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Abstract

If M is an elementary submodel and X a topological space, then X,
denotes the set X N M given the topology generated by the open subsets of
X which are members of M. Call a compact space squashable iff for some
M, Xy is compact and Xj; # X. The first supercompact cardinal is the
least k such that all compact X with |X| > k are squashable. The first A
such that *2 is squashable is larger than the first 1-extendible cardinal.

1 Introduction

Elementary submodels were first used in set theory by Gddel [5, 6] to prove the
GCH from V = L. They have now become a standard tool in combinatorics and
topology; see Dow [4]. In using them, one applies the downward Léwenheim-
Skolem-Tarski Theorem to the universe, V', to get a small M < V. This tech-
nique simplifies many combinatorial closure arguments. When this technique is
formalized in ZFC, one cannot actually define “M < V”, so one replaces it by
“M < H(#)”, where 0 is a regular cardinal which is large enough that H ()
contains all objects under study. H(#) can replace V' in most applications be-
cause H(0) = ZFC — P (that is, ZFC minus the power set axiom), so that many
elementary combinatorial arguments can be carried out within H (6).

Bandlow [2, 3] used these methods prove theorems about Corson compacta.
More recently, Junqueira and Tall [7, 8, 9, 13] have proved a number of general
results relating a compact space X to X N M. We shall follow their notation here,
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and shall explore the relationship between properties of X "M and large cardinals
(primarily, supercompact and extendible — see Kanamori [10], §§22,23).

Formally, a topological space is a pair (X, 7T), where T is a topology (family
of open sets) on the set X. Then X = 7, so 7 determines X, while X does
not determine 7. Nevertheless, we shall follow the usual abuse of notation and
refer to (X, 7) as X. This abuse extends into elementary submodels, but we must
exercise a bit of care here, since to apply M < H(f) to X, we need T € M, not
just X € M.

Definition 1.1 Suppose that (X,T) € M < H(0). Then:

[ X}, denotes the space (X N M, Tyr), where Ty is the topology on X N M
which has, as a base, {UNM : U € T N M}.

[ XIN M denotes the set X N M with the subspace topology, denoted by T [M.

Note that Tpy C T[M (that is, X, is coarser than X N M). This paper
will focus on compact Hausdorff spaces. For these, if (X,7) € M and X C M,
then Ty = T[M = T, since T; is coarser than 7 and is Hausdorff. We shall
investigate the question: When can we have X,; compact and X ¢ M? Observe
(see [7]) that compactness of X, implies compactness of X.

Consider the example X = « + 1, with the usual compact order topology.
Then X N M is compact only in the trivial case that « +1 C M (since the least
v # M is a limit ordinal), but X, is always compact, and is homeomorphic to the
order topology on the set X N M (whose type is some successor ordinal). More
generally,

Theorem 1.2 (Junqueira and Tall [9]) Assume that (X,T) € H(f), X is
compact Hausdorff, and 0 is reqular. Then the following are equivalent.

1. X scattered.
2. Xy is compact for all M such that (X, T) € M < H(#).
3. Xy is compact for some countable M such that (X,T) € M < H(9).

If one wants the finer X N M to be compact for countable M, one needs the
stronger assertion that X is scattered and Corson compact; equivalently, by Alster
[1], strongly Eberlein compact. See Section 3 for some further remarks on this.
The main focus of this paper will be on more general compact spaces and the
relationships between compactness of Xj; and large cardinals. We summarize our
results now, with proofs given in Section 2.
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Definition 1.3 Let (X, T) be compact Hausdorff.

[ (X, 7) is squashable iff for some reqular 6 and some M:
(X,7T)€e M < H(), Xy is compact, and X € M.

(X, T) is k-squashable iff for some reqular 6 and some M :
(X,7T)€e M < H(), Xy is compact, and |M| < k.

See Definition 3.5 for the notion of “squashing”. Note that k-squashability is
trivial when x > |X| and implies squashability when x < |X|. By the following
lemma, squashability is a topological property (i.e., invariant under homeomor-
phism), and is not sensitive to the specific 6 used:

Lemma 1.4 Let (X,T) be compact Hausdorff.

(X, 7) is squashable iff for all (Y,U) homeomorphic to (X, T), all reqular
6, and all sets a: If Y,U,a € H(0), then there is an M < H(0) such that
Y U,a € M, Yy is compact, and Y € M.

(X, 7) is k-squashable iff for all (Y,U) homeomorphic to (X,T), all reqular
6, and all sets a: If Y,U,a € H(0), then there is an M < H(0) such that
YU, a € M, Yy is compact, and |M| < k.

We never use the set a in this paper, but in applications of elementary submod-
els, it can encode whatever else besides the topology is needed for the argument.

Theorem 1.5 If (X,T) is compact Hausdorff and r is |X|-supercompact then
(X, T) is k-squashable.

This sharpens a theorem from [13], which used a 2-huge cardinal (a stronger
assumption) to get similar results. By Theorem 1.6, supercompactness is the
correct order of largeness in Theorem 1.5, although in the special case | X| = k, all
that is needed is weak compactness, not k-supercompactness (i.e., measurability).
This is discussed further in Section 2.

Theorem 1.6 Suppose o is such that *2 is squashable for every X > o. Then
there is a supercompact cardinal < o.

We write *2 for the product space here to distinguish it from the cardinal
exponent 2*. The first A such that *2 is squashable is related to the low end of
supercompactness and extendibility:

Definition 1.7 Forn < w, let ext,(k, \) assert that there is an elementary em-
bedding j : R(k +n) — R(\+n) such that j(k) = XA > k and j[k is the identity.
k is n-extendible iff ext, (k, \) for some A.
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Clearly, this property gets stronger as n gets bigger. Extendibility is inter-
leaved with supercompactness. If & is 1-extendible, then x is the '™ measurable
cardinal (see [10], Proposition 23.1). If k is 2"-supercompact, then there is an
A € [k]" such that ext;(a, ) for all o, 3 € A with o < . If & is 2-extendible,
then r is the k' element of the class {0 : o is 27-supercompact}.

Theorem 1.8 Let )\ be an infinite cardinal and assume that X s compact Haus-
dorff and squashable and that x(p, X) = X for all p € X. Then there are strongly
inaccessible cardinals o < f < k < A such that exty(«, ).

Theorem 1.9 If k is the first 1-extendible cardinal, X is least such that *2 is
squashable, and o is the least cardinal such that o is 27-supercompact, then k <
A< o.

These theorems improve a result from [9], which obtains a strongly inaccessible
cardinal < ) and the existence of 0% from the squashability of *2.

Observe that the character assumptions on X in Theorem 1.8 imply that
|X| = 2* (by the Cech — Pospisil Theorem and Arhangel’skii’s Theorem), so that
X will be squashable whenever some cardinal < \ is 2*-supercompact. Note
that there are many squashable spaces of all sizes whose existence does not entail
large cardinals. For example, by Theorem 1.2, a compact scattered space X is
squashable iff | X | > Ny. Likewise, if X is Corson compact and not scattered, then
X is squashable iff | X'| > 2% since whenever M is countably closed, Xp; = XNM
will be compact.

By Theorem 1.8, if « is the least strong inaccessible such that R(x) is a model
for “l-extendible cardinals exist”, then also R(k) is a model for “no compact
Hausdorff space all of whose points have the same character is squashable”.

2 Compactness and Large Cardinals

We begin by proving a strengthening of Lemma 1.4 which also makes it clear that
for a compact Hausdorff (X, 7), the squashability of X is equivalent to a statement
about objects of size | X |, although the original definition involved (X, T) € H(#),
where 6, and possibly also | T, exceeds | X|. To see this, we restate the definition of
X, replacing 7 by a base or a subbase (noting that w(X) < |X|), and replacing
H(#) by an arbitrary transitive model of ZFC — P:

Definition 2.1 If X is any set and A C P(X), then T4 denotes the topology on
X which has A for a subbase. (X, A) = (Y, B) means that (X, T4) and (Y, Tg) are
homeomorphic. If (X, A) € M < N, where N is a transitive model of ZFC — P,
then Xy denotes the set XNM with the topology which has, as a subbase, {UNM :
Ue AnM}.
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This is the same topology we get by applying Definition 1.1 to (X, 74) in the
case that 74 € N. Lemma 1.4 is immediate from the following:

Lemma 2.2 For compact Hausdorff (X,T), the following are equivalent:

1. (X, T) is squashable.

2. For all transitive N = ZFC — P, all (Y,B) € N such (Y,B) =2 (X,T), and
all sets a € N, there is an M < N such that Y,B,a € M, Yy is compact,
andY < M.

3. (2) restricted to N with |[N| = |X]|.
4. (2) restricted to N of the form H () for regular 6.

Also, for each fized k, we get the same four equivalents when “squashable” is
replaced by “k-squashable” in (1) and “Y € M7 is replaced by “|M| < k” in (2).

Proof. We shall only prove the “squashable” version of the lemma, since the
“k-squashable” proof is almost identical. Since (2) — (4) — (1) and (2) — (3)
are obvious, it is sufficient to prove (3) — (2) and (1) — (3).

For (3) — (2), fix N,Y,B,a as in (2). Let P < N with |P| = Y| = |X]|,
Y,B,a € P, and Y C P. Let () be the transitive collapse of P with 57 : ) — P
the Mostowski isomorphism, so that j : @ — N is an elementary embedding. Let
j(Y) =Y, j(B) = B, and j(a) = a. Since |@| = |X| and (Y,B) = (X,T) (by
compactness of X), we can apply (3) to @ to get M < @ such that Y,B,a€ M,
XN/M is compact, and Y z M. Now, let M = j“M.

For (1) — (3), first apply “squashable” to fix a regular § and an M such
that (X,7) € M < H(0), Xy is compact, and X ¢ M. Assume that (3) fails,
and fix (NV,Y,B,a, f) which is a counter-example in the sense that (N,Y,B,a)
is a counter-example to (2), |N| = |X|, and f : X — Y is a homeomorphism.
Then (N,Y,B,a, f) € H(), and the statement that it is a counter-example can
be expressed within H (), so that by (X,7) € M < H(f), we may assume that
(N,Y,B,a,f) € M. But then MNN < N, Y,B,a € MAN, Yoy = Yu
is compact, and Y & M N N (since f € M), so that (N,Y,B,a, f) is not a
counter-example. []

Proof of Theorem 1.5. Let j : V. — W be a |X|-supercompact embedding.
Then W is a transitive class, j is an elementary embedding, j(x) > |X]|, j[x is
the identity, and WXl ¢ W. Fix N,Y, B, a as in (2) of the “k-squashable” version
of Lemma 2.2, with |[N| = |X|, as in (3). Abbreviate the conclusion of (2) as
AM®(k, M, N,Y,B,a). Now j“N € W and ®" (j(k),7“N,j(N),5(Y),j(B),j(a))
holds, where ®" denotes relativization to the model W. Hence, we have also
AM®Y (j(k), M, j(N),j(Y),5(B),j(a)), and thus AM®(k, M, N,Y,B,a). []
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A similar argument shows that in the case |X| = k, we do not need k-
supercompactness (i.e., measurability), but only weak compactness; see Theorems
2.11, 2.12, and 2.13.

To reverse Theorem 1.5 and obtain extendibility and supercompactness from
squashability assumptions, we need to obtain elementary embeddings between
transitive models with suitable closure properties. Now, starting from (X, 7) €
M < H(0), we can let N be the transitive collapse of M and get an elementary
embedding j : N — H(0). If X is compact and all points of X have large
character, then we can deduce the correct closure properties of N by applying the
proof of the Cech — Pospisil Theorem:

Definition 2.3 A )\ — Cech — Pospisil tree in a space X is a tree K = (Ky:s €
SA2) satisfying:

1. Each K, is non-empty and 1s closed in X .
2. s g t— Ks 2 Kt-
3. KsﬁgﬂKsﬂl :w

4. If Ih(s) =, a limit ordinal, then Kg =), Ksa-

a<ly

Note that when discussing sequences s,t € $*2, lh(s) = dom(s), and s C ¢
means that s is an initial segment of ¢.

Theorem 2.4 (Cech and Pospisil) If X is compact Hausdorff and x(p, X) >
A for all p € X, then there is a X\ — Cech — Pospiil tree in X, and hence | X| > 27

Applied within a transitive model N, these trees can be used to prove that
P(A) C N:

Definition 2.5 Let N be a transitive model of ZFC — P, (X,T) € N, and N |
“T is a topology on X 7. Then (X, T) is truly compact iff, in V', the topology on
X which has T for a base is compact.

Lemma 2.6 Let N be a transitive model of ZFC — P with X, T, K € N. Assume
that N = “T s a topology on X and K is a A\ — Cech — Pospigil tree in X”.
Assume that (X,T) is truly compact. Then P(\) C N.

Proof. Prove by induction on v < X that 72 C N. Assume that v is a limit
(otherwise the induction step is trivial), and fix s € 72. Then for a < 7, induction
gives us sfa € N, so that K, is defined and is closed in X. Since (X,7) is
truly compact, ﬂa<’y K}, is non-empty, so fix x € ﬂa<’y K. Then, s = [J{t :
re K, &h(t)<~y}eN. [

Next, note that these truly compact (X, 7) occur naturally when we collapse
an elementary submodel:
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Lemma 2.7 Suppose that (X, T) € M < H(0) and Xy is compact. Let j : N —
M be the Mostowski isomorphism from a transitive N onto M, and let ](X) =X
and §(T) = T. Then N is a transitive model of ZFC — P and (X, T) is truly
compact. Furthermore, if X has no isolated points, A = min{x(p, X) : p € X},
and j(\) = A, then P()\) C N.

Proof of Theorem 1.8. We have (X,7) € M < H(#) with X, compact,
X & M, and x(p, X) = A for all p € X. Now, follow the notation in Lemma 2.7.
If A\ C M, we would have A = )\ and P(A) C M, which would imply X C M
because |X| = 2* by Arhangel’skii’s Theorem. Thus, if x is the first ordinal not
in M, then r < j(k) < X and k < X,

j+ N — H(f) is an elementary embedding. P(x) C P(A) C N, so & is
measurable and hence strongly inaccessible, so that j(k) is also strongly inacces-
sible. Thus, from P(k) C N and P(j(k)) C H(0), we get R(k + 1) C N and
R(j(k)+1) C H(A). Then, j | R(k+1): R(k+1) — R(j(x)+ 1) establishes that
extq (K, j(K)).

Now, j [ R(k+ 1) € H(#) and R(j(x) +1) € H(#) (since |R(j(rk) +1)| =
21(k) < 22 = |X| < ), so H(f) | exti(k,j(k)), so N E Ja < & lexti(a, x)].
Fixing one such «, and using R(k + 1) € N, we have ext;(«, ) is really true (in
V', and in H(#)), so using j again, there is a 5 < x such that ext;(a, 3). []

Proof of Theorem 1.9. We already have k < A\ < o by Theorems 1.8 and
1.5. But now if j : V. — W is a 27-supercompact embedding first moving o, then
the squashability of °2 implies that (°2 is squashable)"V by Lemma 2.2, since this
notion can be expressed with objects of size only 2°. Hence, *2 is squashable for
some A <o. []

To prove Theorem 1.6, we need the following minor modification of Theorem
2 of Magidor [12]:

Definition 2.8 If 2, B are structures for the same language, then B <, A means
that B is an elementary substructure of A with respect to all formulas of second
order logic.

Lemma 2.9 For any cardinal o, the following are equivalent.

1. Some cardinal < o is supercompact.

2. Whenever A is a structure for a finite language and |2A| > o, there is a
B <o A with |B| < |A.

3. Whenever A is a structure for a finite language and |2A| > o, there is a

B <, A with B £ A
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Proof. (1) <> (2) is from [12] and (2) — (3) is obvious. For (3) — (2), assume
(3), and fix A with |A| = A > 0. WLOG, A= (\; Ry,...,R,).

Apply (3) to the structure (R(A + w); €,%) to get M <o R(\ + w) with
A € M and M # R(A+ w). Then, if N is the transitive collapse of M, we
get j : N — R(A 4+ w) with j an elementary embedding with respect to second
order logic, 2 € ran(j), and j not the identity map. Let ](5[) = 2. Then
A= (\; Ry,...,Ry), where j()) = A,

Since j is second-order elementary, N must really equal R(X + w). It follows
that A < A, since there is no non-trivial elementary embedding of R(\ + w) into
itself (see [10], Corollary 23.14). Now, let B be the restriction of 2 to j“A. Then
B <, Aand Bl =< Y. O

Proof of Theorem 1.6. Assume that *2 is squashable for all A > o. By
Lemma 2.9, it is sufficient to prove that for all A > ¢ and all structures 2 =
(A; Ry,...,Ry), there is a proper elementary substructure B <, 2. So, assume,
for some fixed A > o, some 2 is a counter-example to this.

Applying squashability, fix 0, M with (X,7) € M < H(), where X = *2,
Xy is compact, and X € M. Obtain 7, X, N as in the proof of Theorem 1.8. Note
that 0 > (2")*. By M < H(f), we may assume that our counter-example 2 is in
M. Now, fix B so that B = j“\. Since P(X) C N, we have B <, 2, and B # A,
since j“X = A would imply that X C M. []

Finally, we consider the case where |X| itself is inaccessible. Here, to prove
squashability of | X|, weak compactness, or even just ITi-indescribability, suffices:

Definition 2.10 A cardinal x is T1}-indescribable iff whenever ¢ is a T} sen-
tence, A = (k; Ry,...,Ry,), and A = @, there is an o < Kk such that B :=
(a; Rilay, ..., RyTa) <A and B = .

This implies that x is weakly inaccessible, but not necessarily strongly in-
accessible. TIl-indescribability plus strong inaccessibility is equivalent to weak
compactness. Many authors include strong inaccessibility as part of the definition
of T}-indescribability; see [10], §6 for more details.

Theorem 2.11 Assume that k = |X| is [}-indescribable and that X, T,a €
H(0), where (X, T) is compact Hausdorff and 0 is reqular. Then there is an M
with X, T,a € M < H(0) such that |M| < k, M Nk € k, and Xy is compact.

Proof. Asin (3) — (2) of Lemma 2.2, it is sufficient to show that for any transitive
N | ZFC — P with [N| = k and Y, B,a € N such (Y,B) = (X, T), there is an
M < N such that Y, B,a € M, Y)s is compact, |M| < k, and M Nk € k. But
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since (N, €) may be coded by relations on x, and compactness of Y expressed by
a [T} sentence, we may apply IIi-indescribability to get M. []

Note that if K = 27, then x cannot be IT}-indescribable, and the space X = *2
is a counter-example to the theorem. That is 2 € M implies that p € M (by
M < H(0)), and hence p C M (by M Nk € k). But then |M| > 2? = k would
follow from compactness of X, (see Lemma 2.7). Without the “M Nk € £” in
the conclusion, we would get an M as in Theorem 2.11 by Theorem 1.5 whenever
k is above the first supercompact cardinal.

It is consistent for a k < 2% to be IT}-indescribable (see [11]), but the theorem
for these k is trivial by Theorem 1.2, since then X must be scattered. It is also
consistent to have a TT{-indescribable x with 2% < x < 2% and the theorem does
have non-vacuous content in this case. For strongly inaccessible x, the theorem
fails whenever k is not weakly compact:

Theorem 2.12 Assume that k is strongly inaccessible and not 11} -indescribable.
Then there is a compact Hausdorff X of size k such that no M satisfies (X,T) €
M < H(#), MNk €k, and Xy is compact.

Proof. Since « is strongly inaccessible and not weakly compact, there is a k-
Aronszajn tree, T C <"2. Let X be the corresponding Aronszajn line, which is the
space of all maximal chains in T; this is a compact LOTS under its lexical ordering.
Then X is compact, |X| = x (since x is strongly inaccessible), and there are no
increasing or decreasing r-sequences in X. Now, assume that (X,7) € M < H(#),
v=MnNk € k, and X,; is compact. We shall derive a contradiction.

Note that « is strong limit cardinal and |X N M| = ~. Since X is a LOTS,
the topology of X, is just the order topology induced by the natural ordering on
X N M, so compactness of X;; implies that X N M is Dedekind-complete. Let 0
and 1 be the first and last elements of X. X N M is not dense in X (since 27 < k),
so fix pe X\ (X NM). Let a = sup([0,p) N M) and b = inf((p,1] N M). Then
a<p<hbh.

If a,b ¢ M, then [0,p) N M has no least upper bound in the set X N M,
contradicting the Dedekind completeness of X N M. So,a € M or b € M.

Say b € M. Note that [0,b) cannot have a largest element (using M < H(6)
and [p,b) N M = (). Let o be the cofinality of the order type [0,b). Then o € M
and o < k (since X is Aronszajn), so o < . Since o € M, there is a o-sequence,
¢ =(co:a<o)y b with@e M. But then, each ¢, € M, contradicting
p,)yNM=0. []

Theorem 2.13 Assume that  is strongly inaccessible and not I1i-indescribable,
and that there are no 1-extendible cardinals less than k. Then there is a compact
Hausdorff Z of size k which is not squashable.
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Proof. Let Y, be the disjoint sum of all *2 for A a cardinal less than &, and let
Y be the 1-point compactification of Yy. Let X be a k-Aronszajn line, as in the
proof of Theorem 2.12. Let Z be the disjoint sum of X and Y.

If (Z,T) € M < H(f) and Z), is compact, then A C M whenever A < x and
A € M (since *2 is not squashable by Theorem 1.9). Tt follows that M Nk is
an ordinal < k. But M Nk € k would yield a contradiction, as in the proof of
Theorem 2.12, and M Nk = k implies that Z C M. []

3 Remarks on Corson Compacta

A Corson Compactum is a space X homeomorphic to some closed Y C [0, 1]
such that {a : y, # 0} is countable for all y € Y. A Strong Eberlein Compactum
is a space X homeomorphic to some closed Y C *{0, 1} such that {«: y, = 1} is
finite for all y € Y. By Alster [1], this is equivalent to X being a scattered Corson
compactum. We now recall Bandlow’s characterization of Corson compacta:

Definition 3.1 If (X,7) € M < H(9), then M separates X iff for all a,b €
X N M with a # b, there is an f € C(X) N M such that f(a) # f(b).

Here, C'(X) = C(X,R). Note that for Tychonov spaces, we trivially get such
an f when a,b € X N M. For X compact Hausdorff, Bandlow’s terminology for
“M separates X7 was “p3; is an M-retraction”.

Theorem 3.2 (Bandlow [2]) Let (X,7T) be compact Hausdorff and (X, T) €
H(0). Then the following are equivalent:

1. X 1s Corson compact.
2. M separates X for all M such that (X,T) e M < H(6).
3. {M € [H(0)]“ : M separates X} contains a club.

As usual, C C [I]¥ is club iff C is closed (|, ¢, An € C whenever each A, € C
and Ap C A; C ---) and unbounded (VA € [I]¥3IB € C[A C B]). Note that
{M e [H):(X,T)e M < H()} is always a club.

Corollary 3.3 Assume that (X,T) € H(0), where X is compact Hausdorff and
0 is reqular and uncountable. Then the following are equivalent.

1. X 1is strongly Eberlein compact.
2. X N M is compact for all M such that (X,T) € M < H(6).
3. {M € [H(0)]“ : X N M is compact} contains a club.
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Proof. (2) — (3) is trivial and (1) — (2) is easy from the definition. For
(3) — (1), observe that whenever X N M is compact, we have X " M = X N M,
so that M separates X. Thus, X is Corson compact by Theorem 3.2. Since X is
also scattered by Theorem 1.2, we have that X is strongly Eberlein compact by

Alster [1]. [

Note that in (3), we cannot replace “contains a club” by the weaker “# (), or
even “is stationary”, as we had in the corresponding (3) of Theorem 1.2:

Example 3.4 There is a scattered compactum X which is not strongly FEberlein
compact such that {M € [H(0)]“ : X N M is compact} is stationary.

Proof. Let S C w; be a stationary set of limit ordinals such that w;\S is also
stationary. For v € S, let £/, C v be a cofinal set of successor ordinals of order
type w. Define the topology Ty on wy by: U € T iff E, \ U is finite for all
v € SNU. Observe that 7y is locally compact Hausdorff and finer than the usual
order topology on wy. Also, v < wy is closed in Ty iff v ¢ S. Now, let T be the
one-point compactification topology on wy 4+ 1. If M is countable and M < H (#),
then M N X = vy U{w;} for some limit vy, < wy. If ypy € S, then X N M is not
compact, so X is not a strong Eberlein compactum by Corollary 3.3. However,
X N M is compact whenever vy, ¢ S, and {M € [H(0)]“ : ya ¢ S} is stationary.
L]

Finally, we comment on squashings:

Definition 3.5 If (X, 7) is compact Hausdorff, E C X, and o is a function from
X onto E, then o is a squashing of X onto F iff c o0 = 0 and o is continuous
with respect to T on X and some compact Hausdorff topology T' C T[E on E.

Equivalently, E is a section of some (continuous) map from X onto some
compact Hausdorff space. A retraction is the special case where 7' = T [ E.

Now, suppose that (X,7) € M < H(0). For x,y € X, define x ~ y iff
f(x) = f(y) for all f € C(X)N M, and let [z] = {y € x : © ~ y}. Note that
[z] N X NM| <1< |[z]NnXnN M| For the second inequality, use M < H(#) to
show that the family of sets of the form {y € X N M : |f(y) — f(z)| < €}, where
e>0and f € C(X)N M, has the finite intersection property.

Following Bandlow [2], M separates X iff Vo € X][|[z] n X N M| = 1], in
which case we have a retraction p : X — X N M, where p(z) is the (unique)
y € X N M such that y ~ z. Following Junqueira and Tall [8], X, is compact
iff Vo € X]||[z] " X N M| = 1], in which case we have a squashing o : X — Xy,
where o(x) is the (unique) y € X N M such that y ~ z.

If M separates X and X,; is compact, then p and o agree, so that X N M is
closed in X and is homeomorphic to X,,. In particular, this applies when X is
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Corson compact and X, is compact. However, for Corson compacta, it is easy to
see directly that X N M = X,;, whether or not X}, is compact. Other examples
where X N M =2 X, are discussed in [§], §2.
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