nuclear, we have, using Lemma 4.5,

ZL(y,:L‘)Oé = {Z(xayaz)il}a = z0- (JTUJ, yb, Zc)il = z0- (xaya 2)71 )

where a, b, c € N(Q), whereas

zaL(y,z) = (za) - (2,y,20) ' = (20) - (x,y,2d) ' = 20+ (2,9,2)

where d € N(Q). O

Corollary 4.10 In a CC-loop, the group generated by all the automorphisms
R(x,y) and L(z,y) is abelian.
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5 Extra Loops

In this section we offer some characterizations of extra loops, i.e., Moufang CC-
loops, which do not seem to be in the literature. We then apply the results of
the previous section to extra loops.

A loop has the right inverse property (RIP) iff it satisfies z/y = xy® for some
mapping ¢. The left inverse property (LIP) is similarly defined, and if either
of these properties holds, then ¢ = p = A. A loop has the anti-automorphic
inverse property (AAIP) iff it satisfies (zy)? = yPx?. This is equivalent to
(zy)* = y*2*, and these conditions imply p = \. A loop satisfying any three of
RIP, LIP, and AAIP satisfies the third, and is said to have the inverse property
(IP) [5].

Lemma 5.1 In every CC-loop, (x - yx*) - xy” = x and y*z - (zy - z) = .

Proof. This follows immediately from Lemma 2.4. O

Lemma 5.2 In a CC-loop, each of the RIP, LIP, and AAIP is sufficient for
the IP.

Proof. If RIP holds, then using Lemma 5.1, we have z - yz ' = z(zy ')
Cancelling and replacing y with y~! gives AAIP. Similarly, LIP implies AAIP.
In Lemma 5.1, y2” and 2y can be arbitrary elements of the loop, so if AAIP

holds, then zz -z ' = 27! - 2z = 2, which are RIP and LIP, respectively. [J

A loop is said to have the right alternative property (RAP) iff it satisfies
xy -y = zy>. The left alternative property (LAP) is similarly defined. A loop is
said to be flexible iff it satisfies x - yxr = xy - x.

Lemma 5.3 In a CC-loop, each of the RAP and LAP 1is sufficient for flexibil-
ity.

Proof. If RAP holds, then using RCC and Lemma 2.4, z - yx = f(z,y)z? =
flz,y)r-x=zy-x. O

It is known that each of the IP and flexibility is sufficient for a CC-loop to
be an extra loop [11]. Lemmas 5.2 and 5.3 give us additional conditions.

Theorem 5.4 Fach of the following is sufficient for a CC-loop to be an extra
loop: (i) RIP, (ii) LIP, (iii) AAIP, (iv) RAP, (v) LAP.

The nucleus of an extra loop contains every square [9]. However, there are
non-extra CC-loops () in which all squares are in the nucleus; such ) can both
be power-associative and have the weak inverse property; see Section 10.
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Lemma 5.5 In a CC-loop, z(x,y,2)"' = (z,y,2})z.

Proof. Applying the automorphism L(y, z) to the equation z*z = 1, and using

Lemma 4.5, we get 2*(x,y,2*) 1+ 2(z,y,2) ! = 1 = 2*2. The result now follows
because associators are in the nucleus. [

Lemma 5.6 Let Q be a CC-loop such that N(Q) contains every square. Fori =
1,2,3, choose ¢; € {I,p,\}. Then (x,y,z) = (x€,yeq, ze3). Hence L(y,z) =
L(yeq, z€r).

Proof. Note that 222* = 2#22 = z (since 2222z = 22). Then, Lemma 4.2 implies
(z,y,2) = (x,y,2) = (z,y, 2°). The remainder follows from Theorem 4.4 and
Lemma 4.5. [

Theorem 5.7 Let () be an extra loop.

1. L(z,y) = R(z,y) = L(y,z) = R(y,x) and L(x,y)*> =1I.

2. (z,y,2) = [x,y, 2] and (x,y,2)? =1, so0 that the subgroup of N(Q) gener-
ated by the associators is a boolean group.

3. Each (z,y,2) commutes with x, y, and z.

Proof. (1) In Moufang loops, R(z~!,y™') = L(x,y) = L(y,x)™" (see [5], Lemma
VII.5.4). Now apply Corollary 4.6 and Lemma 5.6.

(2) In diassociative loops, (z,y,2) ' = [z71,y 1, 27!]. Now, apply (1), along
with Theorem 4.4 and Lemmas 4.5 and 5.6.

(3) This follows from (2), Lemmas 5.5 and 5.6, and Theorem 4.4. O

Hence, the nucleus of a nonassociative extra loop must contain elements of
order 2.

Corollary 5.8 If Q is a finite nonassociative extra loop, then 16 | |Q)|.

Proof. Since the order of N = N(Q) is even, and Q/N is a boolean group, it is
sufficient to show that | : N| > 8. Choose a ¢ N = N, and then choose b such
that R(a,b) # I (that is, (xa)b # x(ab) for some x). Then N < fix(R(a,b)) < Q,
since a,b € fix(R(a,b)). Next, note that (N U {a}) = Na = aN, and that
b # aN (otherwise R(a,b) would be I), so N < aN < fix(R(a,b)) < Q, so
Q:N|>8 O



6 SUBGROUPS OF CC-LOOPS 12

6 Subgroups of CC-loops
Here, we show that some subloops of CC-loops are groups.

Definition 6.1 A triple of subsets (A, B,C) of a loop Q associates iff x-yz =
xy - z whenever v € A, y € B, and z € C. A subset S of () associates iff
(S,S,S) associates.

Applying Theorem 4.4,

Lemma 6.2 In a CC-loop, the property “(A, B, C) associates” is invariant un-
der all permutations of the set {A, B,C'}.

By modifiying an argument of Bruck and Paige [6] for A-loops:

Lemma 6.3 In a CC-loop, if (A, B,C) associates then ((A), (B),(C)) asso-

clates.

Proof. For each b € B and ¢ € C, the map R(,RCR,;C1 is an automorphism (see
Lemma 2.13) and is the identity on A, so it is the identity on (A), which implies
that ((A), B, C) associates. By Lemma 6.2, we may apply this argument two
more times to prove that ((A), (B), (C)) associates. O

Corollary 6.4 In a CC-loop, if S associates, then (S) associates, and is hence
a group.

7 WIP Elements

Throughout this section, (Q,-) always denotes a CC-loop. By [13], power-
associative elements x satisfy a number of additional properties. In this section,
we shall derive some further properties of these x and their associated E, when
x is also a WIP element (see Definitions 2.14, 2.15, and 2.17).

Whenever z is power-associative, all elements of the group generated by L,
and R, are of the form E"RSL! for some r,s,t € Z. This is immediate from

the following lemma, which is taken from Lemmas 3.17 and 3.19 of [13]:

Lemma 7.1 If x is power-associative, then for all r,s,t,i,5,k,n € Z, the fol-
lowing hold:

1. E, commutes with L, and R,.
2. RJILLRI = E L.
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3. ETRSLL - EERILF = ETHi-itRstifttk,
4. Ry = E" "2 pr
5. Lyn = E, "2 n,
6. Epn = E).
Lemma 7.2 In a CC-loop, if ¢ is a power-associative WIP element, then for
each n € Z, " is a WIP element.

Proof. Let m = (n — 1)n/2. Applying Lemma 7.1, we have
RenpLen = E"RypE. "L} = R_pL. =p .

We are using the fact that E. commutes with p (because it is an automorphism)
and with R. (by Lemma 7.1(1)). O

Lemma 7.3 In a CC-loop, if ¢ is a power-associative WIP element, then the
following hold:

D.=Lec1p D7'= R A
AL.p = R pR = L7
LepRe=p RAL, =\

Proof. Note that since yD. = y\c and yD_ ' = ¢/y, the equations in the right
column are mirrors of the ones in the left, so we need only prove one from
each row. For the first row, use ¢- g(c,y)z = y - ¢z (see Lemma 2.6), and set
z = g(c,y)” to get ¢ = y-cgle,y)? = y-c(c 'y - c)? (see Lemma 2.4). Since
Re.pL. = p, we get ¢ =y - (¢ 'y)?, which implies D, = L.-1 p.

For the second row, apply both equations in the first row to ¢!, which is
also WIP, to get L.p = D1 = pR_'. The third row restates the second. [

Lemmas 2.18 and 7.3 provide conjugation relations which, together with
Lemma 7.1, show that whenever ¢ is power-associative and WIP, all elements
of the group generated by L., R., and p are of the form «FE!R:L! for some
r,s,t € Z, and some «a € {p). It is also easy to see now that if ¢ is a power-
associative WIP element, then each of R,, L. commutes with each of \?, p%.

Lemma 7.4 In a CC-loop, z(yz - z) = (x*\y) - 2z and (z - y2)z = zy - (z/2°).

Proof. By Lemmas 2.2 and 2.4 and Corollary 2.5, (Ry, Gy, Re)(Fy, Ly, Ly) =
(L.\, Ry, RyLy) is an autotopism. Thus z(yz - z) = (z*\y) - za for all y,z. O

Lemma 7.5 In a CC-loop, if ¢ is a power-associative WIP element and x s

arbitrary, then z - (zE;' - ¢) = 2% - c.
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Proof. We have 2? = (z*\¢™') - cx = (x/¢) - cx using Lemma 7.4 and D.-1 =
pR.'. Thus 2%-c = ((z/c)-cx)-c = (z/c)c-g(c,cx) = x-xL L1 R. = x-(xE )
by LCC, Lemma 2.4, and Lemma 7.1(5). O

Lemma 7.6 In a CC-loop, if b and ¢ are power-associative, then (b,c) is a
group if and only if cEy, = ¢ and bDE. = b. If ¢ is also a WIP element, then
cEy, = ciff bE,. = b.

Proof. Tf (b, c) is a group, then obviously ¢E, = ¢ and bE. = b. Conversely, to
prove that (b, c) is a group, it is sufficient, by Corollary 6.4, to show that {b, c}
associates; that is, (z,y, z) = 1 whenever z,y, z € {b, ¢}. However, since {c) and
(b) are groups and the associators are invariant under permutations (Theorem
4.4), it is sufficient to show that b* - ¢ = b-bc and ¢ - b = ¢ - ¢cb. By Lemma
7.1(5), these equations are equivalent to cE, = ¢ and bE, = b, respectively.

Now if ¢ is a WIP element, then Lemmas 7.5 and 7.1(5) give bE. !¢ =
cLyLy' =b-cE;". Thus bE, = b if and only if cEy, = c. O

Lemma 7.7 In a CC-loop, if c is power-associative and WIP, then E* = 1.

Proof. In Lemma 7.4, set z = ¢, y = c\u, and z = (c\u)” to obtain ¢* =
u((c\u)?/c™1); equivalently, D. = Lc_lpR(j_ll. Now, applying Lemmas 7.3 and
7.1, we get Do = L2 p=L72E3pand L7'pR Y, = L7'Lo-1p = L72E] " p. so
that £, =E 1. O

Theorem 7.8 In a CC-loop, if ¢ is WIP, and if b and ¢ are power-associative,
then (b, c?) is a group.

Proof. By Lemmas 7.1(6) and 7.7, bE.» = bE* = b. Now apply Lemma 7.6 to
¢2, which is WIP by Lemma 7.2. [

Lemma 7.9 In a CC-loop, if ¢ is WIP, and if b and ¢ are power-associative,
then cE? = c.

Proof. Lemma 7.5 implies b1+ (b\ (b?-c)) = b~1-(bE. '-¢c). Now L2L; 'Ly = E;?
by Lemma 7.1(5), and bE, 'R. = bR, = bAD, = b '\c by Lemmas 7.1(4) and
7.3. Therefore cE, > =b'- (b"'\¢) =c. O

Theorem 7.10 In a CC-loop, if ¢ is WIP, and if b and ¢ are power-associative,
then (b?,c) is a group.
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Proof. By Lemmas 7.1(6) and 7.9, cEj = cE} = c¢. Now apply Lemma 7.6. O

Applying either Theorem 7.8 or 7.10 we see that a power-associative WIP
CC-loop in which every element is a square must be a group. Then, applying
the Lagrange property (Corollary 3.2), we get:

Corollary 7.11 A finite power-associative WIP CC-loop of odd order is a
group.

This corollary is not really new. In [1], Bacapa® shows that a loop satisfies
Wilson’s identity iff it is a “generalized Moufang loop” with squares in the
nucleus. Then Goodaire and Robinson [11] showed that a loop satisfies Wilson’s
identity iff it is a WIP CC-loop. Thus, in fact, all squares are nuclear in a WIP
CC-loop, so that Q/N(Q) is a boolean group. We give an example in Section
10 of a power-associative WIP CC-loop of order 16 in which |Q/N(Q)| = 4; this
is not an extra loop (that is, some (b, ¢) fails to be a group), so that Theorems
7.8 and 7.10 are best possible.

8 Power-Associative CC-loops

Throughout this section, (@, -) always denotes a power-associative CC-loop. We
shall derive some further results beyond Lemma 7.1. In particular, every cube
is a WIP element (see Definition 2.17), and each ES = I (see Definition 2.14).

Lemma 8.1 R,L, = D,-1D, and LyR, = (D;D,-1)"".

Proof. By Lemma 2.4 and Corollary 2.5, I = G,F, = D;_llRmp -pL,D;' =
D;_llRmLngl, and I = F,G, =D, L, \-\R,D, =D, L,R,D,. O

Note that this lemma requires that power-associativity hold in @), not just
that the particular element z is power-associative, since we needed p?> = I, or
equivalently, p = \; see Lemma 2.16.

Compare the following lemma with Lemma 5.1.

1

Lemma 8.2 (z-zy) -y 'z7' =z and z7 'y~ (yr-1) = 2.

Proof. We compute

[? = E,R, LR, (Lemma 7.1)
= E,F,D;'\D,! (Lemmas 2.4 and 8.1)
= E,F,G,JR;'D;' (Lemma 2.4)
= E,JR;'D;' (Corollary 2.5)
= JE,R;'D;! (Lemma 2.13)
= JR,1D;! (Lemma 7.1(4))
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Thus z - zy = x/(y~'27") or (z-2y) -y~ 'o~" =z, as claimed. O

Lemma 8.3 y ' (yR3) =23 and (yL3) -y~ = 23.

Proof. By Lemma 2.6, R;'LyR, = L,-1,L,", so RyLy1+ = Ly-1,-1R, L.
Thus, y ' (yR2) = (yz - )RyLy+ = (yx - x)Ly1y1 R Ly, = xR, Ly, = 2° by

Lemma 8.2. [

Theorem 8.4 In a power-associative CC-loop, every cube is a WIP element.

Proof. From Lemmas 7.1(4,5) and 8.3, E3L,s = L3 = JD_' and E’R,s =
R} =JD,s. Thus I = JE3L,sJE3R,s = JL,sJR,s, by Lemma 7.1. Therefore
JL,sJ = R, that is, 2° is a WIP element. [

Corollary 8.5 For each b, c in a power-associative CC-loop, (b, c®) and (b?, c®)
are groups.

Proof. ¢ is WIP, so apply Theorems 7.8 and 7.10. [
The examples in Section 10 show that some (b?, ¢?) can fail to be a group

(see Table 1), and so can some (b3, c®) (see Table 2).

Corollary 8.6 If ) is a power-associative CC-loop in which every element is
a sixzth power, then Q) is a group.

Proof. @ is diassociative, and hence an extra loop. However, in an extra loop,
all squares are in the nucleus [9], and so @ = N(Q) is a group. O

Then, applying the Lagrange property (Corollary 3.2), we get:

Corollary 8.7 If Q is a finite power-associative CC-loop of order relatively
prime to 6, then Q) is a group.

In a power-associative CC-loop, Lemma 7.1(6), Theorem 8.4, and Lemma
7.7 imply E;* = E2, = I. We conclude this section with an improvement of
this.

Lemma 8.8 In a power-associative CC-loop, * =y - ((z7'y) ™' - z) and 2* =
(z- (yz=")™") -y. Thus D> = L,-1+JR, and D' = R,-1JL,.

Proof. In Lemma 7.4, set y = z~'u and 2 = (z7'u)™" to get 22 = u- ((z7'u)~"-
z). O
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Theorem 8.9 Every power-associative CC-loop satisfies ES = I for all x.

Proof.
E LS = L2, (Lemma 7.1(5))
= JD (Lemma 8.3)
= JRxfs JLI3 (Lemma 8.8)
L 1L, (Theorem 8.4)
= E°L3FE3L3 (Lemma 7.1(5))
= E3LS (Lemma 7.1(1))

Rearranging, we have ES = 1. [

9 Semidirect Products

This standard construction from group theory generalizes to loops. We follow
Goodaire and Robinson [12].

Definition 9.1

1. Let A, K be loops, and assume that ¢ : A — Sym(K) satisfies 1, = I
and (1x)pe = 1k for alla € A. The external semidirect product A x, K
s the set A x K with the binary operation

(a,2)(b, y) == (ab, (x)pp - y)-

fora,be A, x,y € K. We write A x K when ¢ is clear from context.

2. A loop Q is an internal semidirect product of subloops A and K if K is
normal in Q, Q@ = AK, ANK = {1}, and each of (K, A, K), (A, A, K),
and (A, K, Q) associates.

The external semidirect product A x K is clearly a loop with left and right
division operations given, respectively, by

(@, 2)\(b,y) = (a\b, [(x)par]\y)
(a,2)/(by) = (a/b, (z/y)e,")

The following comes from [12], Thms. 2.3 and 2.4.

Proposition 9.2

1. If Q = A K s an external semidirect product of loops A and K, then )
is isomorphic to the internal semidirect product of the subloops A x {1}

and {1} x K.
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2. If a loop Q is an internal semidirect product of subloops A and K, then Q)
is isomorphic to an external semidirect product A x, K, where ¢ : A —

Sym(K) is defined by: v, = R, L' | K.

For CC-loops, the notion of semidirect product is much closer to its group-
theoretic specialization than for arbitrary loops. Recall from Definition 4.7 the
notion of a nuclear automorphism.

Lemma 9.3 Let Q be a CC-loop which is an internal semidirect product of
subloops A and K, and define ¢ : A — Sym(K) by ¢, := R,L,' | K for each
a € A. Then p(A) C NAut(K), and ¢ : A — NAut(K) is a homomorphism.

Proof. Since (A, K, Q) associates, we apply Lemma 6.2 repeatedly in what
follows without explicit reference. (In CC-loops, the conditions that (K, A, K)
and (A, A, K) associate are redundant.) For z,y € K, a € A,

a- (2y)pa =1 -ya=z(a- (y)p.) = va- (y)a = (a- (¥)¢a) - (Y)Pa-

Thus (zy)pe = (€)¢a - (¥)@a, and so ¢, € Aut(K). Now for each z € K, a € A,
Theorem 3.1 implies there exists ¢ € N(Q) such that (z)p, = xc. But since
(x)pq € K, we have c € KN N(Q) C N(K). Thus ¢, € NAut(K). Finally, for
a,be A, r € K, we compute

ab- ()pep =xa-b=(a-(x)p,)b=a((z)p, - b) =alb: (z)p.ps).
Thus ()@ = (2)paps- This completes the proof. O

We take notational advantage of Lemma 9.3 as follows: if Ax K is a CC-loop,
then we set 2% := (z)¢p, for z € K, a € A. Note that z*° = 2% = ()¢, .

We now prove that the necessary conditions for a semidirect product to be a
CC-loop given in Lemma 9.3 are also sufficient (Theorem 9.4). This generalizes
D.A. Robinson’s characterization of when A x K is an extra loop in the case
where A is a group [17].

Theorem 9.4 Let A, K be CC-loops, and ¢ € Hom(A, Aut(K)). Then the
following are equivalent:

1. Ax, K is a CC-loop.
2. ¢p € NAut(K) for allb € A.
3. The triples

U(x,b) = (LR, Ly, L) and — V(z,b) := (Ry, Rpp L, Ryp)

are in Atop(K) for all x € K and b € A.
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Proof. For (2) <+ (3): Fix z € K and b € A. We have L, := (L,R;", Ly, L) €
Atop(K) by Lemmas 2.2 and 2.4. Hence, U(x,b)L, ' = (LpL, ', I, L L"),
Now if U(z,b) € Atop(K), then by Lemma 2.8(2), 1L L' = z\(2%) € N(K),
so that ¢y is a nuclear automorphism. Conversely, if ¢ is nuclear, fix k € N(K)
such that 2 = xk. Then L, L ' = L, and so U(z,b)L;" = (Ly, I, L) €
Atop(K) by Lemma 2.8(1). Thus U(x,b) € Atop(K) since Atop(K) is a group.
A similar argument shows the equivalence of ¢, € NAut(K) and V(z,b) €
Atop(K).

For (1) <+ (3): Fix (a,x), (b,y), (¢,2) € A x K, and write out the two sides
of RCC in A x K using f(u,v) = (uv)/u (Lemma 2.4) in K. The left side is

(a,2) - (b,y)(c,2) = (a-be, 2% y2) .

The right side is
[((a,2)(0,9))/(a,2)] - (a,2)(c, 2) = (f(a,b) - ac, [(a*y")/(z°)] - a°2) .

Equating the K-components, replacing z by z¢ and then applying the automor-
phism ¢, !, we get 2% - yz = [(2%y)/z] - x2. Thus A x K satisfies RCC iff each
U(z,b) € Atop(K).

Likewise, we can write out the two sides of LCC in A x K using g(u,v) =
u\(vu) in K. The left side is

(c,2)(b,y) - (a,7) = (cb-a, 2"y -z) .

The right side is

(e, 2)(a, ) - [(@, )\ (b, y)(a,2))] = (ca- g(a,b), (2"2C)[p OO\ (yoz))) .

Equating the K-components, replacing z by be“, z by sz, and then applying
the automorphism ¢!, we get zy - ¢ = 2z - [z\(yz?)] where d = b*. Thus
A x K satisfies LCC iff every V(z,d) € Atop(K). O

We remark that the implication (1) — (2) follows directly from Lemma 9.3.
However, the proof of Theorem 9.4 has the advantage of offering a characteri-
zation of when A x, () satisfies RCC or LCC alone, while our proof of Lemma
9.3 relies on Theorem 3.1. We also remark that in proving (1) <> (3), the ar-
guments for LCC and RCC' are similar, but we could not simply say that the
LCC case follows from the RCC' case “by mirror symmetry”, since there is an
asymmetry in the definition of A x Q).

Theorem 9.4 suggests that a natural definition of holomorph for a CC-loop
@ is NAut(Q) x, @), where ¢ is the identity map. (This differs slightly from
the usage in §5 of Bruck [4].) If @ is a group, then NAut(Q) = Aut(Q), and
NAut(Q) %, @ reduces to the usual definition of holomorph in group theory.
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10 Examples

012345678 910111213141516171819 20212223 242526
0/01 23456 78 91011121314151617181920212223242526
11204537 8 610119 1314121617151920 18222321 252624
220153486 71191014121317151620181923 2122262425
3134567 801 212131416171511 9 10222321242526201819
414 53 7861 2 0131412171516 9 1011232122252624181920
5153 48 6 720 11412131516171011 9 21222326 24251920 18
6/6 78 01 234515161711 9 10131412262425181920222321
7\7T78612045 31617159 101114121324252619 2018232122
818 6 72015 3 41715161011 9 1213142526 24201819 212223

0125348¢6T7

NeJ

9101112131416 17151819 20 22 23 21 24 25 26
1011 9 131412171516 19 20 18 23 21 22 25 26 24
11 9 101412131516 1720 18 19 21 22 23 26 24 25
12|11213141516 171011 9 21 22 23 26 24 2520 18 19
13|113141216 171511 9 102223 21 24 25 26 18 19 20
14(141213171516 9 1011 23 21 22 25 26 24 19 20 18
15(151617 9 101113141224 2526 18 192022 23 21
16|16 17151011 9 14 1213 2526 24 19 20 18 23 21 22
17117151611 9 1012 13 14 26 24 25 20 18 19 21 22 23

—_ =
= O

IO 00 W U N
O ~J O = W ot O N
O~ Uk W~ O
SN~ O W
= O 00~ O Ot s
N = O 00~ W ot
=W OoONHEJIO
U = O N 00~
WUt = OO

6120534

18|1819202122232624250 1 2 5 3 4 6 7 8 91011131412161715
19(192018222321242526 1 2 0 3 4 5 7 8 6 1011 9 141213171516
20[1201819232122252624 2 0 1 4 5 3 8 6 7119 101213141516 17
2112122232425262018193 4 5 6 7 8 2 0 1131412161715 9 1011
22(2223212526241819204 5 3 7 8 6 0 1 21412131715161011 9
231232122262425192018 5 3 4 8 6 7 1 2 012131415161711 9 10
2412425261819202321226 7 8 1 2 0 4 5 31715161011 9 141213
251252624192018212223 7 8 6 2 0 1 5 3 415161711 9 10121314
2612624252018192223218 6 7 0 1 2 3 4 51617159 1011131412

Table 1: A Power-Associative CC-Loop

The example in Table 1 is a power-associative CC-loop of order 27 and ex-
ponent three. Z(Q) = N(Q) = {0,1,2}, and {0,1,2,3,4,5,6,7,8} is a normal
subloop. Note that |Z(Q)| = 3 is required for non-associative CC-loops of order
27 by Corollary 3.5.

This loop also has the Automorphic Inverse Property (AIP); that is, J €
Aut(Q).

The example in Table 2 is a power-associative CC-loop of order 16. The
loop must have the weak inverse property because 3 1 16, so every element is a
cube (see Theorem 8.4). It is not diassociative because 4 - (8 -4) # (4 - 8) - 4;
also, Q@ = (4,8). Z(Q)= N(Q) = {0, 1,2, 3}, so all squares are in the nucleus.
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8§ 9101112131415
8§ 9101112131415
91011 8 13141512
1011 8 9 14151213
118 91015121314
121314151011 8 9
1314151211 8 9 10
14151213 8 9 1011
15121314 9 1011 8
)

W N &~ O Oyt
O WN U~
= O W O Otk

W N OO O~
o
—
()

123
123
230
301
012
56 7
6 7 4
745
456
9

0~ O Utk W —=Ole
0O I O UL W N OO

1011151213140 1 2 3
91011 8 12131415 1
1011 8 9 13141512 2
118 91014151213 3
121213141511 8 9 10 6
13(13141512 8 9 1011 7
14(14151213 9 1011 8 4
15/151213141011 8 9 5

— =
— o ©

QU O W N
O Ut O W
B O ot = O
N = O WU~
WNH OO O
O WN -~
— O WN U~

Table 2: A Power-Associative WIP CC-Loop

These examples were found by the program SEM [19]. As usual, once one
is given such an example, it is easy to write a very short program (in, e.g., C
or java or python) to verify the claimed properties for it.
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