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Abstract

We investigate properties of the Bohr compactification, bG, and the
Bohr topology, G#, for discrete non-abelian groups G. These properties
depend on the algebraic structure of G, and can be analyzed with the
aid of the compact space of unitary representations of G. Using our
analysis, we show that a compact Hausdorff space is embeddable in
some G7# iff it is Eberlein compact.

1 Introduction

For any discrete group G, its Bohr compactification bG is its maximal com-
pactification, and G* denotes GG given the topology induced by its embedding
into bG. For abelian groups, the cardinal functions on bG and G# have been
known for sixty years; for example, their size and weight are as large as possible.
In the non-abelian case, these properties are sensitive to the group-theoretic
properties of G.

In this paper, we discuss properties of G which help describe bG and G#.
Most of our results use the standard theory of representations of compact
groups (see [6, 10, 11, 22]). Following von Neumann [18], homomorphisms
from G into unitary groups are used to define the mazap (maximally almost
periodic) and minap (minimally almost periodic) groups. We also classify
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groups into small, medium, and large according to the structure of the space
of these homomorphisms. In addition, we include results on self-bohrifying
groups (Definition 1.13), on compact subspaces of G#, and on the cardinality
and weight of bG.

Before describing our results in more detail, we review some basic termi-
nology.

Definition 1.1 If G, H are groups, then Hom(G, H) is the set of all homo-
morphisms from G to H. If G, H are topological groups, then Hom.(G, H) is
the set of continuous elements of Hom(G, H).

Definition 1.2 A compactification of the group G is a pair (X, ), such that
X is a compact group, p € Hom(G, X), and ran(y) is dense in X.

As usual, “compact group” means “compact Hausdorff topological group”.
Note that this definition ignores any topology G' might have; equivalently, we
treat G as a discrete group. One can define a more general notion, where G is
an arbitrary topological group, by considering only ¢ € Hom.(G, X), but we
do not pursue that here. We make essential use of the fact that Hom(G, X)
is closed in X¢ (with the product topology), and hence is compact when X is
compact; this is not true in general for Hom.(G, X) for non-discrete groups G.

Definition 1.3 If (X, ¢), (Y, ) are two compactifications of G, then (X, ) <
(Y, ¢) iff o =Totp for some ' € Hom.(Y, X). (X, ¢) and (Y, ) are equivalent
iff (X, 0) < (YV,9) < (X, ).

Observe that the I' in Definition 1.3 is unique and onto (since the range of
a compactification is dense). In the case that (X, ¢) and (Y, ) are equivalent,
[' is a continuous isomorphism.

Definition 1.4 The Bohr compactification of G, (bG, @), is the unique (up
to equivalence) largest compactification of G in the order <. G¥ denotes the
group G with the Bohr topology: U is open in G¥ iff U = (®g) (V) for some
open V C bG.

Note that G* is Hausdorff iff @ is 1-1. Also, U is open G# iff U = ¢~ 1(V)
for some compactification (X, ¢) of G and some open V' C X.

bG was first described by Weil [24]. By Holm [12], the existence of a largest
compactification holds for arbitrary algebraic structures, not just groups; see
[8] for further discussion and references. In the case of groups, one may “com-
pute” bG explicitly by using (finite dimensional unitary) representations (see
Lemma 1.8). As usual, U(n) denotes the group of all n x n unitary complex
matrices.
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Definition 1.5 Let G be a topological group. ¢ is a representation of G iff
¢ € Hom.(G,U(n)) for some finite n, called the degree of . A linear subspace
E C C" is an invariant subspace for S C U(n) if ME C E for all M €
S. If there is a subspace E with {0} G E G C" which is invariant for S,
then S is called reducible; otherwise, S is irreducible. An irrep (irreducible
representation) of G is a ¢ € Hom.(G,U(n)) such that ran(p) is irreducible.
Two representations, p,1, are equivalent (¢ ~ 1) iff there is an M € U(n)
such that (x) = M~ o(x)M for all v € G.

Because C" is finite dimensional, every representation decomposes into a
sum of irreducible representations.

We plan to use Definition 1.5 in only two cases: If G is a compact group, the
Peter-Weyl Theorem (Lemma 1.7) implies that the irreps of G yield a complete
analysis of GG. If G is a discrete group, the Peter-Weyl Theorem applied to
compactifications of G' implies that the irreps of G' can be used to obtain bG
(Lemma 1.8).

If ¢ is a representation of the discrete group G, then (cl(ran(y)), ) is a
compactification of G. Equivalence of ¢, as representations implies equiva-
lence as compactifications, but not conversely; for example, for finite GG, any
two faithful representations of G' are equivalent as compactifications. When
discussing equivalence of representations, we shall always mean as representa-
tions, not compactifications.

As in von Neumann [18] (Definition 11), one must make an arbitrary choice
of a representation in each equivalence class. We shall index these choices by
a (von Neumann) cardinal 6:

Definition 1.6 For any topological group G, let 0 = 0g be the number of
inequivalent irreps of G. Then, let {p% : o < 0} list one irrep for each
equivalence class, and let nS be the degree of 5. Let 0" = 0% = [{a <
0 : nS = n}|. Define the evaluation map & = €% : G — [],.,U(na) by

(£(2))a = @a(2).

We drop the superscript or subscript G when G is clear from context. What
we need from the Peter-Weyl Theorem ([6, 11, 22]) is stated by Lemma 1.7:

a<6

Lemma 1.7 Let X be a compact group. Then £ is a continuous isomorphism
from X into [[,U(ne), and the linear span of the projections of the ¢, onto
their matriz elements is uniformly dense in C'(X).

Lemma 1.8 Let G be a discrete group. Let Y = cl(ran(E9)). Then (Y,£EY)
s the Bohr compactification of G, and Oy = Oq, with the irreps of Y being the
projections from Y onto the coordinates in [, U(na).
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Proof. If (X, ) is any compactification of G, we prove (X, ) < (V,E%) by
applying the Peter-Weyl Theorem to X.

w(X), the weight of X, is the least cardinality of a base for the topology
of X. If X is any infinite compact group, then w(X) = fx (by Lemma 1.7),
and | X| = 2v™) (see [2], §3). Hence, by Lemma 1.8:

Lemma 1.9 Whenever bG is infinite and 0 = 0g: w(bG) = 0 and |bG| = 2°.

If G is finite, then bG = G and 6 is the number of conjugacy classes of G.
Note that bG' may be finite even when G is infinite.

Definition 1.10 G is maxap (maximally almost periodic) iff ker(®s) = {1}.
G is minap (minimally almost periodic) iff ker(®g) = G.

These notions were introduced by von Neumann [18], and ker(®¢) is called
the von Neumann kernel; see also Rothman [20]. G is minap iff |bG| =1 iff G
has only the trivial homomorphism into any compact group — equivalently, into
any U(n). So, every simple group of order greater than 2% is clearly minap.
Less trivially, SL(k, F') and PSL(k,F) are minap whenever F' is an infinite
field and k& > 2; see Corollaries 5.12 and 5.15.

(G is maxap iff G has a 1-1 homomorphism into some compact group. Every
abelian group is maxap, as is every group which already has some compact
group topology.

Lemma 1.11 For any G: G/ker(®¢) is mazap and its Bohr compactification
is (bG, ®g/ ker(Pg)), where g/ ker(Pg) : G/ ker(®g) — bG is the natural
quotient map.

Thus, to study how ®(G) lies within bG, it is enough to consider maxap
groups. When G is maxap, ® is 1-1, and we may simplify the notation by
identifying G with ®(G) and regarding G as a dense subgroup of bG, thereby
dropping explicit mention of ®. The inclusion G < b is then characterized by
the property that each ¢ € Hom(G,Y), for any compact Y, extends uniquely
to a ¢ € Hom.(bG,Y).

One important result relating ®(G) with bG is:

Theorem 1.12 (Moran [17]) If for some n, 0f is infinite (see Definition
1.6), then ®(G) is a Haar null set in bG.
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The converse of this result is false. For example, if G is countable and
maxap then ®(G) is a null set in bG. It is easy to find such G with 67 finite
for every n; in particular, there are examples of the form G =, . G}, where
the Gy are finite groups; see [17] and Section 3. However, by Theorem 1.15,
the converse is true when G = X, for some compact group X.

Definition 1.13 If X s a topological group, then X4 denotes the same group
with the discrete topology. A compact group X is self-bohrifying iff b(Xy) is
the identity map: Xq — X.

Actually, by the definitions in this paper, b(X,;) and bX have the same
meaning, since bX ignores any topology X might have, but we write b(X,) to
avoid confusion with terminology elsewhere in the literature. Observe:

Lemma 1.14 Let X be a compact group. Then the following are equivalent:

[ X1is self-bohrifying.
[CHdm(X,Y) = Hom.(X,Y) for every compact group Y.
[CHdm(X,U(n)) = Hom.(X,U(n)) for each n.

A compact abelian group is self-bohrifying iff it is finite, but there are
many examples of infinite self-bohrifying non-abelian groups. For example,
by van der Waerden([23]; see also [11], Theorem 5.64), all compact connected
semisimple Lie groups are self-bohrifying. A specific example is SO(3), for
which there is an easier direct proof which does not use Lie theory (Comfort
and Robertson [4]). Further properties of self-bohrifying groups are discussed
in this paper; in summary:

Theorem 1.15 Let X be a compact group. Then the following are equivalent:

1. X is not a null set in b(Xy).
2. X 1is self-bohrifying.
3. 0%, < 2% for each n.
4. 0%, is finite for each n — that is, Xq has only finitely many inequivalent
irreps of each degree.
Moreover, (4) implies:

5. X has only finitely many inequivalent continuous irreps of each degree.

Also, (5) — (4) holds when X is a compact Lie group, but not (in general) for
profinite groups.
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Of course, (2) — (1) and (4) — (3) are obvious, and (1) — (4) is clear
by Theorem 1.12. (3) — (2) follows from Theorem 3.15. We do not know
of any criterion for a general compact group X to be self-bohrifying which is
expressed just in terms of the continuous representations of X, although (5)
provides such a criterion for Lie groups.

The counter-example (Example 7.2) to (5) — (4) will also have X' dense in
X but not all of X (where X' is the subgroup generated by the commutators
[,y] = 27 'y~ '2y), so that X will have only the trivial continuous represen-
tation of degree 1, but infinitely many discontinuous ones. For compact Lie
groups, X' is always closed (see [11], Theorem 6.11), and this will allow us (see
Lemma 7.1) to derive (5) — (4) from van der Waerden’s theorem.

Further information about the structure of bG' may be obtained by passing
from group representations to characters, using the trace function tr : U(n) —
C. A character of degree n is of the form tr o ¢, where ¢ is a representation
of degree n.

Definition 1.16 C,(G) = {tro ¢ : ¢ € Hom(G,U(n))} is the space of all
characters of G of degree n.

Note that Hom(G,U(n)) is a closed subset of U(n)“, and is hence a com-
pact Hausdorff space. Then, C,,(G) C C% is the image of Hom(G,U(n)) by
the continuous trace map, so C,(G) is also compact Hausdorff. By the follow-
ing lemma, we may identify C,,(G) with the quotient space Hom(G,U(n))/~,
where ~ is as in Definition 1.5.

Lemma 1.17 If p,¢ € Hom(G,U(n)), then tro @ = tro ¢ iff ¢ ~ 1.

Proof. Apply in bG the fact that for compact groups, two continuous repre-
sentations are equivalent iff their characters are equal.

Lemma 1.18 If bG is infinite, then w(bG) = sup,, |C,,(G)].
Proof. Apply Lemmas 1.9 and 1.17, plus the fact that every character is a
sum of irreducible characters.

Some of the representation-counting arguments of this paper use the fol-

lowing well-known theorem of Jordan:

Theorem 1.19 (Jordan) There is a function f : w — w such that for all
finite H < U(n), there is an abelian A < H with |H : A| < f(n).
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For a proof and a discussion of the growth rate of f(n), see §36 of Curtis
and Reiner [5].

Definition 1.20 For a finite group G, md(G) is the minimal degree of a non-
trivial irrep of G.

So, for |G| > 2, G is perfect (G = G') iff md(G) > 2. By Jordan’s Theorem,
md(G) > n whenever G is finite nonabelian and simple and |G| > f(n).

Since counting characters is the same as counting equivalence classes of
representations, we classify groups G in terms of their character spaces:

Definition 1.21 A (discrete) group G is:

[snball iff C,(G) is finite for all n.
[Cmbdium iff C,(G) is scattered for all n, and infinite for some n.
[Takge iff C,,(G) is non-scattered for some n.

The small groups include all compact self-bohrifying groups (by Moran’s
Theorem 1.12). No compact group can be medium (Theorem 3.15).

If G =), Gy, where the G, are finite perfect groups, then G is small if
liminf,, md(G,,) = oo, and medium otherwise (see Theorem 3.9).

The large groups include all compact non-self-bohrifying G, and all groups
G such that |G : G'| is infinite.

In Section 6, we use our structure results to show that a compact Hausdorff
space Z can be embedded in some G¥ iff Z is Eberlein compact. By Glicksberg
[7], every compact subspace of an abelian G¥ is finite.

In spite of the seemingly set-theoretic nature of some of our definitions,
the notions “small”, “medium”, “large”, “minap”, and “maxap” are absolute
algebraic properties of a group G, in that they do not vary with the model of
set theory in which G sits. We prove this in Section 8.

2 Subgroups and Quotients

The functorial properties of the Bohr compactification are expressed by:

Lemma 2.1 If f € Hom(G, H), then there is unique bf € Hom.(bG,bH)
such that the following diagram commutes:

G —2% b

I

H—">bH
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Proof. bf exists because &y o f is a compactification of G and @ is the
largest compactification.

Lemma 2.2 If f € Hom(G, H) is onto H, then the bf in Lemma 2.1 is onto
bH and kerbf = cl(®g(ker f)).

Proof. bf is onto because ran(bf) is closed and contains @y (ranf) = ran &y,
which is dense.

Let K = cl(®g(ker f)). Then x € ker f = bf(Pg(x)) =1 = Pg(z) €
kerbf, so ®g(ker f) C kerbf, so K C kerbf. Note that K <1 bG. To prove
K = kerbf, consider the following diagram:

Here, 7 is the natural quotient map, as is 7 (since K < ker bf). o exists so that
oo f =mo®g because ker f C ker(m o ®g). Note that the diagram commutes.
Also, rano = w(ran®¢), which is dense, so ((bG)/K, o) is a compactification
of H and ((bG)/K,o) > (bH,®y) (because of 7), so that ((bG)/K,o) and
(bH, ®p) are equivalent(because bH is the largest compactification), so that

T is a bijection, whence kerbf = kerm = K.

Thus, the Bohr compactification of quotients of G’ can be computed from
the Bohr compactification of G. Lemma 1.11 is a special case of this, where
H = G/ ker(Qg).

Now, consider what happens when the f of Lemma 2.1 is 1-1. Here, we can
simplify notation by considering G' to be a subgroup of H, and replacing f by
inclusion ¢ : G — H. One cannot assert that bi is 1-1. For example, H may
be minap and G an abelian subgroup, so that |bG| > 1 = |bH|. If bi is 1-1,
then we can compute bG from bH. Since this happens in a number of cases,
we give it a name:

Definition 2.3 G is a b-faithful subgroup of H iff bi : bG — bH s 1-1,
where 1 : G — H 1is inclusion.

Lemma 2.4 If G < H then G is a b-faithful subgroup iff (cl(®g(G)), Py |G)
is (up to equivalence) the Bohr compactification of G.
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The following lemma (a variant of [8], Lemma 2.7.1) restates “b-faithful”
in terms of extensions of homomorphisms.

Lemma 2.5 If G < H, then G is a b-faithful subgroup iff for every compacti-
fication (X, ) of G, there are compactifications (X1, 1) of G and (Y,¢) of H
such that (X, ) < (X1, ¢1), X1 is a closed subgroup of Y, and ) extends ¢y .

Proof.

=: Let (X1, 1) = (bG, D).

<: Let (X, ¢) = (bG, @), the largest compactification, so we may assume
that (X1, 1) = (bG, P¢). Now, bi is 1-1 by the following diagram:

T&)bG
N

H——Y |bi

\F
Py

bH

For example, if H is abelian, then, as is well-known, every subgroup is
b-faithful. To prove this using Lemma 2.5: X is compact abelian, so we may
assume that X C T" for some x (where T = U(1)). Take (X1, 1) = (X, ¢);
then v exists because T" is divisible.

One cannot always take (Xi,¢1) = (X, ¢), even for finite groups. For
example, let H be simple and G a proper non-simple subgroup, with ¢ non-
trivial and not 1-1.

A direct sum is a b-faithful subgroup of a direct product. We use the
following notation for sums and products:

Definition 2.6 If h € [[, . Ka, then supt(h) = {a : h(a) # 1}, and
Yoocn Ko =1{h € [[.c, Ko : [supt(h)]| < Ro}.

Lemma 2.7 Suppose that G =3, K, and H =[], . Ko. Then for every
compactification (X, ) of G, there is a compactification (X, 1) of H such that
Y extends ¢. Hence, G is a b-faithful subgroup of H.

Proof. If s € [s|<¥ and h € H, define h|s € G so that (h|s)(a) is h(«) for
a € sand 1 for « ¢ s. Let V be an ultrafilter on the set [£]<* such that

{s:a € s} eV forall @ < k. Then, let ¢)(h) = V-lim, p(h|s)
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Also, by Theorem 2.7.3 of [8], G is a b-faithful subgroup whenever G is
algebraically closed in H. This implies that every group has a countable b-
faithful subgroup. It can also be used to derive Lemma 2.7, since the direct
sum is algebraically closed in the direct product.

Lemma 2.8 Assume that G < H and |H : G| is finite. Then G is a b-faithful
subgroup of H, cl(®g(Q)) is clopen in bH, and |bH : cl(®y(G))| = |H : G.

Proof. Let n = |H : G|, and list the right cosets of G as Gay, ... ,Ga,, where
a; = 1. Define § : H — S, so that (¢)(f(h)) is the j such that Ga;h = Ga;. As
usual, for 0,7 € S,,, o7 means “do o, then 77, so that # € Hom(H, S,,). Let N
be the core, N = kerf). Then N <« H and N < G. Let R = ran#6; then (R, )
is a finite compactification of H. Let I' € Hom.(bH, R) with ['o®y = §. Then
the T'{o} for 0 € R partition bH into clopen sets. Since ®x(H) is dense in
bH, ®x(N) is dense in I"'{1}. From this, it is easily seen that cl(®x(G)) =
[ 1(6(G)) is clopen in bH, and |bH : cl(®x(G))| = |R: 6(G)| = |H : GI.

To prove that G is a b-faithful subgroup, we apply Lemma 2.5, so fix a
compactification (X, ¢) of G, and we obtain (X1, ¢;) and (Y, ¢) by the method
of induced representations. Consider X to be contained in the group ring Z X,
and let M, (ZX) be the ring of all n x n matrices of elements of ZX. Let
P,(X) C M,(ZX) be the group of all n x n “permutation matrices” over X;
B € P,(X) iff every row and every column of B has all entries equal 0, except

for one entry, which is a member of X. For example, (32/ § 8) € P3(X) when
z

x,y,z € X. Note that P, is a compact group homeomorphic to a sum of n!
copies of X",

Define ¢ : H — P,(X) so that (¢(h));; = 0 unless Ga;h = Gaj, in which
case ((h))i; = @(aiha;'). Let Y = cl(rany). Let ¢; = ¢|G and X; =
cl(ran(gy)), so clearly ¢ extends ;. Also, (X,p) < (Xi,¢1) via the map
A Xy — X defined by A(B) = byy; to see that A(y(g)) = ¢(g) when g € G,

recall that a; = 1, so that (¢¥(g))11 = ¢(9).

In the usual theory of induced representations (see Chapter 6 of [6] or §12.5
of [21]), X < U(k) for some k, in which case P,(X) may be identified with a
subgroup of U(nk), so we get a representation of H of degree nk. Lemma 2.8
can fail when |H : G| is infinite — even when G, H are compact groups with
G < H. For example, let H = [[, SL(2,p,), where the p, are distinct odd
primes, and let G = Z(H), which is an infinite product of 2-element groups.
Then H is self-bohrifying (by Lemma 5.20), so G is not a b-faithful subgroup
of H; in fact, |bH| = |H| = ¢ =2 and |bG| = 2%.

Finally, each factor in a finite product is b-faithful:
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Lemma 2.9 b(G x H) =bG x bH, and ®g. g is the product map, g x Py.

This seems to be first due to Holm [12]; see also §2.9 of [8] for another proof
and some historical remarks.

3 The Size of b(G

Lemma 1.9 easily yields the following bounds for bG:

Lemma 3.1 Suppose that |G| = k > Ry and G is mazap. Then w(bG) < 2
and |G| < |bG| < 2%".

When G is abelian, w(bG) and |bG| have their largest possible values:

Theorem 3.2 (Kakutani [15]) If |G| = k > Ry and G is abelian, then
w(bG) = 2% and |bG| = 2%,

Lemma 3.3 If G is countable and mazap, then w(bG) is either Ry or 2%°.

Proof. Apply Lemma 1.18. Each C,(G) is compact and second countable, so
it is either countable or of size 2%°.

This lemma is also Corollary 2.10.20 of [8], which gives a longer proof which
is valid for Bohr compactifications of general structures. Since a compact
second countable space is scattered iff it is countable, a countable G will be
large when w(bG) = 2%, and either medium or small when w(bG) = N,.

For countable maxap G, we do not know a simple criterion for deciding
whether w(bG) is Ry or 2%, but the following lemmas will provide some partial
information. First, we may apply Theorem 3.2 to the abelian group G/G".
Since representations of G/G' yield representations of G, we get:

Lemma 3.4 If G is countable and |G : G'| is infinite, then w(bG) = 280,

The converse is false, since w(bG) might be large due to irreps of degree
larger than 1:

Example 3.5 There is a countable H with H' = H and w(bH) = 2%,
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Proof. Suppose that H = G x K, where K is a finite group and G is a
countably infinite abelian group. Then G and H are maxap and w(bH) =
w(bG) = 2% (applying Lemma 2.8).

To make H = H: Let K = As. Let G = {a C w x {1,2,3,4,5} :
la| < Ry & Vnla, is evenl]}. Here, a,, = {i : (n,i) € a}, the group operation
is symmetric difference (so G is a boolean group), and the action of K on
G is defined by: a° = {(n,io) : (n,i) € a}. View K,G as subgroups of
H,so H= GK. H' contains K because K' = K. H' contains G because H'
contains all elements of G of the form {(n, ), (n,j)} = [(k, j,7), {(n, i), (n, k)}],

and these elements generate G. Thus, H' = H.

The converse of Lemma 3.4 is true (Theorem 3.9) in the case that G is a
direct sum of finite groups. First, observe, by a compactness argument:

Lemma 3.6 IfS C U(n) is irreducible, then some finite Sy C S is irreducible.

Hence, every representation of a direct sum of perfect groups has finite
support:

Lemma 3.7 Assumethat K =) _, H,, where H, = (H,)" for all but finitely
many «. Fiz ¢ € Hom(K,U(n)). Then there is a finite F' C k such that
o(x) = p(y) for all x,y € K such that x|F = y|F.

Proof. Since ¢ can be decomposed into irreducible representations, we may
(and shall) assume that ¢ itself is irreducible. Then, by Lemma 3.6, we can
fix a finite F' such that if Krp = _p H,, then ¢[Kp is irreducible. We may
also assume that H, = (H,)' for all o ¢ F.

Now K & Kp x K, where K = > ag¢r Has so the factors Kp and Kr
correspond to subgroups of K. Irreducibility of ¢[Kpg, plus the fact that
o(®)p(y) = o(y)p(x) whenever z € Kr and y € KT, implies that ¢(y) = \, [
for all y € K, where \, € C (see [10], Theorem 21.30). Then (y — ),) is a
homomorphism from K* to U(1); but (K*)" = K*,so A\, =1 for all y € K*".

Lemma 3.8 Let ®5 , ®y be the natural maps from Y _.Go , [[,cpGa,
respectively, into the compact group [[,,., bGa. Then

a<k

1. ®x is the Bohr compactification iff GL, = G4, for all but finitely many «
2. &y is the Bohr compactification iff ®x, is the Bohr compactification and

b([lacr Ga/ 2acr Ga) = {1}
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Proof. (1)—: Choose ¢, € Hom(G,, U(1)) such that ¢, is non-trivial when-
ever G!, # G,. Define ¢ € Hom()_ A G4, U(1)) so that ¢(z) = [, ¢a(za)-
Then ¢ cannot be lifted continuously to []._, bG, unless ¢, = 1 for all but
finitely many «.

(1)<—: By Lemmas 3.7 and 2.9.

(2)—: @y is the Bohr compactification because ) G, is b-faithful in
[[,Go (Lemma 2.7). If 7 : [[,Ga = [[,Ga/ >, Ga is the quotient map,
then br : b[[, Go =[], bGo — b(I[, Ga/ >, Ga) and ker(br) =[], bG, by
Lemma 2.2, so that b(][, Go/ >, Ga) = {1}.

(2)¢—: Consider any ¢ € Hom(]], Gq,U(n)). Applying (1)< and Lemma
3.7, we get a finite F' C k such that ¢(z) = 1 whenever supt(z) N F =
() and z € Y G,. But then also p(x) = 1 for all x € [], G, such that
supt(z) N F = (); otherwise, ¢ would define a non-trivial homomorphism from

[Tocior Gal 2acimry Ga = ack Ga/ 2acy Ga into U(n). Now, proceed as
in (1)«.

a<k

The proof of (2)« is a modification of an argument in Moran [17].

Theorem 3.9 Suppose that G =) . G, where each Gy, is finite. Then G
15 mazxap and the following are equivalent:

1. bG =1],, G, (with the natural inclusion).
2. w(bG) = .

3. |G : G'| is finite.

4. (G,) = G, for all but finitely many n.

Furthermore, if these conditions hold, then G is small iff lim inf,, md(G,,) = oo
(see Definition 1.20), and medium otherwise.

Proof. (1) — (2) is obvious, (2) — (3) is by Lemma 3.4, (3) <> (4) is easy,
and (4) — (1) is by Lemma 3.8.

Now, we turn to the question of computing w(b(Xy)) when X is an arbitrary
compact metric group. When X is self-bohrifying, w(b(Xy)) = Ry. If not, we
shall show (Theorem 3.15) that w(b(Xy)) > 2.

Note that if X is not self-bohrifying, then it has a discontinuous represen-
tation, and hence a discontinuous character by:

Lemma 3.10 If X is a topological group, ¢ € Hom(Xy4,U(n)), and X = trop
15 continuous, then ¢ is continuous.
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Proof. Since ¢ is a homomorphism, it is sufficient to prove continuity at 1.
Thus, we fix an open W C U(n) with I € W, and we must find an open
V C X with 1 € V and (V) C W. Since I is the unique element of U(n)
whose trace is n, we can, by compactness of U(n), fix £ > 0 such that A € W
for all A € U(n) with [tr(A) —n| <e. Then, let V={z € X : |X(z) —n| < e};
V' is open because X is continuous.

Lemma 3.11 Suppose that G is any group and ¢ € Hom(G, (n)) Then
there is a countable A C G such that for all b € Hom(G,U(n)), if YA = ¢[A

and Y ~ @, then ¢ = .

Proof. Forz € G, let W, = {M € U(n) : M 'o(z)M # p(z)}. Since W, is
open and U(n) is second countable, we may choose a countable A C G such

that Uy s We = Upeq We-

For many topological groups, all measurable homomorphisms are continu-
ous; for example, Theorem 22.18 of Hewitt and Ross [10] implies:

Lemma 3.12 If X, Y are compact groups, and ¢ € Hom(X,Y) is such that
0~ (V) is Haar measurable for all open V- CY, then ¢ is continuous.

Lemma 3.13 Assume that X is a compact metric group, X € C,(X,4) is not
continuous, and A is a countable subset of X. Then there is an n € Cy(Xy)
such that nfA = XTA but n # X.

Proof. Let X = tro ¢; then ¢ is not continuous. By Lemma 3.11 (and
expanding A), we may assume that for all ¢ € Hom(X,U(n)), if y[A = ¢[A
and 1) # @, then 1 ¢ ¢ so that tr o) # tr o ¢ by Lemma 1.17. It is now
sufficient to find a ¢ € Hom(X, U(n)) such that ¢)[A = ¢[A and 1) # ¢. So,
assume that there is no such . We show that (the graph of) ¢ is a G set
in X x U(n), which, by Lemma 3.12, implies that ¢ is continuous, yielding a
contradiction.

We approximate ¢ C X x U(n) by open sets W as follows: List A as
{ag : £ € w}. C" has the usual Hilbert space norm, and || - || denotes the
operator norm on M, (C) = Hom(C",C"). For any k£ > 1, let

Ve = {(zoy .-, 2k, Mo, ..., M) € XF1 x Un)Ht @ Vi, j, 0 <k:
ri= ;o I~ M < 2 &
zp=wm; = ||My— M;M; | <278 &
vi = 0y > 1My — olay) | <2}
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Then V} is open. Let

Wk = {(ZUU,M[)) € X x U(TL)
Vxl---xkE!Ml---Mk(a:O,... , Lk Mg,... ,Mk) € Vk} .

Then Wj is open because projection from a compact factor is both an open
and a closed map. Thus, the lemma will follow if we show that ¢ =", W.

To see that ¢ C [, Wi, note that each (zg, ..., 2k, ©(z0),...,0(zk)) € Vi,
so that (zg, ¢(x9)) € W.

To see that ¢ D (N, Wy. Fiz (z9,My) € (), Wk. We construct a ¢ €
Hom(X,U(n)) such that ¢(zg) = My and ¢[A = p[A. Then, ¢ = ¢ by our
assumed uniqueness of ¢, so that (zq, M) € .

Let S = J{X*:1<k<w} Fors=(x,...,7) €S, we use ran(s) to
denote the set {zi,..., 2}, and define s <t iff ran(s) C ran(¢). Let D be an
ultrafilter on S such that {¢t:¢ > s} € D forall s € S.

For s = (x1,...,x,) € S, choose (My,..., M) = (M;,...,M;) such
that (xo,x1,..., 2k, Mo, My, ... ,My) € Vi. For s = (zq,...,2,) € S and
z € ran(s), choose m = m, . such that z,, = 2, and then let f(s,2) = M3 _ .

Now, let 1(z) = D-limy f(s,2). The three clauses in the definition of Vj
are used, respectively, to verify that ¢(zq) = My, ¢ is a homomorphism, and

YIA = plA.

Lemma 3.14 If X is compact and not second countable, then there is a closed
N < X such that X/N is second countable and not self-bohrifying.

Proof. Fix n such that there are uncountably many inequivalent continuous
irreps if degree n, and then choose an w-sequence of these, {¢; : i < w}. Let
N =), ker(y;). X/N is second countable because it is embedded in U(n)*,

and X/N is not self-bohrifying by Moran’s Theorem 1.12.

Theorem 3.15 If X is compact and not self-bohrifying, then w(b(X4)) > 2™
and X 1is large.

Proof. By Lemma 3.14, we may assume that X is second countable (if not,
work with a suitable quotient). By Lemma 3.10, fix a discontinuous character,
n. Since X is second countable, we can fix a countable B such that n[B is
not continuous. Let Z = {X € C,(X) : X|B = n[B}. Then Z is compact
Hausdorff and non-empty. By Lemma 3.13, applied to arbitrary countable
A D B, we see that no point in Z has a countable neighborhood base. Thus,
by the Cech - Pospisil Theorem, |Z| > 2%, and hence w(b(Xy)) > 2% by
Lemma 1.18. Also, Z shows that C,(X) is not scattered, so X is large.
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4 Self-bohrifying groups

We collect here some consequences of the previous results for the self-bohrifying
groups.

Lemma 4.1 If X is self-bohrifying and N < X is closed, then X/N is self-
bohrifying.

Lemma 4.2 If X is self-bohrifying, then every subgroup of finite index is
clopen.

Lemma 4.3 If Y < X are compact groups with |X : Y| finite, then Y is
self-bohrifying iff X 1s.

Proof. By Lemma 2.8.
Applied to X', this yields < of the following lemma:

Lemma 4.4 X is self-bohrifying iff X" is clopen in X, | X : X'| < Wy, and X'
15 self-bohrifying.

Proof. For =: X' = (({kery : ¢ € Hom(X,U(1))} = ({keryp : ¢ €
Hom, (X, U(1))}, which is closed. If | X : X’| were infinite, then X/(X') would
be an infinite compact abelian group, which cannot be self-bohrifying, con-
tradicting Lemma 4.1. Since X' is closed and of finite index, it is also open.
Finally, X' is self-bohrifying by Lemma 4.3.

Thus, if X is self-bohrifying, the derived series, X > X' > X" > X" .../
yields a descending sequence of clopen self-bohrifying subgroups. We do not
know if this series can be infinite. By Lemma 4.5, it cannot be infinite when X
is self-bohrifying and a product of finite groups. Every finite length is possible,
even for finite groups.

Lemma 4.5 Let X, for n € w be compact groups and X =[] .. X,. Then

X is self-bohrifying iff all of the following hold:

[_Fkch X, is self-bohrifying.

[ X] = X, for all but finitely many n.

CTD, X,/ >, X is minap.

This is immediate from Lemma 3.8. In particular, if an X of this form is
self-bohrifying with all X, finite, then X must be of the form X =Y x G,
where G is finite and Y’ =Y, so that the derived length of X is finite (and
equal to the derived length of G).

By this lemma, the main difficulty in proving such a product to be self-
bohrifying is in checking that the quotient is minap, which we take up next.

ncw
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5 Some Minimally Almost Periodic Groups

We describe some general methods for proving that a group is minap. For many
groups, such as SL(n, F') and PSL(n, F'), where F' is any infinite field, infinite
“bad” subsets kill off all nontrivial homomorphisms into the unitary groups.
To see that certain groups of the form [[, G,./>_,, G, are minap, we employ
a stronger notion, “ugly”, which has the advantage that it is productive.

To determine whether T C G is “bad” for G, we consider N, (T), the
normal subgroup 7T generates:

Definition 5.1 If T' is a subset of the group G, then Ni(T) is the set of
all elements of G of the form (ay'z1a1)(ay zpas) - - - (a; ' 2xa), where each
a,...,ax € G and each z; € TUT™' U {1}, Let Ny(T) = Upey, Ni(T).
Noy(x) = Ny({2}) and Ny(z) = Nip({z}) for z € G.

So N,(T) is the least normal subgroup containing 7. Generating elements
in a more uniform way still produces a normal subgroup of G, and also makes
working with products of groups easier:

Definition 5.2 If T is a subset of the group G, then N3 (T) is the set of all
elements of the form (ay'z1a,)(ay 25 ay) such that ay,ay in G and 2,z € T}
i.e., NJ(T) = Ual’aﬁG(aflTal)(a;lT_laQ). Let N(T) = {1} and let N3.(T)
be the set of all products of exactly k elements of N3(T). Let N“(T) =
Urew Nai(T). N (@) = Ng({z}) and N3 (x) = N3 ({z}) for z € G.

Observe that each N3, (T) is closed under inverses and conjugations, and
that Ng“(T') € NJ(T) C NJ(T)---. It follows that N%(T') is a normal sub-
group of GG, although it need not contain any elements of T’; in abelian groups,
N¥(z) = {1}, while A,(z) = (z). Also note that N (T) C Nok(T). We
remark that putting the “(a,'z,'ay)” before the “(a;'z1a;)” in the defini-
tion of N3(T) results in an equivalent notion because (ay 'z, 'as)(a; *z1a;) =

(a7'z1a1) (b5 25 ' by), where by = asay'z1a;.

Definition 5.3 S C G is a k-bad set for G iff G = Ny(x~ty) whenever z,y
are distinct elements of S. G is (A, k)-bad iff there is a k-bad set of size > .
S C G is a 2k-ugly set for G iff G = N¥(x7'y) whenever z,y are distinct
elements of S. G is (A, 2k)-ugly iff there is a 2k-ugly set of size > \.

Lemma 5.4 If G is (A, 2k)-ugly, then G is (X, 2k)-bad.

First, we use badness to see that some groups are minap:
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Lemma 5.5 If A € U(n) and A # I, then ||A* — I|| > /3 for some (.

Proof. Diagonalize A.

As before, we are using the operator norm on U(n).

Lemma 5.6 There is a function f : w X w — w such that for all groups G
and all k: If G is (f(n, k), k)-bad, then Hom(G,U(n)) = {1}.

Proof. Choose f(n,k) so that whenever M; € U(n) for i = 1,2,..., f(n, k),
there are distinct ¢, j such that ||M; — M;|| < 1/k. Now, fix ¢ € Hom(G,U(n));
we show that ¢ is trivial. Let S be a k-bad set of size f(n, k). Then we may fix
distinct x,y € S such that ||¢(y) — p(x)|| < 1/k. Hence, ||o(z'y) —I|| < 1/k,
so that [|p((ay ' z1a1) (a3 22a9) - - - (@} 'zrax)) —I|| < 1, whenever ay, ... ,a; € G
and 21,...,2; € {1,z 'y, y "z}, Thus, ||[M —1I|| <1 for all M € ¢(G), which
implies that o(G) = {I} by Lemma 5.5. ©9)

Corollary 5.7 If G is (o, k)-bad for some finite k, then bG = {1}.

This will apply directly to SL(n, F') and PSL(n, F), but there is a problem
with applying it to products such as [[, Gn/ )., Gn because the notion of
“bad” is not productive. For example, in the symmetric group S, the set
{I, (1 2)}is (n— 1)-bad, since every element of S, is a product of (n — 1) or
fewer conjugates of the transposition (1 2). However, S,, x S, is not (2, k)-bad
for any k£ because every element of S, x S, lies in a proper normal subgroup
— either A, x S, or S, x A, or {(z,y):zy € A} =N, (((1 2), (1 2))).

On the other hand, it is easily seen that any product of (A, 2k)-ugly groups
is (A, 2k)-ugly. Moreover, we can turn finite As into infinite ones as follows:

Lemma 5.8 Suppose that G,, (for n € w) are groups such that for some fized
k: For each finite A\, all but finitely many of the groups G, are (A, 2k)-ugly.
Then [1, Gn/ Y, Gn is (Ro, 2k)-ugly.

Proof. For each n, let A, be the largest A < n such that G,, is (A, 2k)-ugly.
Let {z! :i < \,} be a 2k-ugly set of size \,, and let 2! =1 for s > \,. Let 2°
be the equivalence class of the sequence (2! : n < w) in [[, G5/ >, G,. Then

{2 i < w} is 2k-ugly.

Question 5.9 Is there a fixed k such that for each finite X\, all but finitely
many of the finite nonabelian simple groups are (A, k)-ugly?
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A “yes” answer would imply that whenever the GG, are distinct finite non-
abelian simple groups, b([[,, Gn/>_, Gn) = {1}, and hence, by Lemma 4.5,
[ 1, G is self-bohrifying, answering a question of Comfort and Remus [3].

A “yes” answer also would imply (by Lemma 5.6) that for each n, only
finitely many finite nonabelian simple groups embed into U(n), but this is
true anyway by Jordan’s Theorem (Theorem 1.19).

We shall derive a “yes” answer below for the alternating groups, and for
the simple groups of type PSL(n, F) for each fixed n (but the k we derive gets
bigger as n gets bigger). The PSL groups are handled easily by:

Lemma 5.10 Suppose that C is a class of nonabelian simple groups and every
ultraproduct of groups in C is in C. Then for some fized finite k, every group
G € C is (|G|, 2k)-ugly, with G itself a 2k-ugly set.

Proof. We must prove that 3k VG € C Vo € G\{1} [N, (z) = G]. If not,
then for each k, choose Gy € C such that 3z € Gp\{1} [Nji(x) # Gi]. Let
G = [, Gx/D, where D is some non-principal ultrafilter on w. Then G € C
and N"%(z) # G for some z € G\{1}. Since G is simple, N%(z) = {1}, so
x € Z(G) = {1} (since G is nonabelian), a contradiction.

In particular, consider groups of the form SL(n, F') (all n X n matrices
of determinant 1 over the field ') and PSL(n,F) = SL(n,F)/Z(SL(n, F)).
PSL(n, F) is simple except when |F| < 3 and n = 2 (see Scott [21], The-
orem 10.8.1). Applying Lemma 5.10 and the fact that [[, PSL(n, F;)/D =
PSL(n,[]; Fi/D), we get

Lemma 5.11 For each n, there is a fixed k = k,, such that every simple group
G of the form PSL(n, F) is (|G|, 2k)-ugly, with 2k-ugly set G itself.

One may also prove this lemma and get a bound on k£, by examining the
proofs in [21]. Note that k, /0o as n ~ oo. Applying 5.11, 5.4, and 5.7:

Corollary 5.12 b(PSL(n, F)) = {1} whenever F is an infinite field.

We shall see below that the same results hold for groups of the form
SL(n,F). The fact that SL(2,R) is minap was proved by von Neumann and
Wigner [18, 19] by different methods. The proof in [19] is easily seen to gen-
eralize to other fields of characteristic 0; see also Moran [17] and §22.22 of
Hewitt and Ross [10]. Actually, Corollary 5.12 follows immediately from its
n = 2 case, since PSL(2,F) < PSL(n,F) and PSL(n, F) is simple. But we
need our general “badness” analysis of PSL(n, F') anyway to handle products
of finite groups (see Lemma 5.20).
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Now, to handle SL(n, F'), we need a lemma which lets us derive the badness
of G from the badness of G/N when N is finite. This cannot work in general.
For example, suppose that G = N x H. Then G cannot be minap because it
has a homomorphism onto the compact (finite) group N. So, H = G /N might
be (Ng, k)-bad (hence minap), but we cannot conclude that G is (R, ¢)-bad for
any finite /. The following lemma postulates the opposite extreme from such
a product. We state the “ugly” version, there is also a “bad” version, but the
“ugly” one is needed when applying Lemma 5.8.

Lemma 5.13 Suppose that N < G, G/N is (), 2k)-ugly, and whenever T C G
meets every coset of N, N CN;(T). Then G is (N, 25k + 2k)-ugly.

Proof. Apply Definition 5.3 to G/N and choose representatives of cosets to

get an S C G such that |[S| = A and such that whenever z,y are distinct

elements of S, T := N3, (z 'y) contains at least one element from each coset.

Now, N C N;(T) C Ny (e 'y) and G = NT, s0 Ny (') = G.
Note that this lemma required only N C N;(T), not N C N(T).

Lemma 5.14 For each n > 2, there is a fized k (depending on n) such that
every group G of the form SL(n, F) is (|G|/n, k)-ugly, except forn =2, |F| <
3.

Proof. PSL(n,F) = SL(n,F)/N, where N is the group of all ul such that
u € F and u" = 1; thus, |[N| < n. So, we may apply Lemmas 5.13 and 5.11
if we can find a j, depending on n but independent of F', so that whenever
T C G meets every coset, N C N;(T).
If n =2, then N = {I,-1I}. Let A = (%97"). Then A> = —] and T
contains A or —A, so that N C N(T).
If n > 3, let m = |N|. Then m | n, and N = {I,vl,... ,v™ T}, where
v is a primitive m'® root of 1. Write A(ay,... ,a,) for the n x n diago-
nal matrix with entries aq,...,a,. Observe that if 7 is any permutation of
{1,2,...,n} then A(ay,...,ay,) is conjugate to A(ai,, ..., ;) in SL(n, F),
since (2 §)(29)(97") = (82). Fix r such that v"A(v,v?,v 3, 1,1,...,1) €
T. Then v"A(v?,v,v73,1,1,...,1) € Ni(T). Dividing, and then multiplying
and conjugating, we get
Alv,v™"1,1,1,...,1,1) € No(T)
A, v% 0 2 1,100 ,1,1) € Ny(T)
A, 1L,0% 031,000, 1,1) € NG(T)

A(1,1,1,1,1, .. ,0" e

T
S
N—r
m

Nang (T) .
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Multiplying all of these and using v" = 1, we get vI € Nyp_1)(T), so that all

o' are in N1y (T).

Corollary 5.15 b(SL(n, F)) = {1} whenever F is an infinite field.

We now turn to the alternating groups. For the infinite A,, the notion of
“bad” is irrelevant, but A, is easily seen to be minap by a different argument.
In general, if for each x € G, there are infinitely many distinct finite nonabelian
simple groups H such that x € H < G, then G is minap by Jordan’s Theorem
1.19. This clearly applies to the A,. However, to handle products of the finite
A,, we need a more detailed analysis:

Lemma 5.16 Let M be any set of size 2™. Then the boolean group (P(M), A)
(of order 22" ) has a subgroup H of order 2™ such that every element of H has
size 0 or 2m 1L,

Proof. We may assume that M is the boolean group {0,1}™. Then M =
Hom(M,{0,1}) & M. Define F : M — P(M) by: F(y) = v {1}, and note
that F'is a homomorphism and 1-1.

Of course, a similar argument works for infinite compact boolean groups;
now each non-empty F'(7y) has Haar measure 1/2.

Lemma 5.17 If 7 € S, then there are 0,7 € S,, with m = o7 and 0% = 7% =

1.

Proof. Since every permutation is a product of disjoint cycles, we may assume
that 7 is a cycle on some k elements. For k even, use the fact that

[(1,2)(3,4)--- (20— 1,20)] - [(2,3)(4,5) -+ (20 — 2,2 — 1)]
is a cycle on {1,2,...,2¢}. For k odd, use the fact that
[(1,2)(3,4)--- (20— 1,20)] - [(2,3)(4,5)---(2¢,2¢0+ 1)]

is a cycle on {1,2,...,2¢ + 1}.

Lemma 5.18 If 7 € A, withn > 5, then there are o, \,7 € A,, with ™ = o7
and o> =2 =12=1.
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Proof. Let m = oy79, where 02 = 72 = 1 and 04,79 € S,. We assume that
o9 and 7y are both odd, since otherwise we are done (taking A = 1). If oy
and 79 are both single transpositions, use the observation that (a,b)(a,c) =
(a,b)(x,y) - (x,y)(a,c) (we may again take A = 1). Now, suppose that 75 is a
product of 3 or more disjoint transpositions. Then we can write o = o - (a, b)
and 79 = (¢, d) - 7, where the four objects a, b, ¢, d are all distinct, and then let

A= (a,b)(c,d).
This lemma is best possible, since in A7, (1,2,3,4,5,6,7) is not the product

of 2 involutions. Probably the bounds in the next lemma could be improved,
but it is good enough for our purposes.

Lemma 5.19 Suppose that 2" < n < 2" and r > 3. Then A, is (2", 12)-
ugly.

Proof. Let m =r—1, and, in S, let M be a set of 2™ disjoint transpositions,
and apply Lemma 5.16 to get H; then B € H is a subset of M, and let IIB
be the product of the 2r—2 transpositions in B. IIB € A, since r > 3. Let
H = {IIB : B € H}; then H is a boolean subgroup of A,, isomorphic to H
and |H| = 2"'. We show that H is a 12-ugly set.

If z,y are distinct elements of f[, then 271y € His a product of 272
disjoint transpositions. Thus, the conjugates of x 'y contain every element
of A, which is a product of 2”2 disjoint transpositions. =~ 'y has order 2, so
N3 (z'y) contains every element of A, which is a product of 2! or fewer
disjoint transpositions, since every such element is of the form

Ty - Tos = (Mg -+ Wy To -+ - Tor=2_g) - (Mep1Mst2 - - - MogT1To - - Tor—2_g)

where 1 < s <2772 and 7, 9, ... ,Tos, T1s T2, ... , Tor—2_4 are disjoint transpo-
sitions. Since n/2 < 27, every element of A, of order 2 is in N*(z~'y). Hence,

by Lemma 5.18, Nia(z ty) = A,.
Applying the above with Lemma 4.5:

Lemma 5.20 If (G : k € w) is a list of finite groups, then [[, Gi/ > . Gk is
mainap whenever all three of the following hold:

1. No group is listed infinitely often.
2. Gy, is either Ay, or PSL(jk, qx) or SL(jk, qk)-
3. supy, Jr < 00.

In this case, [[, Gy is self-bohrifying.
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We do not know the extent to which the hypotheses can be weakened.
Clearly, (1) is necessary. We do not know if (3) can be dropped; possibly it
can be by modifying the argument for the SO(n) (below). Comfort and Remus
[3] conjecture that (2)(3) can be replaced by the assumption that all the G,
are simple and nonabelian.

Of course, the SL groups are not simple when they differ from the PSL
groups, so it is reasonable to ask for a condition which also works for general
finite groups. It is certainly necessary that lim inf; md(Gy) = oo (see Definition
1.20). Unfortunately, by Example 7.2, this is not sufficient.

Lemma 5.21 Suppose that 2" < n < 2" and r > 2. Then SO(n) is (2",4)-
ugly.

Proof. If 2k < n, let R(6y, ... ,0; 1) be the rotation matrix A € SO(n) which
rotates 0; in the (2i + 1,2¢ + 2) coordinate plane. Thus,

(azi+1,2i+1 a2i+1,2i+2> _ < cost;  sin 9i>

git22i+1 O2it22i+2)  \—sinf; cos;

fori =0,...,k—1and a;; = 1 for 2k +1 <4 <n, and the other components
of A are 0. Note that if n is 2k or 2k + 1, then every element of SO(n) is
conjugate to some R(fy, ... ,0t_1) (see [22], Proposition VIL.5.3).

As in the proof of Lemma 5.19, there is a boolean subgroup H of SO(n) of
order 2" such that every non-identity element of His a diagonal matrix with
exactly 2! entries equal —1 and the rest equal 1.

Now, in SO(4), if D is the diagonal matrix with entries (1, —1,1, —1), then

R(0/2,¢0/2) D R(=0/2,—¢/2) D = R(0,¢) .

Hence, N3(D) = SO(4).

In SO(n), if X,Y are distinct elements of PNI, then there is a diagonal
matrix conjugate to X 'Y whose first 2" entries are (1,—1,1,—1,...) and
the other n — 2" entries are 1. Hence, N¥(X~'Y) contains all matrices of
the form R(fy,...,02--1_1). Since n is 2k or 2k + 1 for some k < 2. 271

NEX™Y) = SO(n).

Corollary 5.22 [[,SO(n)/>_, SO(n) is minap and [],., ., SO(n) is self-
bohrifying. -
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6 Compacta in G7

When G is abelian, every compact subset of G# is finite (Glicksberg [7]). This
is clearly false for non-abelian groups, since many compact Lie groups are
self-bohrifying. Moreover, by Corollary 5.22, every compact second countable
space is a subspace of some self-bohrifying group. Every self-bohrifying group
is second countable by Moran’s Theorem 1.12. However, a compact subset of a
G* need not be second countable, and in fact can be any Eberlein compactum.

Many equivalent definitions of the Eberlein compacta are discussed in
Arkhangel’skii [1]; for example, Z is Eberlein compact iff Z is homeomorphic
to a weakly compact subspace of some Banach space. The Amir-Lindenstrauss
Theorem ([1], Theorem IV.4.12) yields an equivalent in terms of ¥, products:

Definition 6.1 Let H be a topological group. Then L(H,k) = {x € H" :
|supt(z)| < Ro}. X.(H, k) is the set of all x € H" such that for all neighbor-
hoods U of 1, {a < k : z(a) ¢ U} is finite. Both X(H, k) and X.(H, k) are
given the topology inherited from the usual product topology on H*.

So, ¥(H,k) C ¥,(H,rk) € H", and X(H, k) is just the direct sum of k
copies of H, as in Definition 2.6.

Definition 6.2 A space Z is Eberlein compact iff for some k, Z is homeo-
morphic to a compact subspace of Yu(R, k).

Of course, in Definition 6.1, the “1” refers to the identity element of the
group, which is 0 in R. For example, ¥, (R, w) contains a copy of the Hilbert
cube, [],[0,27"]; hence, every compact metric space is Eberlein compact. The
1-point compactification of a discrete space of size k is Eberlein compact,
realized as the set of y € {0,1}* such that y(«) = 0 for all but at most one .

Theorem 6.3 If Z is compact Hausdorff, then Z is Eberlein compact iff Z is
homeomorphic to a subspace of G* for some group G.

The < direction is proved in [9], Theorem 3.13. The rest of this section is
devoted to proving —.

Lemma 6.4 If 7 is Eberlein compact and H is a compact Lie group of di-
mension > 1, then Z is homeomorphic to a subset of X.(H, k) for some k.
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Theorem 6.3 will follow immediately when we show that whenever G =
H" and H is any compact connected semisimple Lie group, then the usual
product topology agrees with the topology of G on ¥,(H, k). For such H,
van der Waerden’s theorem (see [23], or [11] Theorem 5.64) says that H is
self-bohrifying; that is, Hom(H,Y) = Hom.(H,Y") whenever Y is a compact
group. Now, H" cannot be self-bohrifying when « is infinite (see Proposition
1.6 of [9]), but an analog of “self-bohrifying” holds if we replace the product
topology by the uniform topology:

Definition 6.5 If H is a compact group, then W C H" is open in the uniform
topology on H" iff for each a € W, there is an open neighborhood U of 1 in
H such that aU" C W.

Note that we can always choose U such that 2~ 'Uz = U for all x € H, so
that we can replace aU" by U"a. U" itself will be a neighborhood of 1 in this
topology, but will not in general be open; {z € H" : cl{z, : @« < Kk} C U} is
an open neighborhood of 1, and these sets form a basis at 1 in H".

If H is a compact metric group, then it has a biinvariant metric (d(z,y) =
d(xz,yz) = d(zx, zy); see [11], Corollary A4.19), and then the uniform topol-
ogy on H" is induced by the biinvariant metric ds,, defined by dg,,(x,y) =

sup, d(Ta, Ya)-

Definition 6.6 For finite m, a topological group G has property [(m) iff
there are vy,... ,vm € Hom (R, G) such that whenever ry,... 1, € (0,1):

1 eint{[y(r1), z1] [v2(r2), za] - - - [V ("), T : w1, 0, ... Xy € G} .
Applying the v; coordinatewise in a product, we get:

Lemma 6.7 If H is a compact group with property [(m), then H", with the
uniform topology, also has property ().

Now, following [11], van der Waerden’s theorem is immediate from the
next two lemmas. We remark that in the case of SO(3), one may replace
this argument by the proof of Comfort and Robertson [4], yielding a proof of
Theorem 6.3 which does not use any Lie theory.

Lemma 6.8 If H is a compact connected semisimple Lie group, then H has
property (@) for some m.

In the proof, m is the dimension of H and the ~; are obtained via the
exponential map from the Lie algebra.



7 SMALL COMPACT GROUPS 26

Lemma 6.9 If H is a topological group with property {m) for some finite
m, then Hom(H,Y) = Hom.(H,Y") for every compact group Y.

Proof. Given ¢ € Hom(H,Y) and a neighborhood U of 1 in Y, use com-
pactness to find a neighborhood V' of 1 such that for all s¢,...,s,, € V and
all z1,...,2zm € Y, [s1,21] [s2,22] * * [Sm, 2m] € U. Then, use compactness
again to fix r,..., 7, € (0,1) such that each ¢(v;(r;)) € V. It follows that
o([y1(r1), z1] [v2(r2), 2] - - - [V ("), Tm)) € U for all xy,x9,...,2, € H, so
that 1 € int(¢1(U)).

Lemma 6.10 Let H be a compact connected semisimple Lie group, and let
G = H". Then the Bohr topology on G and the product topology on G agree
on 3.(H, k).

Proof. Since the Bohr topology is finer, it is sufficient to fix ¢ € Hom(G, U(n))
and prove that its restriction to X, (H, k) is continuous with respect to the
product topology. Let K = X(H, k). Since H = H', apply Lemma 3.7 to
oK to get a finite F' C k such that p(z) = ¢(y) for all z,y € K such
that z[F = y[F. Define ¢ € Hom(G,U(n)) so that ¢(z) = ¢(y) whenever
z[F = y|F and supt(y) C F. Then ¢ is continuous because H” is self-
bohrifying, and ¢ agrees with ¢ on K.

We are now done if we show that 1) and ¢ agree on X, (H, k). If not, fix
x € ¥.(H, k) such that ||¢(z) — ¢(z)|| = ¢ > 0. Since ¢ and 1 are continuous
with respect to the uniform topology (by Lemmas 6.7, 6.8, 6.9), there is an
e > 0 such that ||p(z) — p(w)|| < ¢/3 and ||¢(x) — Y(w)|| < ¢/3 whenever
dsup(z,w) < e. Now, let 7 € K be such that ds,,(Z,x) < . Then ¢(z) # ¢(7),

a contradiction.

Proof of Theorem 6.3. The — direction is immediate from Lemmas 6.4
and 6.10.

7 Small Compact Groups

Let X be a compact group. If X is self-bohrifying, then it is small (Definition
1.21) by Moran’s Theorem 1.12. If X is not self-bohrifying, then it is large by
Theorem 3.15. But “small” and “large” were defined by counting the irreps of
X4, not the continuous irreps of X, which is the more natural object of study
in the theory of compact groups. It would be nice to have a characterization
of “self-bohrifying”, such as the following, stated in terms of the continuous
irreps:
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Lemma 7.1 Let X be a compact Lie group. Then X is self-bohrifying iff for
each n, X has only finitely many inequivalent continuous irreps of degree n.

Proof. Of course, one direction is again by Theorem 1.12, so assume through-
out that X is not self-bohrifying, and we show that X has infinitely many
inequivalent continuous irreps of some degree.

If X is connected: X' is compact and semisimple (see [11], Theorem 6.18).
If X = X', then X would be self-bohrifying by van der Waerden theorem.
Thus, X' is a Lie group of smaller dimension, so X/X' is an infinite compact
abelian group, yielding infinitely many continuous irreps of degree 1.

In general, let X; <1 X be the component of 1. Since X is not self-
bohrifying, neither is X (by Lemma 4.3), so that X, has infinitely many
continuous irreps of degree 1. Then, since |X : Xj| is finite, the method of
induced representations yields an infinite set of inequivalent continuous irreps
of X of some degree < |X : Xj|.

Unfortunately, this lemma does not hold for profinite (totally disconnected)
compact groups.

Example 7.2 There is a compact profinite group X = [],, Gn, where the
G, are finite, such that X is not self-bohrifying but X has only finitely many
inequivalent continuous irreps of each degree.

Proof. For a finite group G, let ¢(G) be the least ¢ such that every element
of G' is a product of ¢ commutators. X will be [], G}, where:

1. G, is finite and (G,) = G,.
2. liminf, ¢(G,) = .
3. liminf, md(G,) = oo (see Definition 1.20).

Then (1,2) imply that X' is a proper dense subgroup of X, so that X has
discontinuous homomorphisms into U(1), and (3) implies that X has only
finitely many inequivalent continuous irreps of each degree.

There are many examples in the literature satisfying (1) and (2). In par-
ticular, consider the one in Lemma 2.1.10 of Holt and Plesken [13]. In this
example, one chooses a sequence of primes 5 < py < p; < p2 < ---, and each
Gn = P, x SL(2,p,), where P, is a p,-group. (1) and (2) are verified in [13],
and we now verify (3).

Note that one composition series for G, is of the form - - - < H! <t H? = G,
where H’/H! = PSL(2,p,) and H] is solvable, so that the other factors
are all cyclic. Let f : w — w be as in Jordan’s Theorem 1.19. We show
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that for each k, Hom(G,,U(k)) is trivial unless |PSL(2,p,)| < f(k). So, fix
¢ € Hom(G,,,U(k)), and assume that |[PSL(2,p,)| > f(k) and ¢ is non-trivial.
Fix an abelian A < ran(yp) with |ran(y) : A| < f(k). By (1), ran(y) is non-
abelian, so A # ran(¢). Thus, G, has a proper normal subgroup of index
< f(k), so there is another composition series --- < K} < K? = G,,, where,
|KY/K}| < f(k). Hence, by the Jordan-Holder Theorem, K?/K is cyclic,
contradicting (1).

8 Absoluteness

At first sight, the properties maxap, minap, large, medium, and small for an
infinite group G' might seem to be sensitive to the axioms of set theory. How-
ever, the existence of homomorphisms into U(n) = U(n, C) can be rephrased in
terms of “approximate homomorphisms” from finite subsets of G into U(n, A),
where A is the field of complex algebraic numbers. Thus, maxap, minap,
etc. are all absolute (see Theorem 8.6 for a precise statement); so, for example,
they do not change if one does some forcing argument and passes to a different
model of set theory. Note that the countable sets A and U(n, A), unlike C and
U(n,C), are the same in all transitive models of set theory.

Definition 8.1 An approximate representation of the group G of degree n is
a function f such that dom(f) is a subset of G of some finite size k, ran(f) C
U(n,A), and for all z,y,z € dom(f): if z = zy~" then ||f(2) — f(z)f(y)7!| <
27k,

As in the proof of Lemma 3.13, || - || denotes the operator norm on M, (C).

Lemma 8.2 For any n, any ay,...,a, € G, any matrices By,... ,B, €
U(n,A), and any £ > 0, the following are equivalent:

1. For some ¢ € Hom(G,U(n)), each ||p(ar) — By)|| < e.

2. For some €' with 0 < &' < e: For every finite s with {ai,...,a,} C
s C @G, there is an approzimate representation f of degree n such that
dom(f) = s and each || f(ar) — By)|| < €.

Proof. (1) — (2) holds because U(n, A) is dense in U(n) = U(n,C). Now, as-
sume (2). For each finite s with {a;,... ,a,} C s C G, choose an approximate
representation fs such that dom(fs) = s and each ||fs(a;) — By)|| < €’. Let D
be an ultrafilter on [G]<¥ such that for each x € G the set {s € [G]<¥ : z € s}
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is in D. Define ¢ : G — U(n) by ¢(z) = D-lim, f,(z); this is defined because
D-a.e. s contains all the elements aq,...,a.,z. Our choice of f, guarantees
that each ||p(ar) — By)|| < €' < ¢, and the definition of “approximate repre-
sentation” guarantees that ||o(2) — ¢(z)o(y) Y| < 2% for each k and each
2,1, 7 € G, so that ¢ € Hom(G, U(n)). ©9)

As usual in set theory (see, e.g., [14, 16]), if M is a transitive model of ZFC
and [sla formula or a defined object, then [ []™1is that formula or object as
viewed within M. Note that A = [A]Y C [C]M = CN M C C. If we assert
that “minap” is absolute for M, we mean that if G € M, then |G is minap]™
iff G is really minap in the universe (V).

Lemma 8.3 Let G be a group, and let M be a transitive model of ZFC with
G € M. Let E = [Hom(G,U(n))|™. Then Hom(G,U(n)) = cl(E), where the
closure in taken in U(n)“.

Proof. Since £ = Hom(G,U(n)) N M is a subset of the closed Hom(G, U(n)),
we have cl(E) € Hom(G,U(n)). Now suppose ¢ € Hom(G,U(n)) \ cl(E).
Then there is a basic open set W C U(n)% such that ¢» € W and W N E = 0.
We may assume that W = {¢ : V¢ < r ||p(a;) — By)|| < €}, where ¢ is a positive
rational, a,... ,a, € G, and By,...,B, € U(n,A). Since ¢ € W, condition
(2) of Lemma 8.2 holds, and this condition involves just finite subsets of G
and A, so that [(2)]" holds as well. But then, applying Lemma 8.2 within M,

we produce a ¢ € W N E| contradicting the choice of W.

Corollary 8.4 Let G be a group, and let M be a transitive model of ZFC' with
Ge M. Let Y = [C,,(G)]™. Then C,(GQ) = cl(Y), where the closure in taken
in CY.

Proof. Define TR : U(n)¢ — C“ by: TR(p) = tro¢. Then C,(G) =
TR(Hom(G,U(n))), and, applying this within AM: Y = TR(E), where E is as
in Lemma 8.3. Hence, C\,(G) = TR(cl(E)) = cl(TR(E)) = cl(Y), since TR is
continuous, and hence, by compactness of U(n)“, a closed map.

In particular, if [G is small]™, then each C,(G) = [C,(G)]M is finite, so
that G is really small in V. To get the same argument for “medium”, apply
the following well-known fact about scattered spaces, which is easily proved
by induction on the Cantor-Bendixon rank:

Lemma 8.5 Let Y be a set, with topology T, and let M be any transitive
model of ZFC with Y, T € M such that [T is a Hausdorff topology on Y™
and [(Y,T) is compact scattered™. Then (in V) T is a base for a compact
scattered Hausdorff topology on Y .
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» ok,

Theorem 8.6 The properties “mazxap”, “minap
are all absolute for transitive models of ZFC.

» o« ¢
S

mall”, “medium?”, “large”

Proof. Fix G € M, a transitive model of ZFC.

By Lemma 8.3, [ker(®s)]" = ker(®¢), so “maxap” (ker(®g) = {1}) and
“minap” (ker(®s) = G ) are absolute.

By Corollary 8.4, “small” is clearly absolute.

If [G is medium]* | then by Lemma 8.5, each [C,,(G)]* remains compact
scattered in V', and hence, by Corollary 8.4, C,,(G) = [C,(G)]™. Hence, G is
really medium in V.

If G is medium in V, then each C,(G) is scattered, and hence [C,,(G)]M is
scattered (in V'), since every subspace of a scattered space is scattered. But
the Cantor-Bendixon sequence is absolute, so [C,,(G) is scattered]M as well, so
that [G is medium]™.

Hence, “medium” is absolute, and thus also “large” (= “neither small nor
medium”) is absolute as well.
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