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Abstract

A G-loop is a loop which is isomorphic to all its loop isotopes.
We apply some theorems about permutation groups to get information
about G-loops. In particular, we study G-loops of order pq, where p < ¢
are primes and p{ (¢ — 1). In the case p = 3, the only G-loop of order
3q is the group of order 3¢q. The notion “G-loop” splits naturally into
“left G-loop” plus “right G-loop”. There exist non-group right G-loops
and left G-loops of order n iff n is composite and n > 5.

1 Introduction

An important concept in the theory of loops is that of isotopy, and a G-loop is
a loop which is isomorphic to all its loop isotopes. All the relevant definitions
are given in Section 2, which stresses the algebraic point of view. These
concepts also occur naturally in geometry, since isotopic loops correspond to
the same 3-net; see Bruck [2], and Barlotti and Strambach [1].

R. L. Wilson, Jr. [13] showed that there are no non-group G-loops of prime
order. It has remained open whether there are such loops in all composite or-
ders greater than 5, although many of these orders have been handled by
Wilson [14] and Goodaire and Robinson [6]. Here, we provide some informa-
tion about orders of the form pg, where p < ¢ are primes and p 1 (¢ — 1);
these orders are not covered by [14, 6]. In particular, we show (Theorem 3.11)
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that there are no non-group G-loops of order 3¢ whenever ¢ > 3 is prime and
31(¢—1).

By E. L. Wilson [12], a loop is a G-loop iff it is both a left G-loop and a right
G-loop, where a right G-loop is one in which every element is the companion
of a right pseudo-automorphism. Improving on [14], we show (Theorem 2.21)
that there are no non-group right or left G-loops of prime order; however
(Theorem 2.22), there are such loops in all composite orders greater than 5.

In pursuing this work, we have found a number of computer tools useful:
OTTER [9] is used to derive equations from other equations. SEM [15] is
used for constructing models of various algebraic theories, such as the G-
loop in Table 1, Section 4. MAGMA [8] is used (among other things) for
computations with permutation groups, and includes a database of transitive
groups and primitive groups of small degrees.

2 Isotopy

Throughout this section, (G, -) always denotes a loop. Since loops are rather
intractable, in comparison with groups, one attaches to G a number of permu-
tation groups, and the study of these elucidates properties of G. See Dixon and
Mortimer [4] for basic facts about permutation groups. We use the following
standard notation:

Definition 2.1 If G is any set, then SYM(G) is the group of all permuta-
tions of G. For a subgroup X < SYM(G) and ¢ € G, the stabilizer of ¢ is
X, ={ae X :ca=c} Ifaec SYM(G), then fix(a) = {z € G : za = z}.
Sp=8SYM({1,2,...,n}).

As with groups, the left and right actions of GG on itself are important:
Definition 2.2 Define, for each a € G, L, and R, in SYM(G) by:
xL,=a-x R, =x-a

In addition, the autotopy group (see [1, 2]), plays a much larger role in
loop theory than in group theory. This, and some associated groups and the
key maps between them, are displayed in Figure 1. This figure also displays
the order of each group in the case that G is a G-loop. These groups all occur
somewhere in the literature, although not all together in such a diagram, and
not with uniform names, so we now present all the relevant definitions; see [7]
for further discussion.
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Figure 1: The Basic Permutation Groups
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Definition 2.3 The autotopy group, AT OP(G,-), is the set of all triples
(ﬂa 0577) in (SyM(G))3 such that

Vz,y € G[zf - ya = (xy)]

Then

RATOP(G,:) = {(v,a,7): (7,a,7) € ATOP(G)}

Observe that ATOP(G) is a subgroup of (SYM(G))?3, and that both
LATOP(G) and RATOP(G) are subgroups of ATOP(G). Furthermore,
the L, and R, are related to the autotopy group by:

Lemma 2.4 Suppose that (3, c,v) € ATOP(G,-). Let
b=15"" a=la! c=la d=13 .
Then
B=Ryy a=Ly (wa)y - (by)y = (zy)y

= /BRC a = LbﬁRc l‘ﬁ ) ((by)ﬁ ’ C) = (xy)ﬁ - C
vy=aly; [f=R,aly (d-(ra)a) -ya=d-(

forall z,y € G.

Equations of this sort, for a single permutation, are more valuable than
facts about triples, and we get important subgroups of SY M(G) by projecting
out triples:

Definition 2.5 Define IT), 11,11, : (SYM(G))* = SYM(G) b
HA(ﬁaoZ?fY):/B Hp(ﬁaaav):a Hu(ﬁaaaf}/):f}/

Definition 2.6
I7(G) =11, (AT OP(Q))

RP(G) = HA(ATOP( ) LP(G) = IL,(ATOP(G))
RIL(G) = I,(RATOP(G)) = i(RATOP(G))

LTT(G) = T (LATOP(G)) = I (LATOP(G))

RPA(G) = HA(LATOP( ) LPAG) = IL(RATOP(G))
AUT(G) = IL(RATOP(G) N LATOP(G))

ITA(G) = (TZ(G)h
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The groups ZZ,RP,LP,RIZ,LIT are important because, for G-loops,
they act transitively on G; when G is a group, these five are the same, and
are known as the holomorph of G. RPA, LPA, AUT,IZA occur naturally
as stabilizers of 1:

Lemma 2.7 RPA(G) = (RP(G))1. LPAG) = (LP(G)). AUT(G) =
(LIZ(G))h = (RIZ(G)).

In terms of equations, we have:

v E€IL(G) <= 3a,be GVry € G[(za)y- (by)y = (zy)7] (1)

v € RII(G) <= 3Tbe GVrye Glay- (by)y = (zy)7] (2)
v € LIL(G) <= 3Fae GVzy e Gl(za)y-yy = (zy)7] (3)
v €AUT(G) <= Vay€Gloy-yy= (fvy)v] (4)
B € RPAG) <= 3ceGVaxyeGzf-(yB-c) = (zy)B- ¢ (5)
a€ LPAG) <= 3ddeGVryeG[(d-za) ya=d- (zy)a] (6)
JERP(G) = BheeGVayClud ()30 = )i (1)
a€ LP(G) < 3Ja,deGVzyeG[(d- (za)a) ya=d- (zy)a] (8)

AUT (G) is the group of automorphisms of (G). Elements of RP.A and LPA
are the right and left pseudo-automorphisms of G; the ¢ in (5) and the d in
(6) are called companions of 3 and a, respectively. In (2), b = 17!, and in
(3), @ = 1!, Drisko [5] calls the elements of ZZA(G) the middle pseudo-
automorphisms; for v € TZZA(G), we have (1) with ba = 1.

For every loop, we may define the left nucleus (V,), the middle nucleus
(N,), and the right nucleus (V,):

Definition 2.8 For any loop (G,-) and a € G:
a € Nx(G) iff Vz,y € G la(zy) = (az)y]
@ € NJ(G) iff Yoy € G [a(ay) = (wa)y]
a € N,(G) iff Vo,y € G [z(ya) )(xy)a]

N(G) = NA(G) N N,(G) NN, (
It is easy to verify the following equivalents, in terms of autotopy.

QII

Lemma 2.9 For any loop (G,-):
N\(G)={a€eG: (L, I,L,) € ATOP(G,")}.
N,(G)={a€eG: (R, L;'I) € ATOP(G,")}.
N,(G)={a€G:(I,R, R,) € ATOP(G,")}.

Elements of ZZA, RPA, LPA need not be automorphisms of GG, but they

define automorphisms of the various nuclei:
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Lemma 2.10

1. For v € ITA(G):
a. If either v € Ny ory € N,, then xy - yy = (xy)y.
b. v [ Ny € AUT(N,).
c. v N, € AUT(N,).

2. For 3 € RPA(G):
a. If either x3 € Ny or yB € N,, then z3-yfS = (zy)0.
b. B 1 Ny € AUT(N)).
c. BI N, € AUT(N,).

3. For a € LPA(G):
a. If either ya € N, or xa € N,,. then za - ya = (zy)a.
b. a [ N, € AUT(N,).
c. a | N, € AUT(N,).

See [7] for a proof of (1). (2) and (3) are similar.

Corollary 2.11 If G s finite:
1. For v € TZ(G):
Ny C fix(y) = |Na] [ [fix(y)]

N, C fix(7) = |Np| | [fix(y)|
2. For B € RP(G):

Ny, € fix(8) = [Nyu| | [fix(5)]

Ny C fix(5) = |Na| | [fix(5)]

3. For a € LP(G):
N, € fix(a) = [N,| | [ix(a)
N, € fix(a) = [Np| | [fix(a)]

Proof. For (1): assume that N, C fix(y). Then 1 € fix(y), so v € ITZA.
By Lemma 2.10, we have u - vy = (uv)y whenever u € N,, so that v €
fix(y) = Nx-v C fix(7y). Since distinct right cosets of N, are disjoint, we have
[Nl ()] O

We remark that the apparent symmetry among Ny, N,, N, in statements
such as 2.10 and 2.11 is related to the existence of auxiliary loop operations.
For example, if z oy = y -z, then N)(G,0) = N,(G, "), N,(G,0) = N\(G,"),
and N,(G,0) = N,(G,-). If zxy = z/(y\l), then Ny(G,x) = Ni(G,"),
N,(G,*) = N,(G,-), and N,(G,x) = N,(G,-). This part of the exposition
might be more transparent if done geometrically, from the point of view of
3-nets, as in [1].

Using Lemma 2.9, we can embed the three nuclei into the autotopy group,
and then identify the kernels of the surjections shown in Figure 1:
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Definition 2.12 Define ®y,®,,®, : G — (SYM(G))? by:

(I)/\(a) = (Lglale(:I)
q)ﬂ(a) = ([7 Ra; Ra)
@u(a) = (Ra7L;17I)

Lemma 2.13 The maps ®) [ Ny, ®, [ N,, ®, [ N, are isomorphic embed-
dings from Ny, N,, N, respectively, into (AT OP(Q))3.

Lemma 2.14
ker(Il, : ATOP — RP) = ®,(N,) = ker(Il, : LATOP — RPA)
ker(Il, : ATOP — LP) = ®(N,) = ker(Il, : RATOP — LPA)
I, : ATOP — IT) = &, (N,)
II,: LATOP — LIT) ={(I,1,I)} = ker(Il, : RATOP — RIZI)

We now turn to G-loops:

Definition 2.15
G is a G-loop iff Va,b € G Ja[(Ry«, Ly, ) € AT OP(G)].
G is a right G-loop iff Va € G Ja [(R.a, a, ) € ATOP(G)).
G is a left G-loop iff Vb € G Ja[(«, Lyar, ) € AT OP(G)].

Lemma 2.16 G is a right G-loop iff LIZ(G) acts transitively on G, and G
is a left G-loop iff RIZ(G) acts transitively on G.

Another equivalent to right G-loop is that every element of the loop is the
companion of some right pseudo-automorphism; likewise for left G-loops.

Lemma 2.17 A loop is a G-loop iff it is both a left G-loop and a right G-loop.

The non-obvious direction of this lemma is due to E. L. Wilson [12]; see
also [7] for a proof, and for further references to the literature. Bryant and
Schneider [3] called ZZ(G) the group of G. We use the term ZZ(G) because
its elements are the Isomorphisms onto principal loop Isotopes, and a G-loop
is a loop which is isomorphic to all its loop isotopes. In [7], it is shown that
the G-loops do not form an equational variety, so that we cannot expect in
general that the o in Definition 2.15 be uniformly definable by some expression
in R,, Ly, Ry, Ly. The emphasis in [7] is on the conjugacy closed (CC) loops,
introduced by Goodaire and Robinson [6]; these form an equational variety
which is a sub-class of the G-loops.
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Definition 2.18 G is right CC iff L, € LIZ(G) for all a € G. G is left CC
iff Ry € RIZ(G) for all b € G. G is conjugacy closed iff G is both left CC
and right CC.

It is clear by Lemma 2.16 that right CC implies right G and left CC im-
plies left G. It is easy to express right CC and left CC as equations. By
6], N(G) = N\(G) = N,(G) = N,(G) for CC-loops; see [7, 10] for fur-
ther discussion. Furthermore, by [6], in CC-loops, R,RyR;," € AUT(G) and
LoLyL,, € AUT(G) (this is immediate by Lemma 2.7 and Definition 2.18);
this provides some non-trivial automorphisms for G, since a loop in which
RaRbR;bl = [ for all a, b is a group. However, there is a G-loop of order 8 (see
Table 1, Section 4) whose automorphism group is trivial. This is the smallest
possible such order, since G-loops of prime order are groups (by [13]), and
Bryant and Schneider [3] computed all the 109 loops of order 6, together with
their isotopy classes, finding only three G-loops: the two groups, plus one
CC-loop.

The next two lemmas justify the orders displayed in Figure 1.

Lemma 2.19 Suppose that G is a finite right G-loop. Then

ILIT(G)| = |AUT(G)|- |G| (1)
ILATOP(G)| = |AUT(G)|- |G| (2)
[RPA(G)| = |AUT(G)|-|G]/INp| (3)

Proof. (1) is immediate from 2.7 and the transitivity of LII(G). Then, (2)
and (3) follow by Lemma 2.14. []

Of course, the mirror of this argument justifies the orders for RZZ(G),
RATOP(G), and LPA(G) in Figure 1 for left G-loops.

Lemma 2.20 Suppose that G is a finite G-loop. Then all the orders shown
in Figure 1 are correct.

Proof. Let £L = LATOP N RATOP; so L is the set of triples (v,~,7)
such that v € AUT. Then £ < ATOP and |[L| = |AUT]|. Now, as in
Definition 2.15, suppose we have ¢ = (R,7, Lyy,7) € ATOP and also ¢ =
(R, Lyy', ') € ATOP. Then ¢'y)~t € L, so that ¢ and ¢’ are in the same
right coset of £. If follows from this that [ATOP : L] = |G|*>. The rest follows
by Lemma 2.14. []

The equation [ZZ(G)| = |[AUT(G)| - |G|* / |N,| is due to Bryant and
Schneider [3]. R. L. Wilson, Jr. [13] used this to conclude that if |G| = p, a
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prime, then G must be a group: if not, then |N,| = 1, so that p* | |ZZ|, which
is impossible, since ZZ < SYM(G) and p* { p!. In fact:

Theorem 2.21 If G is a right G-loop or a left G-loop and p = |G| is prime,
then G is a group.

Proof. Assume that G is a right G-loop. RPA < SYM(G\{1}), and hence
pt|RPA|. Then, by Lemma 2.19.3, p | [N,], so that N, = G. []

This is the only restriction on the orders of non-group right and left G-
loops, other than the obvious remark that every loop of order less than 5 is a

group:

Theorem 2.22 There are non-group right CC and left CC loops of all com-
posite orders greater than 5.

Proof. Since there are in fact non-group CC-loops of all even orders greater
than 5 (see Goodaire and Robinson [6] and Wilson [14]), it is sufficient to
produce a right CC-loop of order mn whenever m,n > 3. We shall produce
such a loop operation on Z,, X Z,. In the following, r, s, denote elements
of the cyclic group Z,,, with addition being understood to be modulo m, and
i, j, k denote elements of Z,,.

Fix a map € : Z,,, — Z,,, and define

(ryi)-(s,7)=(r+s,i+e(r)-j) .

We shall show that for an appropriate choice of €, this product satisfies the
theorem.

First, assume 1 < €(r) < r and €(r) is relatively prime to n, so that it
is a unit in the ring Z,. This is sufficient to ensure that - is a quasigroup
operation. Next, assume that €(0) = 1, so that (0,0) is the identity element.

Now, right CC is equivalent to the equation z(yz) = ((2y)/2)(2x) (see [6]).
This equation holds because if we set z = (r,4), y = (s,J), 2 = (¢, k), then we
compute both sides of the equation to be (t + s+ r, k + €(t)j + €(s)e(t)i).

Finally, we need associativity to fail. With the same z,y, z, we see that
(zy)z # x(yz) whenever €(r+s)k # e(r)e(s)k. Since m,n # 2, let ¢(1) = 1 and
e(—1) = —1, so that (1 + —1) =1 # —1 = ¢(1)e(—1). Then (zy)z # z(yz)
whenever r =1,s = -1,k =1. []

The situation for G-loops of composite order is more complicated, as we
see in the next section.
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3 Order pq

Here, we consider non-group G-loops of order pg, where p, ¢ are distinct primes,
p1(g—1),and ¢ 1 (p—1). We do not know if there are any such loops, but we
can prove enough lemmas about them to prove that there are none in the case
p = 3. For simplicity of exposition, we do not assume p < ¢, since a number
of arguments are symmetric in p, gq.

Lemma 3.1 Suppose that G is any non-group loop of order pq, where p, q are
distinct primes and g1 (p — 1):

1. If ¢ | IZA(G), then |Ny| is 1 or g and |[N,| is 1 or q.

2. If ¢ | RPA(G), then |Ny| is 1 or ¢ and |[N,| is 1 org.

3. If ¢ | LPA(G), then |N,| is1 or q and |N,| is 1 or q.

Proof. For (1): choose v € ZT.A such that vy has order ¢; then ¢ | |fix(y)].
Now, assume that |N,| is neither 1 nor ¢; since G is not a group, we have
|Nx| = p, so that Ny = Z,. Since 7 is an automorphism of N, (by Lemma
2.10) and ¢ 1 (p — 1), we have N, C fix(7y), so that p | |fix()| (by Corollary
2.11), which is impossible, since v # I. []

Lemma 3.2 Suppose that G is a non-group G-loop of order pq, where p,q are
distinct primes and q { (p — 1). Then either |N,|,|N,|,|Ny| are all in {1,q},
or one of these three numbers is p and the other two are q.

Proof. Say |N,| ¢ {1,q}; then |N,| = p, so that ¢ | ZZA(G) because
|ZZA| = |G|-|AUT|/|N,|. Then Lemma 3.1.1 implies that |N,|, |N,| € {1, ¢}.
But if |N,| or |N,| were 1 rather than ¢, a similar argument, using [RPA| or
|LPA|, respectively, would contradict 3.1.2 or 3.1.3. []

In the case where N, = N, = N, = N (as we have with CC-loops), this
lemma says that | V| is either 1 or ¢. If ¢ < pand ¢t (p—1) , then there are no
non-group CC-loops of order pq (see [7]), whereas if ¢ > p (so the ¢ 1 (p—1) is
trivial), then there is a CC-loop of order pg whenever p | (¢ —1) (see Goodaire
and Robinson [6]; their loop had |N| = ¢). It is not in general true that the
three nuclei of a G-loop are the same; see Section 4.

Corollary 3.3 Suppose that G is a non-group G-loop of order pq, where p,q
are distinct primes ¢1 (p— 1), and p{ (¢ —1). Then |N,| = |N,| =|N,| =1.

We insert here a few simple facts about permutation groups:
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Lemma 3.4 Suppose that p,q are distinct primes and g 1 (p — 1). Suppose
that X is a transitive subgroup of Sp, and p* 1 |X|. Suppose also that X has
only one Sylow p-subgroup. Then X contains a pq-cycle.

Proof. Let P = (a) be a Sylow p-subgroup and let § have order ¢q. Note that
fix(ar) = 0, since a € fix(a) would imply that P < X,, whereas p 1 |X,|. Thus,
« is a product of ¢ p-cycles. Since P is unique, S~ 'PS = P, and hence, by
q1(p—1), fa=ap. It follows that af is a pg-cycle. []

Corollary 3.5 Suppose that p, q are distinct primes, ¢t (p—1) andp{ (¢—1).
Suppose that X is a transitive subgroup of Syq, and |X| is either pq or 2pq.
Then X contains a pq-cycle.

Proof. A simple counting argument shows that X must have either a unique
Sylow p-subgroup or a unique Sylow g-subgroup, so apply Lemma 3.4. []

Lemma 3.6 Suppose that p,q are primes, p < q, and p 1 (¢ — 1). Suppose
that X is a transitive subgroup of Sy, with ¢* | |X| and ¢* 1 |X|. Then X
cannot contain a pq-cycle.

Proof. Suppose that X' does contain a pg-cycle; equivalently, there are o, 3 €
X, where « is a product of ¢ p-cycles, § is a product of ¢ p-cycles, and
fa = aff. We may assume that (3 is oy---0,_1, where each o; is a g-cycle,
and o oo = O(i4+1) mod p-

Now, let Q be a Sylow g-subgroup of X with 8 € Q. Then Q = Z, x Z,.
Say Q = (f,6). Since § 136 = 3, each § '0;0 must be o; for some j. But
since ¢ > p, there is no non-trivial permutation of {op,...,0,_1} of order
g, so in fact each 0 '0;0 = o0;. It follows that § is of the form ago = -aﬁp_’f.
Then, replacing 6 by another generator, we may assume that ¢, = 0, so that
6 =obolz.. -Uf;p:f. Let § = ada~" =o' ol> - -aﬁpjzl. This is another element
of order ¢ which commutes with 3,4, so that (f,4,0) would have order ¢
(which is impossible) unless 6 € (3, )

Since 0 € (3, ), we have, over the field Z,, three linearly dependent vec-

tors:

i=01,1,1, --- ,1,1)
07617627 e 7£p—27€p—1)
€17€27€3 7617*170)
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Say (over Z,),we have @ = zil +y0. If {; = 0, we easily derive lo = l3 =--- =
0, which is impossible, so, multiplying by a scalar, we might as well assume
that /; = 1, and hence x = 1, so that @ = & + yv. Then ¢, = 1+ y, and then
ly =1+ yly =1+y+y? and so forth. In particular, £,_; = 1+ yl, o =
l+y+y?>+--y*2 andthen 0 =1+yl, , = 1+y+y>+---yP % and
hence y? = 1. Since also y* ! =1 (in Z,) and p { (¢ — 1), we have y = 1,
contradicting 1 +y +y2+---9y?71 =0. [

Theorem 3.7 Suppose that G is a G-loop of order pq, where p,q are primes,
p<gq,andpt(q—1). Then |[AUT(G)| > 3; equivalently, |LIZ| = |RII| >
3pq.

Proof. Suppose that a = |AUT (G)] is either 1 or 2. Since |LIZ| = apgq,
Corollary 3.5 implies that £ZZ contains a pg-cycle. However, since |N,| =1
by Corollary 3.3, |ZZ| = ap®q?, so that by Lemma 3.6, ZZ cannot contain a
pg-cycle, which is a contradiction, since LIZ < 7IZ. []

It is actually not hard to improve this to |AUT (G)| > 6, using the Sylow
Theorems plus the fact that the case p = 3 will be excluded by Theorem 3.11.
However, there seems to be little point in pursuing a detailed study of a class
of loops which might very well be empty.

We proceed to show that p = 3 is impossible. First note the following fact,
which is easily proved by elementary combinatorics:

Lemma 3.8 If G is a finite loop and H is a proper subloop of G, then |H| <
351G
5|G.

This lemma, plus the fact that fix(«) is a subloop whenever « is an auto-
morphism, can be used to limit AUT (G):

Lemma 3.9 Suppose that G is a non-group G-loop of order 3q, where q is a
prime, 3 < q, and 31 (¢ —1). Then ¢t |AUT (G)|.

Proof. Suppose that ¢ | |AUT|. We shall derive a contradiction. First note
that ¢* 1 |[AUT| because |ZZ| = 9¢*| AUT| since |[N,| = 1 by (Corollary 3.3),
and |ZZ| | (3¢)! whereas ¢* 1 (3¢)!. Likewise, ¢* | |[LZZ| and ¢* { |[LZZ|. We
can now describe the Sylow g-subgroups of AUT and LIZT.

Consider any v € LZ7 of order q. v cannot be a single g-cycle: If it were,
then let 7/ € (LZIZ); = AUT be conjugate to . Then fix(y') is a subloop of
order 2¢q, contradicting Lemma 3.8. Hence, 7 is a product of 2 or 3 g-cycles.
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Now, fix an a € AUT of order q. Then we can partition G into disjoint
sets A, B,C, where 1 € A = fix(a), and a = 077!, where 0,7 are g-cycles
acting on B, C, respectively. A is a subloop of G, and |A| = |B| = |C| = q.

Next let Q a Sylow g-subgroup of LZZ containing ov. Then Q = Z, x Z,
and no element of @ can be a single ¢g-cycle. It follows that one can find a
g-cycle X acting on A such that @ = {\o/7% : i+ j + k = 0 mod ¢}.

Now, A = fix(a) is a subloop of G and A € LTIZ(A), so that A is a right
G-loop, and hence A = Z, by Theorem 2.21. Furthermore, A is the only
subloop of G isomorphic to Z,. To see this, let U be the union of all such
subloops. Then |U| =1+ ¢(q — 1) for some ¢ < 3, since two such subloops
must meet in {1}. However, by applying the automorphism «, we see that
U N (BUC) must be either B, C, BUC, or 0, so q | |U|. Hence, £ = 1 and
Un(BUC)=0.

It follows now that every automorphism of G takes A to A, and hence
every automorphism of order ¢ is the identity on A.

Next, note that Q is the only Sylow g-subgroup of LZIZ. To see this,
suppose we had another one, 0= {)\W ti+j+k = 0mod ¢}, where \, 6,7
are g-cycles acting on the disjoint sets A, B, C respectively, with 1 € A. Slnce
the automorphism 677! is the identity on A we must have A = A. We may
assume (switching B, C' if necessary) that |B N B| > 2, so fix distinct by, by €
BN B. Say by = byo” and by = b16°. Now consider the automorphism v =
o't 767575, Then AU {b} C fix(y) C G, so that one of the pairs (A, fix(7))

or (fix(y),G) will contradict Lemma 3.8 unless fix(y) = G. Hence, 6°577° =
o'r" € Q,s0that A=A B =B, € (o), and 7 € (r). Furthermore,
A € LTII(A), so that \ € ()\>, since ,CII( ¢) contains just one g-subgroup
(the translations). It follows that (Q U Q) is an abelian g-group, which is
impossible.

Now, fix § € LZZ of order 3, and let M = (Q,§). Then |M| = 3¢* (since
Q<LTIT). Note also that M is non-abelian, since no product of 3-cycles could
commute with both o771 and A7 !

In fact, there is an M < S3, with this description. However, our M is
isomorphic to an N < S3q_1 = SYM(G\{1}), since LATOP = LIT (viall,)
and LATOP = RPA (viaIly, since |N,| = 1). This yields a contradiction as
follows: Let @' be the (unique) Sylow subgroup of N and let ¢’ be an element
of N of order 3. Then Q' = Z, x Z, must be generated by two disjoint ¢-
cycles. Conjugation by ¢’ maps Q' to @', and this cannot happen unless this
conjugation is the identity, which is impossible because A is non-abelian. []
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Lemma 3.10 Suppose that G is a non-group G-loop of order pq, where p < q
are primes and p{ (¢ —1). Then each of the groups LP(G),IZ(G), RP(G) is
non-primitive, and leaves invariant some block system Y consisting of p blocks
of size q.

Proof. Let X denote one of these groups. Then X < S, is transitive, and,
by Corollary 3.3, |X| = |AUT (G)|p*q®. Since ¢? | |X|, a theorem of Praeger
[11] implies that X' cannot be primitive unless A,, < X'. However, if A,, < X,
then, since [X : AUT (G)] is odd, the Sylow 2-subgroups of AUT (G) are also
Sylow 2-subgroups of X', so that AUT (G) would contain an element of the
form a = (a,b)(c,d). But then fix(a)) would be a subloop of G of order pq —4,
contradicting Lemma 3.8.

Finally a block system for X cannot consist of ¢ blocks of size p, since that
would imply that |X] | (p!)?(q!), whereas ¢* 1 (p!)4(¢!). []

Theorem 3.11 Suppose that q is a prime, 3 < q, and 31 (¢ — 1). Then the
only G-loop of order 3q is the group of order 3q.

Proof. Assume that G is not a group. Let X, 3, Y, be block systems
for LP,ZZ,RP, as in Lemma 3.10. Observe first that each of these block
systems is unique for its respective group (since ¢ is prime); then, in view
of the containments of the transitive groups £LZZ,RZZ in LP,ZZ,RP (see
Figure 1), the three are actually all the same, so now denote them just by
¥ ={A, B,C}, where |[A| = |B| = |C| = ¢, and 1 € A. Then X is also a block
system for the intransitive groups RPA, LPA.

Let W : LIT — RPA be the canonical surjection, which is an isomorphism
here because |N,| = 1. Note that if v € LIZ, then we have the equation
(za)y - yy = (zy)y, where a = 1971, and then ¥(vy) = R,7.

Since ¢ | |[LZZ| and ¢* 1 |LZZ]| (by Lemma 3.9), let Q = (a) be a Sylow g-
subgroup of LZZ. Then o = Ao, where A, 0,7 are g-cycles acting on A, B, C'
respectively. If aa = 1, then ¥(«a) = R, fixes 1 and hence is the identity
on A, since it has order ¢ and leaves ¥ invariant. Thus, the permutations
R, and X! agree on A. Say A = {1 = ag,a = ay,as,...,a,-1}, where
At = (ag,a1,a9,...,a4-1). Then am, + a1 = Gmi1modq- But repeating this
argument with every o”, we see that a,, - @, = Gminmodq Hence, A is a
subloop of G and A = Z,,.

Next, note that Q is the only Sylow g-subgroup of LIZ. To see this,
suppose we had a different one, @ = (&), where & = 67 and \, 6,7 are
g-cycles acting on A, B, C. Then A € ()\), since LIZ(Z,) = AGL,(q) has only
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one g-subgroup. Conjugating with an element which permutes the blocks, we
see also that 6 € (o) and 7 € (1), so that o, & commute, which is impossible.

But then o commutes with every element § € LZZ of order 3 (since 3 {
(¢—1)), and then dov € LIZ C ZT would be a 3¢-cycle, contradicting Lemma

3.6. [

4 An Example

The G-loop in Table 1 has a trivial automorphism group; to verify this, note
that the loop is generated by elements 2, 3, the only elements besides 1 whose
square is 1, and 2 has two square roots, whereas 3 has only one. N, = {1, 2},
while N, = N, = {1}. Let a = (1,2)(3,6)(4,5)(7,8), 3 = (1,6,5,8)(2,7,4, 3),
and v = (1,6,7,4)(2,5,8,3). To verify that the loop is a G-loop, check that
a, € RIZ, and o,y € LIT, which implies that RZZ and LZZ are transitive.
Then, since |[AUT| = 1, we have |LZZ| = |RZZ| = 8, so that in fact RZZ =
(, B) and LIZ = («,7), since these are 8-element groups. LIZ N RIT =
{I,a}; in general, in a G-loop, |[LCZZ NRIZ| = |AUT]|-|N,|.

Table 1: A G-Loop

|1 2 3456 738
111 2 3456 7 8
2121436587
3|13 816 47235
414 572186 3
51942781 36
616 758 2 314
7176853241
818 361 7 45 2
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