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Abstract

The dissipated spaces form a class of compacta which contains both the
scattered compacta and the compact LOTSes (linearly ordered topological
spaces), and a number of theorems true for these latter two classes are true
more generally for the dissipated spaces. For example, every regular Borel
measure on a dissipated space is separable.

The standard Fedorčuk S-space (constructed under ♦) is dissipated. A
dissipated compact L-space exists iff there is a Suslin line.

A product of two compact LOTSes is usually not dissipated, but it may
satisfy a weakening of that property. In fact, the degree of dissipation of a
space can be used to distinguish topologically a product of n LOTSes from
a product of m LOTSes.

1 Introduction

All topologies discussed in this paper are assumed to be Hausdorff. As usual, a
subset of a space is perfect iff it is closed and non-empty and has no isolated points,
so X is scattered iff X has no perfect subsets.

There are many constructions in the literature which build a compactum X
as an inverse limit of metric compacta Xα for α < ω1, with the bonding maps
πβ

α : Xβ � Xα for α < β < ω1. In some cases, as in [7, 11, 12], the construction
has the property that for each α, β, (πβ

α)−1{x} is a singleton for all but countably
many x ∈ Xα. We shall call such πβ

α tight maps; these are discussed in greater detail
in Section 2. The spaces X so constructed are examples of dissipated compacta;
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2 TIGHT MAPS 2

these are discussed in Section 3. Section 7 shows that the property of tightness is
absolute for transitive models of set theory.

The precise definition of “dissipated” in Section 3 will be that there are “suffi-
ciently many” tight maps onto metric compacta; so the definition will not mention
inverse limits. Then, Section 6 will relate this definition to inverse limits.

Dissipated compacta include the scattered compacta, the metric compacta, and
the compact LOTSes (totally ordered spaces with the order topology). Section 3
also describes the more general notion of κ–dissipated, which gets weaker as κ gets
bigger; “dissipated” is the same as as “2–dissipated”, while “1–dissipated” is the
same as “scattered”. Every regular Borel measure on a 2ℵ0–dissipated compactum
is separable (see Section 5).

If X is the double arrow space of Alexandroff and Urysohn, then X is a non-
scattered LOTS and hence is 2–dissipated but not 1–dissipated, while Xn+1 is
(2n + 1)–dissipated but not 2n–dissipated. Considerations of this sort can be used
to distinguish topologically a product of n LOTSes from a product of m LOTSes;
see Section 4.

2 Tight Maps

As usual, f : X → Y means that f is a continuous map from X to Y , and
f : X � Y means that f is a continuous map from X onto Y .

Definition 2.1 Assume that X, Y are compact and f : X → Y .

☞ A loose family for f is a disjoint family P of closed subsets of X such that
for some non-scattered Q ⊆ Y , Q = f(P ) for all P ∈ P.

☞ f is κ–tight iff there are no loose families for f of size κ.

☞ f is tight iff f is 2–tight.

This notion gets weaker as κ gets bigger. f is 1–tight iff f(X) is scattered,
so that “2–tight” is the first non-trivial case. f is trivially |X|+–tight. The usual
projection from [0, 1]2 onto [0, 1] is not 2ℵ0–tight.

Some easy equivalents to “κ–tight”:

Lemma 2.2 Assume that X, Y are compact and f : X → Y . Then (1) ↔ (2). If
κ is finite, then (1) ↔ (3); if also Y is metric, then all five of the following are
equivalent:

1. There is a loose family of size κ.

2. There is a disjoint family P of perfect subsets of X with |P| = κ and a perfect
Q ⊆ Y such that Q = f(P ) for all P ∈ P.
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3. There are distinct ai ∈ X for i < κ with all f(ai) = b ∈ Y such that whenever
Ui is a neighborhood of ai for i < κ,

⋂
i<κ f(Ui) is not scattered.

4. For some metric M and ϕ ∈ C(X, M), {y ∈ Y : |ϕ(f−1{y})| ≥ κ} is
uncountable.

5. Statement (4), with M = [0, 1].

Proof. (2) → (1) is obvious. Now, assume (1), and let P be a loose family of size
κ, with Q = f(P ) for P ∈ P. Let Q′ be a perfect subset of Q, and, for P ∈ P, let
P ′ be a closed subset of P ∩ f−1(Q′) such that f�P ′ : P ′ � Q′ is irreducible. Then
{P ′ : P ∈ P} satisfies (2).

From now on assume that κ is finite.
(3) → (1) and (5) → (4) are obvious.
For (1) → (3), use compactness of

∏
i Pi and the fact that a finite union of

scattered spaces is scattered.
For (1) → (5): If P = {Pi : i < κ} is a loose family, with Q = f(Pi), apply the

Tietze Theorem to get ϕ ∈ C(X, [0, 1]) such that ϕ(x) = 2−i for all x ∈ Pi.
Now, we prove (4) → (1) when Y is metric. Fix ϕ as in (4). We may assume

that M = ϕ(X), so that M is compact. Let B be a countable base for M . Then we
can find Bi ∈ B for i < κ such that the Bi are disjoint and such that Q := {y ∈ Y :
∀i < κ [ϕ(f−1{y}) ∩ Bi �= ∅]} is uncountable, and hence not scattered (since Y is
metric). Q is also closed. Let Pi = f−1(Q) ∩ ϕ−1(Bi). Then {Pi : i < κ} is a loose

family. K
Lemma 2.3 If X, Y are compact LOTSes and f : X → Y is order-preserving
(x1 < x2 → f(x1) ≤ f(x2)), then f is tight.

Proof. If not, we would have a0 < a1 and b as in (3) of Lemma 2.2. Let U0, U1

be open intervals in X with disjoint closures such that each ai ∈ Ui. But then

f(U0) ∩ f(U1) = {b}, a contradiction. K
In many cases, the loose family will be defined uniformly via a continuous

function, and we may replace the cardinal κ in Definition 2.1 by some compact
space K of size κ:

Definition 2.4 Assume that X, Y, K are compact spaces and f : X → Y . Then a
K–loose function for f is a ϕ : dom(ϕ) → K such that : dom(ϕ) is closed in X,
and for some non-scattered Q ⊆ Y , ϕ(f−1{y}) = K for all y ∈ Q.

Note that we then have a loose family P = {Pz : z ∈ K} of size |K|, where Pz =
f−1(Q)∩ϕ−1{z}. For finite n, we may view the ordinal n as a discrete topological
space, so an n–loose function is equivalent to a loose family P = {Pi : i < n}, since
ϕ can map Pi to i ∈ n. The same phenomenon holds for ℵ0, but seems harder to
prove:
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Theorem 2.5 If X, Y are compact and f : X → Y , then there is an infinite loose
family iff there is an (ω + 1)–loose function.

This will be proved in Section 7. Beyond ℵ0, there is no simple equivalence
between the cardinal version and the topological version of looseness. At 2ℵ0 , we
shall use the following terminology to avoid possible confusion between the Cantor
set 2ω and the cardinal c = 2ℵ0 :

Definition 2.6 Assume that X, Y are compact and f : X → Y .

☞ A strongly c–loose family for f is a K–loose function ϕ : dom(ϕ) → K,
where K is the Cantor set 2ω.

☞ f is weakly c–tight iff there is no strongly c–loose function for f .

In this paper, whenever we produce a loose family of size 2ℵ0 , it will usually
be strongly c–loose. However, if we view c + 1 as a compact ordinal and let X =
Y × (c+1), then assuming that Y is not scattered, the usual projection f : X � Y
has an obvious loose family of size c but no strongly c–loose family.

When X, Y are both metric, the κ-tightness of f is related to the sizes of the
sets f−1{y} by:

Theorem 2.7 If X, Y are compact metric and f : X → Y , then f is κ–tight iff
{y ∈ Y : |f−1{y}| ≥ κ} is countable. f is weakly c–tight iff f is c–tight.

In particular, if f : X � Y , then f is tight iff f−1{y} is a singleton for all but
countably many y, as we said in the Introduction.

For both “iff”s, the ← direction is trivial and is true for any X, Y . For κ = 3,
say, the proof of the → direction will show that if there are uncountably many
y ∈ Y such that f−1{y} contains three or more points, then for some perfect
Q ⊆ Y , we can, on Q, choose three of these points continuously, producing disjoint
perfect P0, P1, P2 ⊆ X which f maps homeomorphically onto Q, so {P0, P1, P2} is
a loose family of size 3.

Since X is second countable, each f−1{y} is either countable or of size 2ℵ0 , so
it is sufficient to prove the theorem for the cases κ ≤ ℵ0 and κ = 2ℵ0 . However, for
κ = 2ℵ0 , we can get more detailed results. For example, if there are uncountably
many y ∈ Y such that f−1{y} contains a Klein bottle, then we can choose the
bottle continuously on a perfect set (see Theorem 2.9). This “continuous selector”
result follows easily from standard descriptive set theory. First, observe:

Lemma 2.8 Suppose that g : Φ → Y , where Y is a Polish space, Φ is an analytic
subset of some Polish space, and g(Φ) is uncountable. Then there is a Cantor
subset C ⊆ Φ such that g is 1-1 on C.
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Proof. Let h : ωω � Φ, apply the classical argument of Suslin to obtain a Cantor

subset D ⊆ ωω such that g ◦ h is 1-1 on D, and let C = h(D). K

Theorem 2.9 Assume that X, Y, Z are compact metric, f : X → Y , and there
are uncountably many y ∈ Y such that f−1{y} contains a homeomorphic copy of
Z. Then there is a perfect Q ⊆ Y and a 1-1 map i : Q × Z → X such that
f(i(q, u)) = q for all (q, u) ∈ Q × Z.

Proof. Assume that Z �= ∅. Fix metrics dZ , dX on Z, X, and give C(Z, X) the
usual uniform metric, which makes it a Polish space. Let Φ be the set of all
ϕ ∈ C(Z, X) such that ϕ is 1-1 and ϕ(Z) ⊆ f−1{y} for some (unique) y ∈ Y .
Observe that Φ is an Fσδ set, since the “ϕ is 1-1” can be expressed as:

∀ε > 0 ∃δ > 0 ∀u, v ∈ Z [dZ(u, v) ≥ ε → dX(ϕ(u), ϕ(v)) ≥ δ] .

Define g : Φ → Y so that g(ϕ) is the y ∈ Y such that ϕ(Z) ⊆ f−1{y}. Using
Lemma 2.8, let C ⊆ Φ be a Cantor subset with g 1-1 on C, let Q = g(C), and let

i(g(ϕ), u) = ϕ(u). K
Proof of Theorem 2.7. To prove the → direction of the first “iff” in the three

cases κ < ℵ0, κ = ℵ0, and κ = c, apply Theorem 2.9 respectively with Z the space
κ (with the discrete topology), ω + 1, and 2ω. This also yields the → direction of

the second “iff”. K
Of course, we are using the fact that every uncountable metric compactum

contains a copy of the Cantor set. One could also prove Theorem 2.7 using the
following, plus the fact that every uncountable metric compactum maps onto [0, 1]:

Theorem 2.10 Assume that X, Y, K are compact metric with f : X → Y , and
assume that for uncountably many y ∈ Y , there is a closed subset of f−1{y} which
can be mapped onto K. Then there is a K–loose function for f .

Proof. Let H be the Hilbert cube, [0, 1]ω. We may assume that K ⊆ H . Then,
for uncountably many y ∈ Y , there is a ψ ∈ C(X, H) such that ψ(f−1{y}) ⊇ K.
Let Ψ = {(y, ψ) ∈ Y × C(X, H) : ψ(f−1{y}) ⊇ K}, and let g(y, ψ) = y. Applying
Lemma 2.8, let C ⊆ Ψ be a Cantor set on which g is 1-1, and let Q = g(C) ⊆ Y .
For (y, ψ) ∈ C, let Ey = {x ∈ X : ψ(x) ∈ K}. Define ϕ so that dom(ϕ) =

⋃{Ey :
y ∈ Q}, and ϕ(x) = ψ(x) whenever x ∈ dom(ϕ) and (y, ψ) ∈ C. Then ϕ is a

K–loose function. K
Theorems 2.7, 2.9, and 2.10 can fail when X is not metric; counter-examples

are provided by the double arrow space and some related spaces described by:
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Definition 2.11 I = [0, 1]. If S ⊆ (0, 1), then IS is the compact LOTS which
results by replacing each x ∈ S by a pair of neighboring points, x− < x+. The
double arrow space is I(0,1).

IS has no isolated points because 0, 1 /∈ S. The double arrow space is obtained
by splitting all points other than 0, 1. I∅ = I, and IQ∩(0,1) is homeomorphic to the
Cantor set.

Lemma 2.12 For each S ⊆ (0, 1), IS is a compact separable LOTS with no isolated
points. IS is second countable iff S is countable.

Now, let Y = [0, 1], let S ⊆ (0, 1), let X = IS and let f : X � Y be the natural
map. Then f is 2–tight by Lemma 2.3, but S = {y ∈ Y : |f−1{y}| ≥ 2} need not
be countable, so Theorems 2.7, 2.9, and 2.10 fail here when S is uncountable (and
hence X is not metric). However, one can apply these theorems in some generic
extension, to get a (perhaps strange) alternate proof that f is 2–tight. Roughly,
if V [G] makes S countable, then X, Y will both be compact metric in V [G], so
Theorem 2.7 implies that f is 2–tight in V [G] (because S is countable); but then
by absoluteness, f is 2–tight in V . Absoluteness of tightness is discussed more
precisely in Section 7.

The composition properties of tight maps are given by:

Lemma 2.13 Assume that X, Y, Z are compact, m, n are finite, f : X � Y , and
g : Y � Z. Then:

1. If g ◦ f is n–tight then g is n–tight.

2. If f and g are tight, then g ◦ f is tight.

3. If f is m + 1–tight and g is n + 1–tight, then g ◦ f is mn + 1–tight.

Proof. (1) is trivial, and (2) is a special case of (3).
For (3), assume that f is m+1–tight, g is n+1–tight, and g ◦ f is not mn+1–

tight; we shall derive a contradiction. Fix disjoint closed P0, P1, . . . , Pmn ⊆ X with
g(f(P0))∩ g(f(P1))∩ · · · ∩ g(f(Pmn)) not scattered. Shrinking X, Y, Z, and the Pi,
we may assume WLOG that X = P0 ∪ P1 ∪ · · · ∪ Pmn and that g(f(Pi)) = Z for
each i. For each s ⊆ {0, 1, . . . , mn}, let Qs =

⋂
i∈s f(Pi). Shrinking the Pi, we may

assume WLOG that each Qs ⊆ Y is either empty or not scattered; to see this, for
a fixed s: If Qs is scattered, then so is g(Qs); if R is a perfect subset of Z\g(Qs),
then we may replace Z by R and each Pi by Pi ∩ f−1(g−1(R)).

Now, using compactness of P0×P1×· · ·×Pmn, as in the proof of Lemma 2.2, fix
ai ∈ Pi for i ≤ mn such that g(f(U0)) ∩ · · · ∩ g(f(Umn)) is not scattered whenever
each Ui is a neighborhood of ai. Then at least one of the following two cases holds:
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Case I. Some n + 1 of the f(a0), . . . , f(amn) are different. WLOG, these are
f(a0), f(a1), . . . , f(an). Choose the Ui so that the f(U0), f(U1), . . . , f(Un) are all
disjoint. But then g(f(U0)) ∩ · · · ∩ g(f(Un)) ⊇ g(f(U0)) ∩ · · · ∩ g(f(Umn)) is not
scattered, contradicting the n + 1–tightness of g.

Case II. Some m + 1 of the f(a0), . . . , f(amn) are the same. WLOG, f(a0) =
f(a1) = · · · = f(am). Let s = {0, 1, . . . , m}. Then Qs �= ∅, so Qs =

⋂
i≤m f(Pi) is

not scattered, contradicting the m + 1–tightness of f . K
The “mn + 1” in (3) cannot be reduced; for example, let Y = Z × n and

X = Y × m, with f, g the natural projection maps.
There is a similar result, with a similar proof, involving products:

Lemma 2.14 Assume that for i = 0, 1: Xi, Yi are compact, fi : Xi → Yi is
(mi + 1)–tight, mi ≤ ni < ω, and |f−1

i {y}| ≤ ni for all y ∈ Yi. Then f0 × f1 :
X0 × X1 → Y0 × Y1 is (max(m0n1, m1n0) + 1)– tight.

Proof. Let L = max(m0n1, m1n0), and let f = f0 × f1. In view of Lemma 2.2,
it is sufficient to fix any L + 1 distinct points a0, a1, . . . , aL ∈ X0 × X1 with all
f(aα) = b ∈ Y0 × Y1, and show that one can find neighborhoods Uα of aα for
α = 0, 1, . . . , L such that

⋂
α f(Uα) is scattered.

Let b = (b0, b1) and aα = (aα
0 , aα

1 ).
Note that although the aα are all distinct points, the aα

0 need not be all different
and the aα

1 need not be all different. However, |{aα
0 : 0 ≤ α ≤ L}| ≥ m0 + 1: If

not, then using f(aα) = b and |f−1
1 {b1}| ≤ n1, we would have L + 1 ≤ m0n1, a

contradiction. Likewise, |{aα
1 : 0 ≤ α ≤ L}| ≥ m1 + 1.

Now, using Lemma 2.2 and the fact that each fi : Xi → Yi is (mi + 1)–tight,
choose neighborhoods Uα

i of aα
i such that

⋂
α f(Uα

i ) is scattered for i = 0, 1. The

Uα
i can depend just on the value of aα

i (that is aα
i = aβ

i → Uα
i = Uβ

i ). Finally, let

Uα = Uα
0 × Uα

1 K
The bound on the |f−1

i {y}| cannot be removed here. For example, for each car-
dinal κ, one can find compact perfect LOTSes X0, X1, Y0, Y1 with order-preserving
fi : Xi � Yi such that all point inverses have size at least κ. Then the fi are tight
by Lemma 2.3, but f0 × f1 is not κ–tight.

A variant of the product of maps is much simpler to analyze:

Lemma 2.15 Assume that � ∈ ω and fi : X → Yi is κ–tight for each i < �, where
X and the Yi are compact. Then the map x �→ (f0(x), . . . , f�−1(x)) from X to∏

i<� Yi is also κ–tight.

We now consider the opposite of tight maps:
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Definition 2.16 If X, Y are compact and f : X → Y , then f is nowhere tight
iff f(X) is not scattered and there is no closed P ⊆ X such that f�P is tight and
f(P ) is not scattered.

Note also that if X, Y are metric compacta with f : X � Y and Y not scattered,
then there is a Cantor set P ⊆ X such that f�P is 1-1, so

Lemma 2.17 If X, Y are compact and f : X → Y is nowhere tight, then X is not
second countable.

A further limitation on nowhere tight maps:

Lemma 2.18 If f : X → Y is nowhere tight, then f is not weakly c–tight.

Proof. We shall get a non-scattered Q ⊆ Y and disjoint non-scattered sets P k ⊆ X
for k ∈ 2ω so that each f(P k) = Q. We shall build the P k and Q by a tree
argument. Each P k will be non-scattered because it will be formed using a Cantor
tree of closed sets, so we shall actually get a doubly indexed family. So, we build
Qs ⊆ Y for s ∈ 2<ω and P t

s ⊆ X for s, t ∈ 2<ω with lh(s) = lh(t) satisfying:

1. P t
s is closed, f(P t

s) = Qs, and Qs is not scattered.

2. The sets Qs�0, Qs�1 are disjoint subsets of Qs.

3. The sets P t�0
s�0 , P t�1

s�0 , P t�0
s�1 , P t�1

s�1 are disjoint subsets of P t
s .

We construct these inductively. P �

�
and Q� exist (where � is the empty sequence)

because f(X) is not scattered. Now, say we have Qs and P t
s for all s, t with

lh(s) = lh(t) = n. Fix s.

First, get disjoint closed non-scattered Q̃s�0, Q̃s�1 ⊆ Qs, and let P̃ t
s�μ = P t

s ∩
f−1(Q̃s�μ) for each t of length n and each μ = 0, 1. Then, use “nowhere tight”

2n times to get Qs�μ ⊆ Q̃s�μ and P t�ν
s�μ ⊆ P̃ t

s�μ for each μ, ν = 0, 1 and each t of
length n so that each f(P t�ν

s�μ) = Qs�μ and each Qs�μ is non-scattered.

For h, k ∈ 2ω, define Qh =
⋂

n∈ω Qh�n and P k
h =

⋂
n∈ω P k�n

h�n , let Q =
⋃{Qh :

h ∈ 2ω}, and let Ph =
⋃{P k

h : k ∈ 2ω} and P k =
⋃{P k

h : h ∈ 2ω}. Then
f(Ph) = Qh and f(P k) = Q, and the ϕ of Definition 2.6 sends P k to k ∈ 2ω, with

dom(ϕ) =
⋃

k Pk. K

Corollary 2.19 If X, Y are compact, f : X � Y , w(X) < c, Y is metric and not
scattered, and f is weakly c–tight, then X has a Cantor subset.
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Proof. Since f is not nowhere tight, we may assume, shrinking X and Y , that
f is tight. Let κ = w(X), and let B be a base for X with |B| = κ. Whenever
B0, B1 ∈ B with B0 ∩ B1 = ∅, let S(B0, B1) = f(B0) ∩ f(B1). Each S(B0, B1) is
scattered, and hence countable, so at most κ points of Y are in some S(B0, B1),
so there is a K ⊆ Y homeomorphic to the Cantor set with K is disjoint from all

S(B0, B1). |f−1{y}| = 1 for all y ∈ K, so f−1(K) is homeomorphic to K. K
Note that we have not yet given any examples of nowhere tight maps. The

argument of Corollary 2.19 shows that one class of examples is given by:

Example 2.20 If X, Y are compact, f : X � Y , w(X) < c, Y is metric and not
scattered, and X has no Cantor subset, then f is nowhere tight.

Of course, under CH, this class of examples is empty. More generally, the class
is empty under MA (or just the assumption that R is not the union of < c meager
sets), since then every non-scattered compactum of weight less than c contains a
Cantor subset (see [12]). However, by Dow and Fremlin [5], it is consistent to have
a non-scattered compactum X of weight ℵ1 < c with no convergent ω–sequences,
and hence with no Cantor subsets; in the ground model, CH holds, and X is any
compact F-space (so w(X) can be ℵ1); then, the extension adds any number of
random reals.

A class of ZFC examples of nowhere tight maps with w(X) = c is given by:

Example 2.21 If X, Y are compact, f : X � Y , X is a compact F–space and Y
is metric and not scattered, then f is nowhere tight.

Proof. Here, it is sufficient to prove that f is not tight, since any f�P : P � f(P )
will have the same properties. Also, shrinking Y , we may assume that Y has no
isolated points.

First, choose a perfect Q ⊆ Y which is nowhere dense in Y . Then, choose a
discrete set D = {dn : n ∈ ω} ⊆ Y \Q with D = D ∪ Q and each f−1{dn} not
a singleton. Then, choose xn, zn ∈ f−1{dn} with xn �= zn. Now, since X is an
F–space, cl{xn : n ∈ ω} and cl{zn : n ∈ ω} are two disjoint copies of βN in X

which map onto D. K

3 Dissipated Spaces

Only a scattered compactum X has the property that all maps from X are tight:
If X is not scattered, then X maps onto [0, 1]2; if we follow that map by the usual
projection onto [0, 1], we get a map from X onto [0, 1] which is not even weakly
c–tight.
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The dissipated compacta have the property that unboundedly many maps onto
metric compacta are tight:

Definition 3.1 Assume that X, Y, Z are compact, f : X → Y , and g : X → Z.
Then f ≤ g, or f is finer than g, iff there is a Γ ∈ C(f(X), g(X)) such that
g = Γ ◦ f .

Lemma 3.2 Assume that X, Y, Z are compact, f : X → Y , and g : X → Z. Then
f ≤ g iff ∀x1, x2 ∈ X [f(x1) = f(x2) → g(x1) = g(x2)].

Proof. For ←, let Γ = {(f(x), g(x)) : x ∈ X} ⊆ f(X) × g(X). K
Definition 3.3 X is κ–dissipated iff X is compact and whenever g : X → Z, with
Z metric, there is a finer κ–tight f : X → Y for some metric Y . X is dissipated
iff X is 2–dissipated. X is weakly c–dissipated iff X is compact and whenever
g : X → Z, with Z metric, there is a finer weakly c–tight f : X → Y for some
metric Y .

So, the 1–dissipated compacta are the scattered compacta. Metric compacta are
trivially dissipated because we can take Y = X, with f the identity map. Besides
the spaces from [7, 11, 12], an easy example of a dissipated space is given by:

Lemma 3.4 If X is a compact LOTS, then X is dissipated

Proof. Fix g, Z as in Definition 3.3. On X, use [x1, x2] for the closed interval
[min(x1, x2), max(x1, x2)], and define x1 ∼ x2 iff g is constant on [x1, x2]. Then ∼
is a closed equivalence relation, so define Y = X/∼ with f : X � Y the natural
projection. Then Y is a LOTS and f is order-preserving, so f is tight by Lemma
2.3, and f ≤ g by Lemma 3.2. To see that Y is metrizable, fix a metric on Z, and

then, on Y , define d(f(x1), f(x2)) = diam(g([x1, x2])). K
By Corollary 2.19, if w(X) < c and X is c–dissipated and not scattered, then

X has a Cantor subset, while the double arrow space is an example of an X with
w(X) = c which is 2–dissipated and has no Cantor subset.

Note that just having one tight map g from X onto some metric compactum Z
is not sufficient to prove that X is dissipated, since the tightness of g says nothing
at all about the complexity of a particular g−1{z}. Trivial counter-examples are
obtained with |Z| = 1 and g a constant map. However, if all g−1{z} are scattered,
then just one tight g is enough:

Lemma 3.5 Suppose that g : X → Z is κ–tight and all g−1{z} are scattered. Fix
f : X → Y with f ≤ g. Then f is κ–tight. In particular, if Z is also metric, then
X is κ–dissipated.
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Proof. Fix Γ ∈ C(f(X), g(X)) such that g = Γ ◦ f . Suppose that P were a
loose family for f of size κ; then we have Q ⊆ f(X) with Q = f(P ) for all
P ∈ P, and Q is not scattered. But Γ(Q) is scattered, since g is κ–tight and
g(P ) = Γ(f(P )) = Γ(Q) for all P ∈ P. It follows that we can fix z ∈ Z with
Q∩Γ−1{z} not scattered. But then f(g−1{z}) = Γ−1{z} is not scattered, which is

impossible, since g−1{z} is scattered. K
We next consider the degree of dissipation of products:

Lemma 3.6 Let X = A × B, where A, B are compact, B is not scattered, and
assume that for each ϕ ∈ C(A, [0, 1]ω) there is a z ∈ [0, 1]ω with |ϕ−1{z}| ≥ κ.
Then X is not κ–dissipated. If for each ϕ ∈ C(A, [0, 1]ω) there is a z such that
ϕ−1{z} is not scattered, then X is not weakly c–dissipated.

Proof. Since B is not scattered, fix h : B � [0, 1], and define g : X � [0, 1] by
g(a, b) = h(b). Now, fix any f : X → Y with f finer than g and Y metric. We
shall show that f is not κ–tight.

Define f̂ : A → C(B, Y ) by (f̂(a))(b) = f(a, b). Since the range of f̂ is compact
and hence embeddable in the Hilbert cube, we can fix ζ ∈ C(B, Y ) such that

E := {a : f̂(a) = ζ} has size at least κ. Let Q = ζ(B); |Q| = c by f ≤ g, so Q is
not scattered. For a ∈ E, let Pa = {a} × B. Then {Pa : a ∈ E} is a loose family
of size at least κ.

The second assertion is proved similarly. K
Note that A might be scattered; for example, A could be the ordinal κ + 1 (if

κ is uncountable and regular) or the one point compactification of a discrete space
of size κ (if κ is uncountable). B may be second countable; for example B can be
the Cantor set.

A class of spaces A to which Lemma 3.6 applies is produced by:

Lemma 3.7 Suppose that f :
∏

α<κ Xα → M , where M is compact metric and,
for each α, Xα is compact and not metrizable. Then there are two-element sets
Eα ⊆ Xα for each α such that f is constant on

∏
α<κ Eα.

Proof. For p ∈ ∏
α<δ Xα, define f̂p :

∏
α≥δ Xα → M by: f̂p(q) = f(p
q). Then

inductively choose Eα so that for all δ ≤ κ, the functions f̂p are the same for all p ∈∏
α<δ Eα. Say δ < κ and we have chosen Eα for α < δ. Let g = f̂p for some (any)

p ∈ ∏
α<δ Eα, and define g∗ ∈ C(Xδ, C(

∏
α>δ Xα, M)) by: (g∗(x))(q) = g(x
q).

Then g∗ maps Xδ into a metric space of functions, so ran(g∗) is a compact metric

space, so g∗ cannot be 1-1, so choose Eδ of size 2 with g∗ constant on Eδ. K
Theorem 3.8 Assume that each Xk is compact:
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1. If Xn is not scattered and Xk, for k < n, is not metrizable, then
∏

k≤n Xk is
not 2n–dissipated.

2. If each Xk is not metrizable, then
∏

k<ω Xk is not weakly c–dissipated.

Proof. For (1), apply Lemma 3.6 with A =
∏

k<n Xk and B = Xn. For (2), apply

Lemma 3.6 with A =
∏

k<ω X2k and B =
∏

k<ω X2k+1 . K
In (1), if all Xk are scattered, then

∏
k≤n Xk is scattered and hence dissipated.

As an example of (1) applied to LOTSes, if S ⊆ (0, 1) is uncountable, then (IS)2

is not dissipated (2–dissipated), (IS)3 is not 4–dissipated, and (IS)4 is not 8–
dissipated. By Theorem 3.9, these three spaces are, respectively, 3–dissipated,
5–dissipated, and 9–dissipated. However, Lemma 3.6 shows that for any κ, we can
find a product of two LOTSes which is not κ–dissipated.

The following theorem will often suffice to compute the degree of dissipation of
a finite product of separable LOTSes:

Theorem 3.9 Assume that n is finite and Xi, for i ≤ n, is a compact separable
LOTS. Then

∏
i≤n Xi is (2n + 1)–dissipated. Furthermore, if all the Xi are not

scattered, and at most one of the Xi is second countable, then
∏

i≤n Xi is not (2n)–
dissipated.

Proof. Let Di ⊆ Xi be countable and dense. Choose fi ∈ C(Xi, [0, 1]) such that
fi is order-preserving and is 1-1 on Di (such a function fi exists; see the proof of
Lemma 3.6 in [10]). Note that each |f−1

i {y}| ≤ 2, and, by Lemma 2.3, each fi

is 2–tight. Applying Lemma 2.14 and induction,
∏

i≤n fi is (2n + 1)–tight. Then∏
i≤n Xi is (2n + 1)–dissipated by Lemma 3.5.

The “furthermore” is by Theorem 3.8. K
Next, we note that “dissipated” is a local property:

Definition 3.10 Let K be a class of compact spaces. K is closed-hereditary iff
every closed subspace of a space in K is also in K. K is local iff K is closed-
hereditary and for every compact X: if X is covered by open sets whose closures
lie in K, then X ∈ K.

Classes of compacta which restrict cardinal functions (first countable, second
countable, countable tightness, etc.) are clearly local, whereas the class of compacta
which are homeomorphic to a LOTS is closed-hereditary, but not local. To prove
that “dissipated” is local, we use as a preliminary lemma:

Lemma 3.11 Let X be an arbitrary compact space, with K ⊆ U ⊆ X, such that U
is open, K is closed, and U is κ–dissipated. Fix g : U → Z, with Z compact metric.
Then there is an f : X → Y , with Y compact metric, f κ–tight, and f�K ≤ g�K.
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Proof. Fix ϕ : X → [0, 1] with ϕ(K) = {0} and ϕ(∂U) = {1}. First get
f0 : U → Y0, with Y0 compact metric, f0 κ–tight, f0 ≤ g, and f0 ≤ ϕ�U (just let f0

refine x �→ (g(x), ϕ(x))). Then f0(K) ∩ f0(∂U) = ∅. Let Y = Y0/f0(∂U), obtained
by collapsing f0(∂U) to a point, p. Let f1 : U → Y be the natural map, and extend

f1 to f : X → Y by letting f1(X\U) = {p}. K
Lemma 3.12 For any κ, the class of κ–dissipated compacta is a local class.

Proof. For closed-hereditary: Assume that X is κ–dissipated and K is closed in
X. Fix g : K → Z, with Z metric. Then we may assume that Z ⊆ Iω, so that g
extends to some g̃ : X → Iω. Then there is a κ–tight f̃ : X → Y for some metric
Y , with f̃ ≤ g̃. If f = f̃�K, then f is κ–tight and f ≤ g.

For local: Assume that X =
⋃

i<� Ui, where each Ui is open and Ui is κ–
dissipated. Fix g : X → Z, with Z metric. Choose closed Ki ⊆ Ui such that
X =

⋃
i<� Ki. Then apply Lemma 3.11 and choose fi : X → Yi, with Yi compact

metric, fi κ–tight, and fi�Ki ≤ g�Ki. Then the map x �→ (f0(x), . . . , f�−1(x))

refines g, and is κ–tight by Lemma 2.15. K
Many classes of compacta are closed under continuous images, but this is not

true in general of the class of κ–dissipated spaces:

Example 3.13 There is a continuous image of a 3–dissipated space which is not
c–dissipated.

Proof. Let T = (D(c) ∪ {∞}) × 2ω, where D(c) ∪ {∞} is the 1-point compacti-
fication of the ordinal c with the discrete topology. Then T is not c–dissipated by
Lemma 3.6. Let Fα, for α < c, be disjoint Cantor subsets of 2ω such that for some
g : 2ω � 2ω, each g(Fα) = 2ω. Let X = {∞}× 2ω ∪ ⋃

α<c({α}×Fα) ⊆ T . Then
X is 3–dissipated by Lemma 3.5 because the natural projection onto 2ω is 3–tight
and all point inverses are scattered (of size ≤ 2). But also, T is a continuous image

of X via the map �× g, (u, z) �→ (u, g(z)). K
Of course, the continuous image of a 1–dissipated (= scattered) compactum

is 1–dissipated. We do not know about the dissipated (= 2–dissipated) spaces;
perhaps 2 is a special case.

4 LOTS Dimension

We shall apply the results of Section 3 to products of LOTSes. Each In has
dimension n under any standard notion of topological dimension, so that In+1 is
not embeddable into In. Now, say we wish to prove such a result replacing I by
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some totally disconnected LOTS X. Then standard dimension theory gives all Xn

dimension 0. Furthermore, the result is false; for example, Xn+1 ∼= Xn if X is the
Cantor set. However, if X is the double arrow space, then Xn+1 is not embeddable
into Xn. To study this further, we introduce a notion of LOTS dimension:

Definition 4.1 If X is any Tychonov space, then Ldim0(X) is the least κ such that
X is embeddable into a product of the form

∏
α<κ Lα, where each Lα is a LOTS.

Then Ldim(X), the LOTS dimension of X, is the least κ such that every point in
X has a neighborhood U such that Ldim0(U) ≤ κ.

Lemma 4.2 The class of compacta X such that Ldim(X) ≤ κ is a local class.

If X is any compact n–manifold, then Ldim(X) = n < Ldim0(X). We fol-
low the usual convention that the empty product

∏
α<0 Lα is a singleton, so that

Ldim(X) = 0 iff X is finite, although Ldim0(X) = 1 if 1 < |X| < ℵ0.

Lemma 4.3 If X is compact, infinite, and totally disconnected, then Ldim(X) =
Ldim0(X).

Proof. Use the fact that a disjoint sum of LOTSes is a LOTS.K
By Tychonov, Ldim(X) ≤ w(X), taking each Lα = I. In this section, we focus

mainly on spaces whose LOTS dimension is finite, although this cardinal function
might be of interest for other spaces. For example, Ldim(βN) = 2ℵ0 ; this is easily
proved using the theorem of Posṕı̌sil that there are points in βN of character 2ℵ0.
We shall show (Lemma 4.5) that Ldim((IS)n) = n whenever S is uncountable.
When S is countable, this is false if S is dense in I (then (IS)n ∼= IS is the Cantor
set) and true if S is not dense in I (by standard dimension theory; not by the
results of this paper). More generally, we shall prove:

Theorem 4.4 Let Zj, for 1 ≤ j ≤ s, be a compact LOTS. Assume that s = r+m,
where r, m ≥ 0. For r + 1 ≤ j ≤ s, assume that Zj has either has an increasing or
decreasing ω1–sequence. For 1 ≤ j ≤ r, assume that there is a countable Dj ⊆ Zj

such that Dj is not scattered, and assume that at most one of the Dj is second
countable. Then Ldim(

∏s
j=1 Zj) = s.

The following lemma handles the case r = s, m = 0 if we replace each Zj by
Lj = Dj.

Lemma 4.5 Assume that n is finite and Lj, for j < n, is a compact separable
LOTS. Also, assume that all the Lj are not scattered, and that at most one of the
Lj is second countable. Then Ldim(

∏
j<n Lj) = n.
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Proof. This is trivial if n ≤ 1, so assume that n ≥ 2. Clearly, Ldim(
∏

j<n Lj) ≤
Ldim0(

∏
j<n Lj) ≤ n. Also, by Theorem 3.9,

∏
j<n Lj is not 2n−1–dissipated.

To see that Ldim0(
∏

j<n Lj) ≥ n, assume that we could embed
∏

j<n Lj into∏
i<(n−1) Xi, where each Xi is a LOTS. Since the continuous image of a compact

separable space is compact and separable, we may assume that each Xi is com-
pact and separable, so that

∏
i<(n−1) Xi and

∏
j<n Lj , are (2n−2 + 1)–dissipated by

Theorem 3.9, a contradiction since 2n−2 + 1 ≤ 2n−1.
Now, assume that Ldim(

∏
j<n Lj) < n. Then we could cover

∏
j<n Lj by finitely

many open boxes, each of the form
∏

j<n Uj , with each Uj an open interval in Lj ,

such that each open box satisfies Ldim0(
∏

j<n Uj) < n. But for at least one of

these open boxes, the Uj would satisfy all the same hypotheses satisfied by the Lj ,

so that we would again have a contradiction. K
In particular, if L is the double arrow space, then Ln+1 is not embeddable into

Ln. Similar results were obtained by Burke and Lutzer [2] and Burke and Moore
[3] for the Sorgenfrey line J , which may be viewed as {z+ : z ∈ (0, 1)} ⊆ L. We do
not see how to derive our results directly from [2, 3], since a map ϕ : Ln+1 → Ln

need not preserve order, so it does not directly yield a map from Jn+1 to Jn.
We now extend Lemma 4.5 to include LOTSes which have an increasing or

decreasing ω1–sequence. First some preliminaries:

Definition 4.6 [A]n↑ = {(α1, . . . , αn) ∈ An : α1 < · · · < αn}, where 1 ≤ n < ω
and A ⊆ ω1. We give [A]n↑ the topology it inherits from (ω1)

n. The club filter Fn

on [ω1]
n↑ is generated by all the [C]n↑ such that C is club in ω1. In is the dual ideal

to Fn.

Lemma 4.7 If B ⊆ [ω1]
n↑ is a Borel set, then B ∈ Fn or B ∈ In.

Proof. Since the In and Fn are countably complete, it is sufficient to prove this
for closed sets K. The case n = 1 is obvious, so we proceed by induction. We
assume the lemma for n, fix a closed K ⊆ [ω1]

(n+1)↑, and show that K ∈ Fn+1 or
K ∈ In+1. Applying the lemma for n: For each α0 < ω1, choose ν(α0) ∈ {0, 1} and
a club Cα0 ⊆ (α0, ω1) such that for all (α1, . . . , αn) ∈ [Cα0 ]

n↑:

ν(α0) = 0 → (α0, α1, . . . , αn) /∈ K ; ν(α0) = 1 → (α0, α1, . . . , αn) ∈ K (∗)

Let C = {δ : δ ∈ ⋂{Cα0 : α0 < δ}}. Then C is club and (∗) holds for all
(α0, α1, . . . , αn) ∈ [C](n+1)↑. Also, D := {α0 ∈ C : ν(α0) = 1} is closed because K
is closed. [D](n+1)↑ ⊆ K, so if D is club, then K ∈ Fn+1. If D is bounded, then

C\D contains a club, and then K ∈ In+1. K
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Definition 4.8 If L is a LOTS, f ∈ C([ω1]
m↑, L), and ψ ∈ C([ω1]

n↑, L), then ψ
is derived from f iff n ≥ m and for some i1, . . . im: 1 ≤ i1 < · · · < im ≤ n and
ψ(α1, . . . , αn) = f(αi1, . . . , αim) for all (α1, . . . , αn) ∈ [ω1]

n↑. Then a set E ⊆ [ω1]
n↑

is derived from f iff E is of the form {�α : ψ1(�α) < ψ2(�α)} or {�α : ψ1(�α) ≤ ψ2(�α)}
or {�α : ψ1(�α) = ψ2(�α)}, where ψ1, ψ2 are derived from f .

Lemma 4.9 Suppose that f ∈ C([ω1]
m↑, L), where L is a compact LOTS. Then

there is a club C, a continuous g : C → L, and a j ∈ {1, 2, . . .m}, such that for all
�α = (α1, . . . , αm) ∈ [C]m↑, we have f(�α) = g(αj), and g is either strictly increasing
or strictly decreasing or constant.

Proof. Applying Lemma 4.7, and then restricting everything to a club, we may
make the following homogeneity assumption: for all n ≥ m and all E ⊆ [ω1]

n↑

which are derived from f , either E = ∅ or E = [ω1]
n↑. Then, our club C will be all

of ω1. We first consider the special cases m = 1 and m = 2.
For m = 1, we have f ∈ C(ω1, L). Applying homogeneity to the three derived

sets {(α, β) ∈ [ω1]
2↑ : f(α) � f(β)}, where � is one of <, >, and =, we see that f

is either strictly increasing or strictly decreasing or constant.
Likewise, for m > 1, if we succeed in getting f(�α) = g(αj), then g must be

either strictly increasing or strictly decreasing or constant.
Next, fix f ∈ C([ω1]

2↑, L). If α < β < γ → f(α, β) = f(α, γ), then f(α, β) =
g(α), and we are done, so WLOG, assume α < β < γ → f(α, β) < f(α, γ). Let
Bα = {f(α, β) : α < β < ω1}, which is a subset of L of order type ω1. Let
h(α) = sup(Bα). Fix α < α′ < ω1. There are now three cases; Cases II and III will
lead to contradictions:

Case I. h(α) = h(α′): By continuity of f , there is a club C ⊆ (α′, ω1) such that
f(α, β) = f(α′, β) for all β ∈ C. Applying homogeneity, we have α < α′ < β →
f(α, β) = f(α′, β), so f(α, β) = g(β).

Case II. h(α) < h(α′): Fix β such that α < α′ < β and f(α′, β) > f(α, γ)
for all γ. Then by homogeneity, α < α′ < β < γ → f(α, γ) < f(α′, β) for
all α, α′, β, γ. Let α′ be a limit and consider α ↗ α′: we get, by continuity,
α′ < β < γ → f(α′, γ) ≤ f(α′, β), contradicting α < β < γ → f(α, β) < f(α, γ).

Case III. h(α) > h(α′): Fix β such that α < α′ < β and f(α, β) > f(α′, γ)
for all γ. Then by homogeneity, α < α′ < β < γ → f(α′, γ) < f(α, β) for all
α, α′, β, γ. Letting α ↗ α′, we get a contradiction as in Case II.

Finally, fix m ≥ 2 and assume that the lemma holds for m. We shall prove it
for m + 1, so fix f ∈ C([ω1]

(m+1)↑, L). Temporarily fix (α1, . . . , αm−1) ∈ [ω1]
(m−1)↑,

and let f̃(αm, αm+1) = f(α1, . . . , αm−1, αm, αm+1); so f̃ ∈ C([ (αm−1, ω1) ]2↑, L).

Applying the m = 2 case, f̃ is really just a function of one of its arguments, so that
f just depends on an m–tuple (either (α1, . . . , αm−1, αm+1) or (α1, . . . , αm−1, αm)),

so we may now apply the lemma for m. K
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It is easy to see from this lemma that Ldim((ω1 + 1)m) = m, but we now want
to consider products of (ω1 + 1)m with separable LOTSes.

Lemma 4.10 Suppose that f ∈ C(X × [ω1]
m↑, L), where L is a compact LOTS

and X is compact, nonempty, first countable, and separable. Then there is a club
C ⊆ ω1, a nonempty open U ⊆ X, a g ∈ C(U ×C, L), and a j ∈ {1, 2, . . .m} such
that f(x, �α) = g(x, αj) for all �α = (α1, . . . , αm) ∈ [C]m↑ and all x ∈ U , and such
that either

1. for all x ∈ U , the map �α �→ f(x, �α) is constant on [C]m↑ or

2. for all x ∈ U , the map ξ �→ g(x, ξ) is strictly increasing on C, or

3. for all x ∈ U , the map ξ �→ g(x, ξ) is strictly decreasing on C.

Proof. First, let K be the set of all x such that �α �→ f(x, �α) is constant on some
set in Fm. Then K is closed, since X is first countable, so, replacing X by some
U , we may assume that K = X or K = ∅. If K = X, then intersecting the clubs
for x in a countable dense set, we get one club C such that (1) holds.

Now, assume that K = ∅. Applying Lemma 4.9, for each x ∈ X choose a club
Cx, a gx ∈ C(Cx, L), and jx ∈ {1, 2, . . .m} and a μx ∈ {−1, 1} such that for all
�α = (α1, . . . , αm) ∈ [Cx]

m↑, we have f(x, �α) = gx(αjx), and each gx is either strictly
increasing (when μx = 1) or strictly decreasing (when μx = −1).

For each j, μ, let Hμ
j = {x : jx = j & μx = μ}. Then the Hμ

j are disjoint, and
they are also closed (since K = ∅). Since

⋃
j,μ Hμ

j = X, U can be any nonempty

Hμ
j . K

In situations (2) or (3), we shall apply:

Lemma 4.11 Suppose that g ∈ C(X × (ω1 + 1), L), where L is a compact LOTS
and X is compact, and suppose that g(x, ξ) < g(x, η) for each x ∈ X and each
ξ < η < ω1. Let h(x) = g(x, ω1). Then h(X) is finite.

Proof. Assume that h(X) is infinite. Then, choose cn ∈ X for n ∈ ω such that
the sequence 〈h(cn) : n ∈ ω〉 is either increasing strictly or decreasing strictly. Let
c ∈ X be any limit point of 〈cn : n ∈ ω〉, and note that h(cn) → h(c). Also note
that h(x) = sup{g(x, ξ) : ξ < ω1} for every x. Consider the two cases:

Case I. 〈h(cn) : n ∈ ω〉 is increasing strictly. Then we can fix a large enough
countable γ such that g(cn, ω1) < g(cn+1, γ) for all n. Then we have the ω–sequence,
g(c0, γ) < g(c0, ω1) < g(c1, γ) < g(c1, ω1) < g(c2, γ) < g(c2, ω1) < · · · , whose limit
must be g(c, γ) = g(c, ω1), contradicting g(c, γ) < g(c, ω1),

Case II. 〈h(cn) : n ∈ ω〉 is decreasing strictly. Then we can fix a large enough
countable γ such that g(cn, γ) > g(cn+1, ω1) for all n. Then we have the ω–sequence,
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g(c0, ω1) > g(c0, γ) > g(c1, ω1) > g(c1, γ) > g(c2, ω1) > g(c2, γ) > · · · , whose limit

must be g(c, ω1) = g(c, γ), contradicting g(c, ω1) > g(c, γ),K
Now if h(X) is finite, we can always shrink X to a U on which h is constant.

Then note that if h(b) = h(c) and ξ �→ g(x, ξ) is always an increasing function, then
there is a club on which g(b, ξ) = g(c, ξ). Putting these last two lemmas together,
we get:

Lemma 4.12 Suppose that f ∈ C(X × (ω1 +1)m, L), where L is a compact LOTS
and X is compact, nonempty, first countable, and separable. Then there is a club
C ⊆ ω1 and a nonempty open U ⊆ X such that either:

1. For some j ∈ {1, 2, . . .m} and some continuous g : C → L: f(x, �α) = g(αj)
for all x ∈ U and all �α ∈ [C]m↑ and g is either strictly increasing or strictly
decreasing, or

2. For some h ∈ C(U, L): f(x, �α) = h(x) for all x ∈ U and all �α ∈ [C]m↑.

Lemma 4.13 Assume that X is compact, perfect, first countable, and separable,
and Ldim(X × (ω1 + 1)m) ≤ n. Then n > m and there is a nonempty open U ⊆ X
such that Ldim0(U) ≤ n − m.

Proof. First, restricting everything to the closure of an open box, we may assume
that Ldim0(X × (ω1 + 1)m) ≤ n.

Fix a continuous 1-1 f : X × (ω1 +1)m → ∏n
r=1 Lr, where each Lr is a compact

LOTS. Applying Lemma 4.12 to the projections, fr : X × (ω1 + 1)m → Lr, and
permuting the Lr, we obtain a club C and a U such that on U × [C]m↑:

f(x, �α) = (g1(αj1), . . . , gp(αjp), h1(x), . . . , hq(x)) ,

where p + q = n. Then {j1, . . . , jp} = {1, . . . , m}, since f is 1-1. Thus, p ≥ m, so
q ≤ n − m, and for any fixed �α, the map x �→ (h1(x), . . . , hq(x)) embeds U into∏q

i=1 Lp+i. K
Proof of Theorem 4.4. Let n = Ldim(

∏s
j=1 Zj). Clearly n ≤ s. To prove that

n ≥ s, we may replace each Zj by a closed subset and assume that Zj = ω1+1 when
r + 1 ≤ j ≤ s, while Zj = Dj when 1 ≤ j ≤ r. We may also assume that whenever
Zj = Dj is not second countable, no open interval in Zj is second countable (since
there is always a closed subspace with this property). Let X =

∏r
j=1 Zj , and apply

Lemma 4.13 to obtain U ⊆ X with Ldim(U) ≤ n − m. Since Ldim(U) = r by

Lemma 4.5, we have r ≤ n − m, so s = r + m ≤ n. K
Note that this theorem does not cover all possible products of LOTSes. For

example, one can show by a direct argument that Ldim((ω+1)×IS) = 2 whenever
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S is uncountable, although (ω + 1) × IS is dissipated, so the methods used in
the proof of Theorem 4.4 do not apply. Also, Theorem 4.4 says nothing about
Aronszajn lines, which have neither an increasing or decreasing ω1–sequence, nor
a countable subset whose closure is not second countable. In particular, it is not
clear whether one can have a product of three compact Aronszajn lines which is
embeddable into a product of two LOTSes.

In some sense, this “dimension theory” for products of totally disconnected
LOTSes is more restrictive, not less restrictive, than the classical dimension theory
for In, since there is also a limitation on dimension-raising maps. For example,
Peano [18] shows how to map I onto I2, but his map has many changes of direction,
so it does not define a map from IS onto (IS)2. In fact, this is impossible:

Proposition 4.14 If S is uncountable, then there is no compact LOTS L such
that L maps continuously onto (IS)2.

Proof. Say f : L � (IS)2. Replacing L by a closed subset, we may assume that
f is irreducible. Then, L must be separable, since (IS)2 is separable. It follows
(see Lutzer and Bennett [17]) that L is hereditarily separable, which implies (by

continuity of f) that (IS)2 is hereditarily separable, which is false. K
We do not know whether, for example, one can map L2 onto (IS)3. Again, we

may assume that L is separable, so that L2 is 3–dissipated, while (IS)3 is not even
4–dissipated. However, as we know from Example 3.13, a continuous image of a
3–dissipated space need not be even c–dissipated.

5 Measures, L-spaces, and S-spaces

As usual, if X is compact, a Radon measure on X is a finite positive regular Borel
measure on X, and if f : X → Y and μ is a measure on X, then μf−1 denotes
the induced measure ν on Y , defined by ν(B) = μ(f−1(B)). We shall prove some
results relating μ to ν in the case that f is tight, and use this to prove that Radon
measures on dissipated spaces are separable. We shall also make some remarks on
compact L-spaces and S-spaces which are dissipated.

Definition 5.1 For any space X, ro(X) denotes the regular open algebra of X.
If B is any boolean algebra and b ∈ B with b �= �, then b↓ denotes the algebra
{x ∈ B : x ≤ b}; so �b↓ = b. A Suslin algebra is an atomless ccc complete boolean
algebra which is (ω, ω)–distributive

So, there is a Suslin tree iff there is a Suslin algebra. We shall prove:
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Theorem 5.2 If X is compact, ccc, not separable, and ℵ0–dissipated, then in
ro(X) there is a non-zero b such that b↓ is a Suslin algebra.

Of course, this is well-known in the case where X is a LOTS, and is part of
the proof that a Suslin line yields a Suslin tree. Since a Suslin line is a compact
L-space and is 2–dissipated (by Lemma 3.4), we have

Corollary 5.3 There is an ℵ0–dissipated compact L-space iff there is a Suslin line.

As usual, the support of a Radon measure μ is the smallest closed H ⊆ X such
that μ(H) = μ(X). For this H , ro(H) cannot be a Suslin algebra, so

Corollary 5.4 If X is ℵ0–dissipated, then the support of every Radon measure on
X is a separable topological space.

In these two corollaries, the “ℵ0” cannot be replaced by “ℵ1”, since the usual
compact L-space construction shows the following (see Section 6 for a proof):

Proposition 5.5 CH implies that there is a compact L-space X which is both c–
dissipated and the support of a Radon measure μ. Furthermore, μ is atomless, and,
in X, the ideals of null subsets, meager subsets, and separable subsets all coincide.

Turning to compact S-spaces, the usual CH construction [14] yields one which
is scattered, and hence dissipated. Less trivially, the construction of Fedorčuk [7]
shows, under ♦, that there is a dissipated compact S-space with no isolated points
and no non-trivial convergent ω–sequences; see Section 6 for further remarks on
this construction.

Proof of Theorem 5.2. Since X is ccc, we may replace X by some regular
closed set and assume that X is nowhere separable — that is, the closure of every
countable subset is nowhere dense. Assume that in ro(X) no b↓ is Suslin, and we
shall derive a contradiction.

Since X is ccc, the fact that no b↓ is Suslin implies that there are open Fσ sets
V j

n for n, j ∈ ω such that for each n, the V j
n for j ∈ ω are disjoint and

⋃
j V j

n is

dense, and such that for each ϕ ∈ ωω,
⋂

n V
ϕ(n)
n has empty interior. There is then

a compact metric Y and an f : X � Y such that V j
n = f−1(f(V j

n )) for each n, j.
Note that this implies that each f(V j

n ) is open, since f(V j
n ) = Y \ f(X\V j

n ).
Replacing f by a finer map, we may also assume that f is ℵ0–tight.
Observe that f−1{y} is nowhere dense for each y ∈ Y , since either f−1{y} ⊆⋂

n V
ϕ(n)
n for some ϕ ∈ ωω, or f−1{y} ⊆ X \ ⋃

j V j
n for some n.

Now, construct open Us ⊆ X and closed Ks ⊆ X for s ∈ 2<ω as follows:
U( ) = X, and each Us�i ⊆ Us\Ks, with f(Us�0) ∩ f(Us�1) = ∅. Also, Ks ⊆ Us,
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with f(Ks) = f(Us) and f�Ks � f(Ks) irreducible. Note that Ks is separable and
Us is nowhere separable, so that the construction can continue. More specifically,
to choose Us�0 and Us�1: First, find p0, p1 ∈ Us\Ks such that f(p0) �= f(p1); this
is possible since otherwise we would have f(Us\Ks) ⊆ {y}, contradicting the fact
that f−1{y} is nowhere dense. Next, find open Wi ⊆ Y with f(pi) ∈ Wi and
W0 ∩ W1 = ∅. Then, choose Us�i with Us�i ⊆ Us�i ⊆ (Us\Ks) ∩ f−1(Wi).

Let Qn =
⋃{f(Ks) : s ∈ 2n}, and let Q =

⋂
n Qn, which is a non-scattered

subset of Y . Let Pn = f−1(Q) ∩ ⋃{Ks : s ∈ 2n}. Then the Pn are disjoint and

each f(Pn) = Q, contradicting the ℵ0–tightness of f . K
To study measures further, we use the following standard definitions:

Definition 5.6 If μ is any finite measure on X, then ma(μ) denotes the measure
algebra of μ — that is, the algebra of measurable sets modulo the null sets. If
f : X → Y , μ is a finite measure on X, and ν = μf−1, then f ∗ : ma(ν) → ma(μ)
is defined by f ∗([A]) = [f−1(A)].

ma(μ) is a complete metric space with metric d([A], [B]) = μ(AΔB), where
[A], [B] denote the equivalence classes of the sets A, B. Note that we do not require
f to be onto here, although Y \f(X) is a ν–null set. f ∗ is an isometric isomorphism
onto some complete subalgebra f ∗(ma(ν)) ⊆ ma(μ).

As usual, a measure μ on X is separable iff Lp(μ) is a separable metric space
for some (equivalently, for all) p ∈ [1,∞). Also μ is separable iff ma(μ) is a
separable metric space iff ma(μ) is countably generated as a complete boolean
algebra. Separability of μ is not related in any simple way to the separability of
any topology that X may have. Following [6]:

Definition 5.7 MS is the class of all compact spaces X such that every Radon
measure on X is separable.

We shall prove:

Theorem 5.8 If X is a weakly c–dissipated space then X is in MS.

In view of Lemma 3.4, Theorem 5.8 generalizes the result from [6] that every
compact LOTS is in MS. Note that a space in MS need not be c–dissipated. For
example, MS is closed under countable products (see [6]), but an infinite product
of non-metric compacta is never weakly c–dissipated (see Theorem 3.8).

Theorem 5.8 will be an easy corollary of some general results about measures
induced by weakly c–tight f : X � Y , where X, Y are compact. Say μ is a Radon
measure on X, with ν = μf−1. Even if f is tight (i.e., 2–tight), the separability
of ν does not imply the separability of μ; for example, ν may be a point mass
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concentrating on {y}, in which case μ can be any measure supported on f−1{y}
with μ(f−1{y}) = ν{y}. However, if ν is atomless, then the form of ν will restrict
the form of μ. There are really two kinds of ways that ν might determine μ. We
shall denote the stronger way as “X is skinny” and the weaker way as “X is slim”.
We shall define “skinny” and “slim” also for arbitrary closed subsets of X:

Definition 5.9 Suppose that X, Y are compact, f : X → Y , μ is a Radon measure
on X, and ν = μf−1. Then:

☞ X is skinny with respect to f, μ iff for all closed K ⊆ X, μ(K) = ν(f(K)).

☞ X is slim with respect to f, μ iff f ∗ : ma(ν) → ma(μ) maps onto ma(μ).

If H is a closed subset of X, then we say that H is skinny (resp., slim) with respect
to f, μ iff H is skinny (resp., slim) with respect to f�H, μ�H.

Note that the equation μ(K) = ν(f(K)) shows that if X is skinny, then ν
determines μ; there is no Radon measure μ′ �= μ such that ν = μ′f−1.

Lemma 5.10 If X is skinny with respect to f, μ, then X is slim.

Proof. If K ⊆ X is closed, then μ(K) = μ(f−1(f(K))) implies that [K] =
[f−1(f(K))] = f ∗([f(K)]) in ma(μ). Thus, [K] ∈ ran(f ∗) for all closed K ⊆ X,

which implies that f ∗ is onto. K
The converse is false. For example, suppose that H is a closed subset of X such

that μ is supported on H and f�H is 1-1. Then X is slim, since ma(μ) ∼= ma(μ�H),
but X need not be skinny, since there may well be closed K disjoint from H with
X = f−1(f(K)); then μ(K) = 0 but ν(f(K)) = μ(X). In this example, H is
skinny with respect to f, μ. Some examples of skinny sets on which the function f
is not 1-1 are given by:

Lemma 5.11 Suppose that X, Y are compact, f : X → Y is tight, μ is a Radon
measure on X, and ν = μf−1 is atomless. Then X is skinny with respect to f, μ.

Proof. If X is not skinny, fix a closed K ⊆ X with μ(K) < ν(f(K)), so that
μ(f−1(f(K)) \ K) > 0. Then choose a closed L ⊆ f−1(f(K)) \ K with μ(L) > 0.
Then K, L are disjoint in X and ν(f(K) ∩ f(L)) = ν(f(L)) ≥ μ(L) > 0, so

f(K) ∩ f(L) cannot be scattered, since ν is atomless, so f is not tight. K
One cannot replace “tight” by “3–tight” here. For example, say X = Y ×{0, 1},

with f the natural projection, which is 2–tight. If ν is any Radon measure on Y ,
and on X we let μ(E0×{0} ∪ E1×{1}) = 1

2
(ν(E0)+ν(E1)), then X is not skinny

(or even slim). Here, X is the union of two skinny subsets, and this situation
generalized to:
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Lemma 5.12 Suppose that X, Y are compact, f : X � Y is ℵ0–tight and μ is a
Radon measure on X with μf−1 atomless. Then there is a countable family H of
disjoint skinny subsets of X such that μ(X) =

∑{μ(H) : H ∈ H}.
Proof. If this fails, then the usual exhaustion argument lets us shrink X and
assume that μ(X) > 0 and there are no closed skinny H ⊆ X of positive measure.
We now build an infinite loose family as follows:

Construct a tree of closed Hs ⊆ X for s ∈ 2<ω; so Hs�0, Hs�1 will be disjoint
closed subsets of Hs, and also f(Hs�0) ∩ f(Hs�1) = ∅. Each Hs will have positive
measure. H( ) can be X.

Given Hs: Since Hs is not skinny, we can choose a closed Ks ⊂ Hs with
μ(Hs ∩ (f−1(f(Ks)) \ Ks)) > 0. Then, since μ is regular and μf−1 is atomless, we
can choose closed Hs�0, Hs�1 ⊆ Hs ∩ (f−1(f(Ks)) \ Ks) with each μ(Hs�i) > 0
and f(Hs�0) ∩ f(Hs�1) = ∅.

Now, let Qn =
⋃{f(Hs) : s ∈ 2n} and let Q =

⋂
n Qn; so, Q is non-scattered.

Let Pn = f−1(Q) ∩ ⋃{Ks : s ∈ 2n}. Then {Pn : n ∈ ω} is a loose family. K
It follows that the measure algebra of μ is a countable sum of measure algebras

isomorphic to algebras derived from measures on Y . Note that the Ks in this proof
may be null sets, so one cannot split them also to obtain a loose family of size c, as
we did in the proof of Lemma 2.18. In fact, the L-space of Proposition 5.5 shows
that one cannot weaken “ℵ0–tight” to “ℵ1–tight” in this lemma. To see this, note
that μ is a separable measure on X by Theorem 5.8, so one can get an f : X � Y
such that Y is compact metric, ν = μf−1 atomless, and f ∗(ma(ν)) = ma(μ). Since
X is ℵ1–dissipated, one can refine f and assume also that f is ℵ1–tight. Now, if H is
skinny, let K be a closed subset of H such that f(K) = f(H) and f�K : K � f(H)
is irreducible. Then K is separable and hence null (by the properties of X), and
μ(H) = μ(K) (since H is skinny), so μ(H) = 0. Thus, there cannot be a family H
as in Lemma 5.12.

However, the analogous result with “slim” (Theorem 5.14) just uses c–tightness.

Definition 5.13 Suppose that X, Y are compact, f : X → Y , and μ is a Radon
measure on X. Then X is simple with respect to f, μ iff there is a countable disjoint
family H of slim subsets of X such that

∑{μ(H) : H ∈ H} = μ(X).

We shall prove:

Theorem 5.14 Suppose that X, Y are compact, f : X → Y , and μ is a Radon
measure on X, with ν = μf−1, and suppose that X is not simple with respect to
f, μ. Then there is a ϕ : dom(ϕ) → 2ω, where dom(ϕ) is closed in X, such that for
some closed Q ⊆ Y , ν(Q) > 0 and ϕ(f−1{y}) = 2ω for all y ∈ Q. In particular, if
ν is atomless, then f is not weakly c–tight.
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In proving this, the notion of conditional expectation (see [9], §48) will be useful
in comparing the induced measure (μ�S)f−1 to ν for various S ⊆ X:

Definition 5.15 Suppose that f : X → Y , with X, Y compact, μ is a measure
on X and ν = μf−1. If S is a measurable subset of X, then the conditional
expectation, E(S|f) = Eμ(S|f), is the measurable ϕ : Y → [0, 1] defined so that∫

A
ϕ(y) dν(y) = μ(f−1(A) ∩ S) for all measurable A ⊆ Y .

Of course, ϕ is only defined up to equivalence in L∞(ν). Conditional expecta-
tions are usually defined for probability measures, but they make sense in general
for finite measures; actually, Eμ(S|f) = Ecμ(S|f) for any non-zero c. Note that∫

A
ϕ(y) dν(y) =

∫
f−1(A)

ϕ(f(x)) dμ(x). We may also characterize ϕ = Eμ(S|f) by

the equation:∫
S

g(f(x)) dμ(x) =

∫
X

ϕ(f(x)) g(f(x)) dμ(x) =

∫
Y

ϕ(y) g(y) dν(y) .

for g ∈ L1(Y, ν). ϕ is obtained either by the Radon-Nikodym Theorem, or, equiva-
lently, by identifying (L1(Y, ν))∗ with L∞(Y, ν), since Γ(g) :=

∫
S

g(f(x)) dx defines
Γ ∈ (L1(Y, ν))∗, with ‖Γ‖ ≤ 1.

Now, given μ on X and f : X → Y , we shall consider various closed subsets
H ⊆ X while studying the tightness properties of f . When S ⊆ H ⊆ X, one
must be careful to distinguish Eμ(S|f) (computed using μ and f : X → Y ) from
Eμ�H(S | f�H) (computed using μ�H and f�H : H → Y ). These are related by:

Lemma 5.16 Suppose that f : X → Y , with X, Y compact, H is a closed subset
of X, and μ is a Radon measure on X. Let S be a measurable subset of H. Then
Eμ(S|f) = Eμ(H|f) · Eμ�H(S | f�H).

Proof. Let ϕ = Eμ(S|f), ψ = Eμ(H|f), and γ = Eμ�H(S | f�H). We may take
these to be bounded Borel-measurable functions from Y to R. For any bounded
Borel-measurable g : Y → R, we have∫

S

g(f(x)) dμ(x) =

∫
X

ϕ(f(x)) g(f(x)) dμ(x)∫
H

g(f(x)) dμ(x) =

∫
X

ψ(f(x)) g(f(x)) dμ(x)∫
S

g(f(x)) dμ(x) =

∫
H

γ(f(x)) g(f(x)) dμ(x) =

∫
X

ψ(f(x)) γ(f(x)) g(f(x)) dμ(x),

which yields ϕ = ψγ. K
We now relate conditional expectations to slimness:
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Lemma 5.17 Suppose that X, Y are compact, f : X → Y , and μ is a measure on
X, with ν = μf−1. Let S ⊆ X be measurable. Then [S] ∈ ran(f ∗) iff [E(S|f)] =
[χT ] for some measurable T ⊆ Y , in which case [S] = f ∗([T ]).

Proof. For →: If [S] = f ∗([T ]) then μ(SΔf−1(T )) = 0, which implies E(S|f) =
E(f−1(T )|f) = χT .

For ←: If [E(S|f)] = [χT ] then μ(f−1(A) ∩ S) = ν(A ∩ T ) for all measurable
A ⊆ Y . Setting A = Y \T , we get μ(S\f−1(T )) = 0, so [S] ≤ [f−1(T )]. Setting

A = T , we get μ(S ∩ f−1(T )) = ν(T ) = μ(f−1(T )), so [S] ≥ [f−1(T )]. K
In particular, X is slim with respect to f, μ iff every E(S|f) is the characteristic

function of a set; this remark will be useful when applied also to μ�H for various
H ⊆ X.

Lemma 5.18 Suppose that X, Y are compact, f : X → Y , and μ is a measure on
X, with ν = μf−1, and suppose that X is not slim with respect to f, μ. Then there
are disjoint closed H0, H1 ⊆ X with f(H0) = f(H1) = K, such that ν(K) > 0 and,
for i = 0, 1, 0 < E(Hi|f)(y) < 1 for a.e. y ∈ K.

Proof. First, let H̃0 ⊆ X be closed with [H0] /∈ ran(f ∗). We can then, by Lemma

5.17, get a closed K̃ ⊆ f(H̃0) with ν(K̃) > 0 and E(H̃0|f)(y) ∈ (0, 1) for a.e.

y ∈ K̃. Then, choose a closed H̃1 ⊆ f−1(K̃)\H̃0 with μ(H̃1) > 0. Then, choose

a closed K ⊆ f̃(H̃1) with ν(K) > 0 and E(H̃1|f)(y) > 0 for a.e. y ∈ K, and let

Hi = H̃i ∩ f−1(K). K
We now consider the opposite of slim:

Definition 5.19 X is nowhere slim with respect to f, μ iff there is no closed H ⊆
X with μ(H) > 0 such that H is slim with respect to f, μ.

Lemma 5.20 Suppose that X, Y are compact, f : X → Y , and μ is a measure on
X, with ν = μf−1, and suppose that X is nowhere slim with respect to f, μ. Fix
ε > 0. Then there are disjoint closed H0, H1 ⊆ X with f(H0) = f(H1) = K, such
that ν(Y \K) < ε and, for i = 0, 1, 0 < E(Hi|f)(y) < 1 for a.e. y ∈ K.

Proof. Fix K such that

1. K is a disjoint family of non-null closed subsets of Y .

2. For K ∈ K, there are disjoint closed HK
0 , HK

1 ⊆ X with f(HK
0 ) = f(HK

1 ) =
K, and, for i = 0, 1, 0 < E(HK

i |f)(y) < 1 for a.e. y ∈ K.

3. K is maximal with respect to (1)(2).
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Then K is countable. If ν(Y \⋃K) = 0, choose a finite K′ ⊆ K such that
ν(Y \⋃K′) < ε, set K =

⋃K′, and set Hi =
⋃{HK

i : K ∈ K′}. If ν(Y \⋃K) �= 0,
choose a closed E ⊆ Y \⋃K with ν(E) > 0, and use Lemma 5.18 to derive a

contradiction from maximality of K and the fact that f−1(E) is not slim. K
We can now use a tree argument to prove Theorem 5.14:

Proof of Theorem 5.14. Since f is not simple, there must be a closed H ⊆ X
such that H is nowhere slim with respect to μ�H, f�H . Restricting everything to
H , we may assume that X itself is nowhere slim. Also, WLOG μ(X) = ν(Y ) = 1
and f(X) = Y . Now, get Ps ⊆ X for s ∈ 2<ω and Qn ⊆ Y for n ∈ ω so that:

1. P( ) = X and Q0 = Y .

2. Ps is closed in X and Qn is closed in Y .

3. Qn =
⋂{f(Ps) : lh(s) = n}.

4. Ps�0 and Ps�1 are disjoint subsets of Ps.

5. ν(f(Ps) \ f(Ps�i)) ≤ 6−n−1 when lh(s) = n and i = 0, 1.

6. Qn+1 ⊆ Qn and ν(Qn\Qn+1) ≤ 2n+1 · 6−n−1 = 3−n−1.

7. Eμ(Ps|f)(y) > 0 for ν–a.e. y ∈ f(Ps).

Assuming that this can be done, let Q =
⋂

n Qn. Q ⊆ f(Ps) for all s ∈ 2<ω, so for
t ∈ 2ω, let Pt = f−1(Q)∩⋂

n Pt�n. Then the Pt are disjoint and f(Pt) = Q for all t.
Also, μ(Q) ≥ 1−1/3−1/9−1/27−· · · = 1/2. Let dom(ϕ) =

⋃
t Pt, with ϕ(x) = t

for x ∈ Pt.
Now, to do the construction, note first that (6) follows from (3)(4)(5). We

proceed by induction on lh(s), using (7) to accomplish the splitting. For lh(s) = 0,
(1)(2)(3)(7) are trivial, since E(X|f)(y) = 1 for a.e. y ∈ Y . Now fix s with
lh(s) = n. We obtain Ps�0 and Ps�1 by applying Lemma 5.20, with the X, Y
there replaced by Ps, f(Ps); but then we must replace ν by λ := (μ�Ps) (f�Ps)

−1

on f(Ps). Let ϕ = Eμ(Ps|f); then, by (7) for Ps, ϕ(y) > 0 for ν–a.e. y ∈ f(Ps);
also ϕ(y) = 0 for a.e. y /∈ f(Ps), and

∫
A

ϕ(y) dν(y) = μ(f−1(A) ∩ Ps) = λ(A)
for all measurable A ⊆ f(Ps). Fix δ > 0 such that ν({y ∈ f(Ps) : ϕ(y) < δ})
≤ 6−n−1/2. Now apply Lemma 5.20 to get closed Ps�0, Ps�1 satisfying (4) with
Ks := f(Ps�0) = f(Ps�1) so that, for i = 0, 1, Eμ�Ps(Ps�i | f�Ps)(y) > 0 for
λ–a.e. y ∈ Ks, and λ(f(Ps)\Ks) < δ ·6−n−1/2. Now, by Lemma 5.16, Eμ(Ps�i|f) =
ϕ ·Eμ�Ps(Ps�i | f�Ps), which yields (7) for Ps�i. To obtain (5), let A = f(Ps) \Ks.
we need ν(A) ≤ 6−n−1, and we have

∫
A

ϕ(y) dν(y) = λ(A) < δ · 6−n−1/2. Let
A = A′ ∪ A′′, where ϕ < δ on A′ and ϕ ≥ δ on A′′. Then ν(A′) ≤ 6−n−1/2 and

ν(A′′) ≤ (1/δ)
∫

A′′ ϕ(y) dν(y) ≤ 6−n−1/2, so ν(A) ≤ 6−n−1. K
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Corollary 5.21 Suppose that X, Y are compact, f : X � Y is weakly c–tight, and
μ is a Radon measure on X, with ν = μf−1 atomless and separable. Then μ is
separable.

Proof. X is simple with respect to f, μ, by Theorem 5.14, which implies that

ma(μ) is a countable disjoint sum of separable measure algebras. K
Proof of Theorem 5.8. Assume that μ is a non-separable Radon measure

on X; we shall derive a contradiction. By subtracting the point masses, we may
assume that μ is atomless.

First, fix a compact metric Z and a g : X � Z such that μg−1 is atomless.
This is easily done by an elementary submodel argument. More concretely, one
can assume that X ⊆ [0, 1]κ; then g = πκ

d for a suitably chosen countable d ⊆ κ.
We construct d as

⋃
i di, where the di are finite and non-empty and d0 ⊆ d1 ⊆ · · · .

Given di, we have the space Zi = πκ
di

(X), with measure νi = μ(πκ
di

)−1. Let {F �
i :

� ∈ ω} be a family of closed non-null subsets of Zi which is dense in the measure
algebra, and make sure that for each �, there is some j > i such that Zj contains

a closed set K ⊆ (π
dj

di
)−1(F �

i ) with νj(K)/μi(F
�
i ) ∈ (1/3, 2/3).

Let f : X � Y be weakly c–tight, where Y is metric and f is finer than g.
We then have Γ ∈ C(Y, Z) such that g = Γ ◦ f , so μg−1 = (μf−1)Γ−1, so μf−1

is atomless. Also, μf−1 is separable because Y is metric, contradicting Corollary

5.21. K

6 Inverse Limits

Some compacta built as inverse limits in ω1 steps are dissipated. We avoid explicit
use of the inverse limit by viewing X as a subspace of some Mω1 , so the bonding
maps in the inverse limit will be the projection maps.

Definition 6.1 For any space M and ordinals α ≤ β: πβ
α : Mβ � Mα denotes the

natural projection.

Theorem 6.2 Let M be compact metric, and suppose that X is a closed subset
of Mω1 . Let Xα = πω1

α (X). Assume that for each α < ω1, the map πα+1
α �Xα+1 :

Xα+1 � Xα is tight. Then

1. For each α < β ≤ ω1, the map πβ
α�Xβ : Xβ � Xα is tight.

2. X is dissipated.
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Proof. For (1), fix α and induct on β. For successor stages, use Lemma 2.13. For
limit β > α, use the fact that if P0, P1 are disjoint closed subsets of Xβ, then there

is a δ with α < δ < β and πβ
δ (P0) ∩ πβ

δ (P1) = ∅.
For (2), observe that given g : X � Z, with Z metric, there is an α < ω1 with

πω1
α �X finer than g. Now, use the fact that all πω1

β �X are tight. K
The proof of (2) did not actually require all πω1

β �X to be tight; we only needed
unboundedly many. More generally, the definition of “dissipated” requires the
family of tight maps to be unbounded, but it does not necessarily contain a club,
although it does contain a club in the “natural” examples of dissipated spaces. We
first point out an example where the tight maps do not contain a club. Then we
shall formulate precisely what “contains a club” means.

Example 6.3 There is a closed X ⊆ 2ω1 such that, setting Xα = πω1
α (X):

a. X is dissipated

b. For all α < ω1, πω1
α �X : X � Xα is tight iff α is not a limit ordinal.

Proof. First note that (b) → (a) because whenever g : X → Z, with Z metric,
there is always an α < ω1 with πω1

α �X ≤ g. Then πω1
α+1�X ≤ πω1

α �X ≤ g and
πω1

α+1�X is tight.
To prove (b), we use a standard inverse limit construction, building Xα by

induction on α. We shall have:

1. Xα is a closed subset of 2α for all α ≤ ω1, and X = Xω1 .

2. Xα = πβ
α(Xβ) whenever α ≤ β ≤ ω1.

3. Xα = 2α for α ≤ ω.

4. For α < ω1: Xα+1 = Xα ×{0}∪Fα ×{1}, where Fα is a closed subset of Xα.

5. Fγ is a perfect set for all limit γ < ω1.

6. πα
δ (Fα) is finite whenever δ < α < ω1.

7. Whenever δ < α < ω1 and δ is a successor ordinal, there is an n with
0 < n < ω such that πα+n

δ+1 (Fα+n) = Fδ × {0, 1}.
Conditions (1)(2) imply that Xγ , for limit γ, is determined by the Xα for α < γ;
then, by (4), the whole construction is determined by the choice of the Fα ⊆ Xα;
as usual, in stating (4), we are identifying 2α+1 with 2α × {0, 1}. By (3), Fα = Xα

when α < ω. By (6), Fα is finite for successor α. Conditions (1)–(6) are sufficient
to verify (b) of the theorem, but (7) was added to ensure that the construction can
be carried out. Using (7), it is easy to construct Fγ for limit γ to satisfy (5)(6),
and (7) itself is easy to ensure by a standard enumeration argument, since there
are no further restrictions on the finite sets Fα+n ⊆ Xα+n when n > 0.
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To verify (b): If α < ω1 is a limit ordinal, then (4)(5) guarantee that πω1
α �X :

X � Xα is not tight. Now, fix a successor α < ω. We prove by induction that
πβ

α�Xβ : Xβ � Xα is tight whenever α ≤ β ≤ ω1. This is trivial when β = α. If
β > α is a limit ordinal and πβ

α�Xβ fails to be tight, then we have disjoint closed
P0, P1 ⊂ Xβ with Q = πβ

α(P0) = πβ
α(P1) and Q not scattered; but then there is a

δ with β > δ > α such that πβ
δ (P0) ∩ πβ

δ (P1) = ∅, and then the πβ
δ (Pi) refute the

tightness of πδ
α.

Finally, assume that α ≤ β < ω1 and that πβ
α�Xβ is tight. We shall prove that

πβ+1
α �Xβ+1 is tight. If β is a successor, we note that πβ+1

β �Xβ+1 is tight because Fβ

is finite, so that πβ+1
α �Xβ+1 = πβ

α�Xβ ◦ πβ+1
β �Xβ+1 is tight by Lemma 2.13. Now,

assume that β is a limit (so α < β) and that πβ+1
α �Xβ+1 is not tight. Fix disjoint

closed P0, P1 ⊂ Xβ+1 with Q = πβ+1
α (P0) = πβ+1

α (P1) and Q not scattered. Since
πβ

α(Fβ) is finite, we may shrink Q and the Pi and assume that Q∩πβ
α(Fβ) = ∅. Then

πβ+1
β (Pi) ∩ Fβ = ∅, so that πβ+1

β (P0) ∩ πβ+1
β (P1) = ∅, and the πβ+1

β (Pi) contradict

the tightness of πβ
α�Xβ. K

There are various equivalent ways to formulate “contains a club”; the following
is probably the quickest to state:

Definition 6.4 The compact X is wasted iff whenever θ is a suitably large regular
cardinal and M ≺ H(θ) is countable and contains X and its topology, the natural
evaluation map πM : X → [0, 1]C(X,[0,1])∩M is tight.

For the X of Example 6.3, no πM is tight, since πM is equivalent to πω1
γ , where

γ = ω1∩M . The X of Theorem 6.2 is wasted, as is every compact LOTS. A notion
intermediate between “dissipated” and “wasted” is obtained by requiring πM to be
tight for a stationary set of M ≺ H(θ).

In Theorem 6.2: since Xα+1 and Xα are compact metric, the assumption that
πα+1

α is tight is equivalent to saying that {y ∈ Xα : |(πα+1
α )−1{y} ∩ Xα+1| > 1} is

countable (see Theorem 2.7). In the constructions of [7, 11, 12], this set is actually
a singleton. In some cases, the spaces are also minimally generated in the sense
Koppelberg [15] and Dow [4]:

Definition 6.5 Let X, Y be compact. Then f : X � Y is minimal iff |f−1{y}| = 1
for all y ∈ Y except for one y0, for which |f−1{y0}| = 2.

We remark that this is the same as minimality in the sense that if f = g ◦ h,
where h : X � Z and g : Z � Y , then either g or h is a bijection. Clearly, every
minimal map is tight.

Definition 6.6 X is minimally generated iff X is a closed subspace of some 2ρ,
where, setting Xα = πρ

α(X), all the maps πα+1
α �Xα+1 : Xα+1 � Xα, for α < ρ, are

minimal.
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Examples of such spaces are the Fedorčuk S-space [7], obtained under ♦ (here,
ρ = ω1), and the Efimov spaces obtained by Fedorčuk [8] and Dow [4], where
ρ > ω1.

Clearly, if ρ = ω1, then X must be dissipated by Theorem 6.2, but this need
not be true for ρ > ω1. For example, if A(ℵ1) is the 1-point compactification of
a discrete space of size ℵ1, and X = A(ℵ1) × 2ω, then X is not ℵ1–dissipated by
Lemma 3.6, but X is minimally generated, with ρ = ω1 + ω.

Note that if we weaken “tight” to “3–tight” in Theorem 6.2, we get nothing of
any interest in general. In fact, if M = 2 = {0, 1} and each Xα = Mα, then all
πα+1

α �Xα+1 are 3–tight, but X is not weakly c–dissipated by Theorem 3.8. However,
one can in some cases use an inverse limit construction build a space which is ℵ0–
dissipated:

Proof of Proposition 5.5. We modify the standard construction of a compact
L-space under CH, following specifically the details in [16]; similar constructions
are in Haydon [13] and Talagrand [19]. So, X will be a closed subset of 2ω1 .

We inductively define Xα ⊆ 2α, for ω ≤ α ≤ ω1, along with an atomless Radon
probability measure μα on Xα such that the support of μα is all of Xα. Let Xω = 2ω

with μω the usual product measure. The measures will all cohere, in the sense that
μα = μβ (πβ

α)−1 whenever α < β. Along with the measures, we choose a countable
family Fα of closed μα–null subsets of Xα and a specific closed nowhere dense non-
null Kα ⊆ Xα. When α < β < ω1, Fβ will contain (πβ

α)−1(F ) for all F ∈ Fβ,
along with some additional sets. Since Fα is countable, we can choose a perfect
Cα ⊆ Kα such that μα(Cα) > 0, Cα is the support of μα�Cα, and Cα ∩ F = ∅ for
all F ∈ Fα. Then we let Xα+1 = Xα × {0} ∪ Cα × {1}. In the construction of
[16], μα+1 can be chosen arbitrarily to satisfy μα = μα+1 (πα+1

α )−1, as long as all
non-empty open subsets of Cα×{1} have positive measure; there is some flexibility
here in distributing the measure on Cα among its copies Cα×{0} and Cα×{1}. In
particular, depending on the choices made, the final measure μ = μω1 on X = Xω1

may be separable or non-separable. In any case, [16] shows that, assuming CH, one
may choose the Fα and Kα appropriately to guarantee X is an L-space and that
the ideals of null subsets, meager subsets, and separable subsets all coincide.

Now, always choose μα+1 such that μα+1(Cα × {0}) = 0. This will guarantee
that μ on X is separable, with ma(μ) isomorphic to ma(μω) via (πω1

ω )∗. Also, put
the set Cα × {0} into Fα+1. Then, for all x ∈ Xω, (πω1

ω )−1{x} is scattered (as is
easy to verify), and hence countable (since X is HL). But then πω1

ω �X : X � Xω

is ℵ1–tight, so that X is ℵ1–dissipated by Lemma 3.5. K
We remark that by Theorem 5.8, we know that the μ of Proposition 5.5 must

be separable, so it was natural to make ma(μ) isomorphic to ma(μω) in the con-
struction.
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7 Absoluteness

We shall prove here that tightness is absolute. This can then be applied in forcing
arguments, but the absoluteness itself has nothing at all to do with forcing; it is
just a fact about transitive models of ZFC, and is related to the absoluteness of
Π1

1 statements. Since we never need absoluteness of Π1
2 (Shoenfield’s Theorem),

we do not need the models to contain all the ordinals. So, we consider arbitrary
transitive models M, N of ZFC with M ⊆ N . If in M , we have compacta X, Y and
f : X → Y , we want to show that f is tight in M iff f is tight in N .

To make this discussion precise, we must, in N , replace X, Y by the correspond-
ing compact spaces X̃, Ỹ . This concept was described by Bandlow [1] (and later
in [5, 6, 12]), and is defined as follows:

Definition 7.1 Let M ⊆ N be transitive models of ZFC. In M , assume that X is
compact. Then X̃ denotes the compactum in N characterized by:

1. X is dense in X̃.

2. Every ϕ ∈ C(X, [0, 1]) ∩ M extends to a ϕ̃ ∈ C(X̃, [0, 1]) in N .

3. The functions ϕ̃ (for ϕ ∈ M) separate the points of X̃.

If, in M , X, Y are compact and f ∈ C(X, Y ), then in N , f̃ ∈ C(X̃, Ỹ ) denotes the
(unique) continuous extension of f .

In forcing,
�
X denotes the X̃ of V [G], while X̌ denotes the X of V [G].

Theorem 7.2 Let M ⊆ N be transitive models of ZFC. In M , assume that X, Y
are compact, K is compact metric, and f : X → Y . Then the following are
equivalent:

1. In M : There is a K–loose function for f .

2. In N : There is a K̃–loose function for f̃ .

Proof. For (1) → (2), just observe that if in M , we have ϕ, Q satisfying Definition

2.4 (of K–loose), then ϕ̃, Q̃ satisfy Definition 2.4 in N .
For ¬(1) → ¬(2), we shall define a partial order T in M . We shall then prove

that ¬(1) implies the well-founded of T in M , while the well-founded of T in N
implies ¬(2). The result then follows by the absoluteness of well-foundedness.

As in the proof of Theorem 2.10, let H = [0, 1]ω, and assume that K ⊆ H . Then
the existence of a K–loose function is equivalent to the existence of a ϕ ∈ C(X, H)
such that for some non-scattered Q ⊆ Y we have ψ(f−1{y}) ⊇ K for all y ∈ Q.

T is a tree of finite sequences, ordered by extension. T contains the empty
sequence and all non-empty sequences〈

(E0, ψ0), (E1, ψ1), . . . , (En−1, ψn−1)
〉

satisfying:
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a. Each ψi ∈ C(X, H).

b. Each Ei is a disjoint family of 2i non-empty closed subsets of Y .

c. Whenever y ∈ E ∈ Ei and z ∈ K: d(z, ψi(f
−1{y})) ≤ 2−i.

d. When i + 1 < n: d(ψi, ψi+1) ≤ 2i−1, and each E ∈ Ei has exactly two subsets
in Ei+1.

In M , if T is not well-founded and 〈(E0, ψ0), (E1, ψ1), . . .〉 is an infinite path through
T, then we get ϕ = limi ψi ∈ C(X, H) using (a)(d) and Q =

⋂
i

⋃ Ei, which is a
non-scattered subset of Y using (b)(d), and (c)(d) implies that ϕ(f−1{y}) ⊇ K for
all y ∈ Q, so (1) holds.

Now, suppose, in N , that we have Q, ϕ for which (2) holds; then we construct
a path through T. To obtain the ψi (all of which must be in M), use the fact that

{ψ̃ : ψ ∈ C(X, H)M} is dense in C(X̃, H̃). Likewise each E ∈ Ei will be a closed

set in M such that Ẽ ∩ Q is not scattered. K
Note that Theorem 7.2 says that the existence of the ϕ and Q described in

the proof Theorem 2.10 is absolute. The corresponding “absoluteness version” of
Theorem 2.9 is false. For example, suppose that in V , we have X = Y ×K, where
X, Y, K are compact and non-scattered, and in addition, K has no non-trivial
convergent ω–sequences. Then clearly in V , there can be no perfect Q ⊆ Y and
1-1 map i : Q × (ω + 1) → X such that f(i(q, u)) = q for all (q, y) ∈ Q × (ω + 1),
whereas if V [G] collapses enough cardinals, it will contain such a Q, i.

An application of the absoluteness result in Theorem 7.2 is:

Proof of Theorem 2.5. Assume that in the universe, V : X and Y are
compact, f : X → Y , and we have an infinite loose family {Pi : i ∈ ω}. Let V [G]
be any forcing extension of V which makes the weights of X and Y countable, so
that in V [G], we still have f : X̃ → Ỹ and a loose family {P̃i : i ∈ ω}, but X̃ and Ỹ
are now compact metric, so that Theorem 2.10 gives us an (ω + 1)–loose function

in V [G]. Hence, by absoluteness, there is one in V . K
A direct proof of this can be given without forcing, but it seems quite a bit

more complicated, since one must embed into the proof the method of Suslin used
in proving Lemma 2.8; one cannot just quote Suslin’s theorem, since the spaces are
not Polish. Theorem 2.5 is needed for the κ = ω part of:

Corollary 7.3 Fix κ ≤ ω. Let M, N be transitive models of ZFC, with M ⊆ N .
Assume that in M we have X, Y, f with X, Y compact and f : X → Y . Then
M |= “f : X → Y is κ–tight” iff N |= “f̃ : X̃ → Ỹ is κ–tight”.

Of course, the ← direction is trivial, and holds for all κ if we rephrase Definition
2.1 appropriately so that κ is not required to be a cardinal (since “cardinal” is not
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absolute). That is, if in M , we have a loose family {Pα : α < κ}, then {P̃α : α < κ}
is loose in N . For a version of Corollary 7.3 for κ = c, we use the notion of “weakly
c–tight” from Definition 2.6.

Corollary 7.4 Fix κ ≤ ω. Let M, N be transitive models of ZFC, with M ⊆ N .
Assume that in M we have X, Y, f with X, Y compact and f : X → Y . Then
M |= “f : X → Y is weakly c–tight” iff N |= “f̃ : X̃ → Ỹ is weakly c–tight”.
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[8] V. V. Fedorčuk, A compact space having the cardinality of the continuum
with no convergent sequences, Math. Proc. Cambridge Philos. Soc. 81 (1977)
177-181.

[9] P. R. Halmos, Measure Theory, D. Van Nostrand Company, 1950.

[10] J. Hart and K. Kunen, Complex function algebras and removable spaces,
Topology Appl. 153 (2006) 2241-2259.

[11] J. Hart and K. Kunen, Inverse limits and function algebras, Topology Proceed-
ings, Volume 30, No. 2 (2006), pp. 501-521.



REFERENCES 34

[12] J. Hart and K. Kunen, First countable continua and proper forcing, to appear.
Canad. J. Math.

[13] R. Haydon, On dual L1-spaces and injective bidual Banach spaces, Israel J.
Math. 31 (1978) 142-152.

[14] I. Juhász, K. Kunen, and M. E. Rudin, Two more hereditarily separable non-
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