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Abstract

For X a compact abelian group and B an infinite subset of its dual X ,
let Cp be the set of all z € X such that (p(z) : ¢ € B) converges to 1. If
F is a free filter on X, let D = |J{Cp : B € F}. The sets Cp and D are
subgroups of X. Cp always has Haar measure 0, while the measure of Dr
depends on F. We show that there is a filter F such that Ds has measure
0 but is not contained in any Cp. This generalizes previous results for the
special case where X is the circle group.

1 Introduction

In this paper we study the pointwise convergence of sequences of characters of
compact abelian groups and its relation to Bohr topologies. We begin with some
abstract definitions. All spaces considered here are assumed to be Hausdorff.

Definition 1.1 If XY are topological spaces, then C(X,Y) is the set of contin-
uous functions from X to'Y, and Cp(X,Y) denotes C(X,Y) given the topology
of pointwise convergence (i.e., regarding C,(X,Y) as a subset of Y* with the
usual product topology). If Y contains a distinguished point 1, then [_ddnotes
the constant function x +— 1 in C(X,Y).
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See Arkhangel’skii [1] for a discussion of such function spaces.

Suppose X is a compact abelian group and Y =T C C, where T is the circle
group. As usual (see [6, 9, 13]), X denotes the dual group of X; that is, the
group of characters, or continuous homomorphisms into T; then [is $he identity
element of X. If G = X and we view G as a discrete abelian group, then X = G
by the Pontrjagin Duality Theorem. However, if we consider G C C,(X, T), then
its inherited topology is the Bohr topology on G, and the closure of G in T is
the Bohr compactification, bG, of G. G# denotes G with its Bohr topology. Since
the compact group bG is dense in itself, and G# is dense in bG, we have:

Lemma 1.2 If X is an infinite compact abelian group, then X is dense in itself
in the topology inherited from C,(X,T).

However, X has no pointwise convergent sequences. To study pointwise con-
vergence, we use the following notation:

Definition 1.3 If X,Y are topological spaces, y € Y, and B C C(X,Y) is
infinite, then Cg(y) is the set of all x € X such that the sequence (p(x) : ¢ € B)
converges to y (that is, every neighborhood of y contains p(x) for all but finitely

many ¢ € B). Cp = Uer Cs(y). If Y is a topological group with identity 1, then
Cp denotes Cp(1).

If X and Y are topological groups and B is a family of homomorphisms, then
Cp and CNB are subgroups of X. Clearly, Cg C CNB. The sequence (¢ : ¢ € B)
converges pointwise (i.e., in C,(X,Y)) iff C = X. So when X is compact abelian
and B C X , C, g can never equal X, but it can be non-trivial. In §2 we prove the
following, which gives some results involving the sizes of Cg and Cy:

Theorem 1.4 Let X be an infinite compact abelian group with G = X. Then:

1. Cp is a Haar null set for each infinite B C G.

2. For any countable Q C X, there is an infinite B C X such that Q C Cg,
Cp contains a perfect subset, and Cg is dense in X.

3. X(B) < 1/|Cp| for all infinite B C G. Here, B is the closure of B in bG,
is the Haar probability measure on bG, and 1/|Cy| = 0 when |Cp| is infinite.

So, every Cp is small in the sense of measure, but by (2), for some B even the
smaller Cp is big in other senses. And (3) implies that whenever Cp is infinite, B
itself is small in the sense that B is a Haar null set in bG.
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When X =T, the fact that Cp is null is pointed out in [2, 4].

Note that both Cx and Cp get bigger as B gets smaller, so that the detailed
arguments in this paper will only involve countable B. For example, it is sufficient
to prove (1) for countable B, and the B produced in the proof of (2) will be
countable. R

If X =T, then T C C(T,T) is the set of functions z +— 2" for n € Z; we
identify T with Z. As an illustration of (3), let B = {kn : n € Z}. Then
Cp=Cp={z€T:2"=1}, and A\(B) = 1/k = 1/|Cs| = 1/|C3|.

For X = T, Barbieri, Dikranjan, Milan, and Weber [2] showed that assuming
Martin’s Axiom, there is a Haar null subgroup D of T which is not contained
in any Cg. In [7] we showed that this holds in ZFC; in fact, we gave an explicit
definition of such a D which is a Borel set in T.

There are two natural generalizations of these results about C(T,T). First,
one may study the maps (z — 2") € C(X,X) for any compact group X; this
was done in [7]. In this paper, we consider the second generalization. For an
arbitrary compact abelian group X, we have B C XccC (X, T). We shall produce
(Theorem 1.9) a Haar null subgroup D of X such that D is not contained in any
countable union of the form (J, Cp,. As in [7], it is convenient to define the null
group D from a filter:

Definition 1.5 Suppose that X,Y are topological spaces, y € Y, and F is a free
filter on the set C(X,Y). Then Dx(y) = U{Cr(y) : B € F}, and Dr = | J{Cs :
B e F}. IfY is a topological group with identity 1, then Dx denotes Dg(1).

As usual, a filter F is free iff it contains the complements of finite sets. As in
[7], our null group D will be Dz, where F is a filter of sets of asymptotic density
one:

Definition 1.6 For E C w, let d(E) and d(E) denote the lower and upper
asymptotic density:

E E
d(E) = liminf|in| < lim sup [E0n|

n—00 n n—0o0

= (p)

If equality holds, let d(E) = d(E) = d(F) denote the asymptotic density of E.

Definition 1.7 Let X be a compact abelian group and let ¢ = (p, : n € w) be a

sequence of distinct elements of X. Then Fo is the filter F generated by all sets
of the form {p, : n € E} such that d(E) = 1.
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Proposition 1.8 For F, defined as in 1.7, 15% 15 a Haar null subgroup of X.

Note that 15% is clearly a subgroup. We prove that it is null in §2. The group
15% could be trivial; for example, if X =T and ¢, (z) = 2", then 15% ={1}. In
[7], our null subgroup of T was of the form 25@, where ©,(2) = 2™

The null group ﬁfw contains Dx,. Nevertheless, Theorem 1.9 shows that for
suitable ¢, even Dy, is not contained in any countable union of 53 sets.

Theorem 1.9 For any infinite compact abelian group X, there is a D such that:

1. D is a Haar null subgroup of X ;

2. D s dense in X;

3. D is not a subset of any countable union of the form J, CNBZ, where each By
is an infinite subset of )/(\';

4. D =Dy, for some sequence of distinct characters ¢ = (p, :n € w).

The proof of Theorem 1.9 has two parts. In §4, we prove the theorem when
X 1is one of four types of “stock” compact groups. And in §3, we show that it is
sufficient to prove the theorem for those stock groups. This argument applies the
structure theory for abelian groups to X, and is similar to the analysis used in
constructing Iy sets (Hartman and Ryll-Nardzewski [8], Thm. 5; see also [12]).

The stock groups are all second countable (that is, their X are countable).
The |)? | in Proposition 1.8 and Theorem 1.9 can be an arbitrary infinite cardinal.
However, since Cy gets bigger as B gets smaller, it is sufficient to prove Theorem
1.9 in the case that all the B, are countable. For countable B, Cp and Cp are
Borel (in fact, Fis) sets; likewise, Dz, and Dy, are Fy;5 sets (see Proposition 5.3).

Our results are related to the notions of g-closure and g-density described by
Dikranjan, Milan, and Tonolo [5]. These notions may be expressed in terms of
an intersection involving our Cp:

Definition 1.10 Let X be a compact abelian group, and J < X, with J its (usual
topological) closure. Then gx(J)=J N (Cs: B € [X]* & J C Cp}.

They call gx(J) the g-closure of J and say that J is g-dense iff gx(J) = X.
Barbieri, Dikranjan, Milan, and Weber [3] ask (see Question 5.7) whether for
every infinite compact abelian group, there is a g-dense subgroup which is a Haar
null set, and they provide an affirmative answer under Martin’s Axiom in some
cases. Our D from Theorem 1.9 provides an affirmative answer in all cases in

ZFC.
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2 Elementary Facts
Proposition 1.8 is easily proved using Cesaro limits:

Definition 2.1 Givenr, € C forn € w and s € C, r,, ~ s means that % >
converges to s as j — 00.

n<j T'n

Lemma 2.2 Fizr, € C forn € w and s € C. Assume that there is an M > 0
such that |r,| < M for all n, and that lim,cpr, = s for some E C w with
d(E) =1. Thenr, ~ s.

The following is proved exactly like Lemma 4.9 of [12], although the basic idea
for the proof goes back to Weyl [15]§7.

Lemma 2.3 Let o be a probability measure on X. Let ¢, : X — C, forn € w,
be measurable. Assume that M >0, |p,(z)| < M for alln and x, and the v, are
orthogonal in L*(p). Then p({x € X : p,(x) ~ 0}) = 1.

Proof of Proposition 1.8. Use Lemma 2.2 and 2.3. Here, the ¢, map into
T, so Dz, (0) = 0, so that D, is disjoint from {z € X : ¢, (z) ~ 0}. [

The next lemma is immediate from the Pontrjagin Duality Theorem:

Lemma 2.4 For compact abelian X and 'Y, Zfi; 18 1somorphic to a subgroup of
X, then there is a continuous homomorphism ™ mapping X onto Y.

Given compact abelian X', we can choose Y so that Y is a countable subgroup
of X. Then Y is second countable. This sometimes lets us reduce a statement
about arbitrary X to a statement about second countable groups, as is illustrated
in the proof below of Theorem 1.4(2). It is also useful to recall:

Lemma 2.5 If 7 is a continuous homomorphism mapping the compact group X
ontoY, then 7 is both a closed map and an open map. Also, \x (7 1 (E)) = A\y(E)
for all Haar-measurable E C'Y, where Ax, Ay are the Haar probability measures
on X,Y, respectively.

To prove Theorem 1.4(3), we need:

Lemma 2.6 FEwvery infinite discrete abelian group G is a Haar null subset of bG.
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This lemma is immediate from Varopoulos [14], who proves a more general
result. To prove the result directly for discrete abelian groups, note that for
countable ones, the result is trivial. So for an arbitrary infinite discrete abelian
G, take a homomorphism 7 from G onto a countable H, and then note that 7
induces b : bG — bH, with G C (bm)~*(H).

The following lemma is also needed for Theorem 1.4(3):

Lemma 2.7 Let X be a compact abelian group with G = )A(, and firu € X and a
subgroup S of G. Let K ={x € X :Vp € S{p(x) = o(u)]}. Then \(K) = 1/|5|,
where X is Haar measure on X.

Proof. Let 7 : X — S be the natural map. Viewing X as the characters of G,
we have

K={reX:VoeS[z(p)=ul@)]}={re X :2]S=ulS}=r"{u|S} .

Here, u[S is a point in S. Since 7 preserves Haar measure (see Lemma 2.5), if S
is infinite then A\(K) = 0, while if S is finite then A(K) =1/|S| =1/|S|. [

Proof of Theorem 1.4. Part (1) is clear from Proposition 1.8, since it is
sufficient to prove it when B is countable.

For (2), we shall produce a perfect subset of X via a tree of open sets indexed
by finite 0-1 sequences. List Q) as {g; : j € w}. We now get distinct ¢,, € X for
n €wand U, C X for s € 2<¥ =, {0, 1}" so that:

[_{J) is open and nonempty.
CcllUs~o) Nel(Us~1) = 0 and cl(Ug~g), cl(Us~1) C Us.
M- ¢, (z)| < 1/n whenever x € {q; : 7 < n}UJ{Us : s € 2"}.

We do this by induction on n. ¢y can be arbitrary and Uy can be X. If we
are given U for s € 2" and g, ..., p,: First, choose distinct ps—~g, ps—~1 € Us.
Then choose ¢,11 & {®o, - - -, ¢n} such that |1 — p,1(z)] < 1/(n + 1) whenever
ze€{q:j<n+1}U{p :te2"}; this is possible because [eK C Cp(X,T)
and is not isolated in X (see Lemma 1.2). Then, we may choose U; for t € 2!
using the continuity of ¢, 1.

Let K = (e Usean cl(Us), and let B = {¢, : n € w}. Then K UQ C Cp.
K is not scattered, since it maps continuously onto the Cantor set, so its perfect
kernel is non-empty.

We still need to get Cg dense in X. If X is separable, this is trivial, since we
may assume that the countable ) contains a dense subset of X. So for any X,
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choose a second countable Y with ¥ < )?, and let 7 : X — Y be as in Lemma
2.4. For this separable Y, choose an infinite By C Y such that (@) C Cgy, Cp,
is dense in Y, and Cp, contains a perfect subset. Then B = {¢p o7 : ¢ € By}
satisfies (2); since 7 is an open map (Lemma 2.5), Cgp = 7~ *(Cp, ) is dense in X.

For (3), define O : Cp — T so that Oy(x) is the limit of the sequence (p(z) :
¢ € B) (which exists by definition of Cz). Note that ©p is a homomorphism
from the group Cx into T, so, since T is divisible, it extends to a homomorphism
©:X — T. Then Cp ={z € X : (p(x) : p € B) — O(x)}. Let X, denote the
group X with the discrete topology; then we can identify bG with the compact
group Xy. So, © € bG. We can view G* as a dense subgroup of bG, so that
each z € X can be identified with a continuous homomorphism on bG. With this
identification, each x € Cp satisfies (z(p) : ¢ € B) — x(0©), so that z(P) = z(O)
for cach ® € B\B. Thus, B\B C {® € bG : Va € Cpz(®) = z(0)]}, so
that A(B\B) < 1/|Cs| by applying Lemma 2.7; the X, G, u, S in 2.7 becomes
bG, X, O, Cy here. Finally, A(B) < 1/|5B\ because B C (G, which, by Lemma 2.6,
is a Haar null set in bG. []

Just getting a Cp that contains a perfect set is trivial in the case that G = X
has an infinite subgroup H with infinite index. Let Z = ({ker(p) : ¢ € H}.
Then Z = G/H is an infinite compact subgroup of X, and Z = Cy.

3 Reduction to Stock

In this section, we show that it is sufficient to prove Theorem 1.9 in the case that
X is the dual of one of the groups listed in the following lemma:

Lemma 3.1 Every infinite abelian group contains a subgroup isomorphic to one
of the following:

[ 7]
>, Zp,, where the p, are primes and py < py < ---.

>, Zp, where p is a fized prime.
[ Z)~, for some prime p.

This lemma is part of the structure theory for infinite abelian groups (see
Kaplansky [10], or Hewitt and Ross [9], or [12] §3). The duals of these four
groups are, respectively, T, [],. ., Zp,, (Z,)*, and the p-adic integers; for the last
one, see [9] §25.
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Next, we use the 7 : X — Y obtained from Lemma 2.4 to translate a ¢
satisfying Theorem 1.9 for Y to a ¢ o 7 satisfying Theorem 1.9 for X.

Lemma 3.2 Let X and Y be compact abelian groups, with m a continuous ho-
momorphism mapping X onto Y. Assume that ¢ = {(p, : n € w) is a se-
quence of distinct characters of Y such that Dz, is not a subset of any count-
able union of the form |, 5Ae, whenever each A’ is an infinite subset of Y. Let
pom = (ppom:n € w). Then, in X, Dg,, . is not a subset of any countable
union of the form J, C~Bz, whenever each B is an infinite subset of X. Also, if
Dy, is dense in Y then Dg,,, 1is dense in X.

Proof. Let K = ker(m). Since 7 is an epimorphism, X/K =Y, so characters
of Y correspond to characters of X/K. Note also that each character in X
restricts to one in K. Since C, p gets bigger as B gets smaller, we may shrink each
B* to a countable set. Shrinking again to B® = {¢! : n € w}, we may assume
that for each ¢, the ¢! | K, for n € w, are either all the same or are all different.

Case 1: The ¢! [ K, forn € w, are all the same. So each ¢ - (1§) ! is identically
1 on K, and hence yields a character 6 € X/K =Y (with ¢ - ()~ = 6 o ).
Let A = {6’ : n € w} C Y. By our assumption on ¢, we can fix a y € Y
such that y € Dy, and y ¢ C ¢ for all Case 1 £. Note that if x is any element
of m{y}, then z € Dg,, . Also, such an z is not in Cye for all Case 1 ¢,
because the non-convergence of (6°(y) : n € w) implies the non-convergence of
(Yh(x) - (W§(x))~" : n € w), and hence the non-convergence of (Y’ (x) : n € w).
We are thus done if we produce 2 € 7= *{y} so that z ¢ Cp for all Case 2 (. Fix
z* € 7~ y}. Then our desired z will be an element of the coset Kz* = 7~ {y}.

Case 2: The ¥‘[K, for n € w, are all different. For all Case 2 ¢, define
ffo K — T by fit) = ¢t (ta*) = () - i(x*). Note that each f£ is the
product of a character ¢‘ K of K with a number ¢! (z*), so that {ff :n € w}
is an orthogonal family in L*(K). Tt follows, by using Lemma 2.3, that C~{ fonew)
is a Haar null set in K. Choose ¢ such that for each Case 2 ¢ the sequence
(ft(t) : m € w) does not converge; then tz* ¢ Cpe.

Finally, to prove that Dx, . is dense in X, use the facts that 7 is an open
map by Lemma 2.5, and that Dg,, =7 (Dg,). [

4 Nice Groups

Definition 4.3 below isolates the key property of the groups @, for the groups G
listed in Lemma 3.1.
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Definition 4.1 If X is a compact abelian group, then
X(X)={px):pcX &zeX} .
Proposition 4.2 X (X) is a subgroup of T.

Proof. Let G = X. If G contains an element of infinite order, then X (X)=T.
Otherwise, X (X)) is the group generated by all e?™/P" such that p is prime and
G contains an element of order p”. []

If G is of finite exponent (= bounded order), then X (X) is finite; otherwise,
A(X(X)) =T.

Definition 4.3 The compact abelian group X is nice iff |)A(| = Ny and for all
non-empty open U C X and all € > 0: cl(X (X)) C N:(¢(U)) for all but finitely
many ¢ € X. Here, N.(S)={z€T:3we S|z —w| <e}.

Lemma 4.4 If G = X is an infinite torsion abelian group and {¢ € G : o =1}
is finite for each k, then X is nice.

~

Proof. Note that cl(X(X)) = T, so we fix a non-empty open U C X and an
e > 0, and we must verify that N.(¢p(U)) = T for all but finitely many ¢ € X.
Observe that ¢(X) is finite for all ¢ € G. Translating U and shrinking it, we may
assume that U = {x € X : Vi € F[¢(x) = 1]}, where F is a finite subgroup of G.
Let R, ={z € T: 2" =1}, and fix m such that N.(R,,) = T. For all but finitely
many ¢ € G, the order of [p] in G/F is at least m. Fix any such ¢; then for some
n >m, ¢" € F but ¢* ¢ F whenever 0 < k < n. Fixy € Hom(G/F, T) such that
y([¢]) = e¥™i/™: this lifts to an # € G = Hom(@, T) such that z(p) = 2"/ and
z(1) =1 for all ¢ € F. Identifying G with X, we have z € U and ¢(z) = 2™/";
so, since U is a group, ¢(U) 2 R,. Then n > m yields N.(¢(U)) =T. []

Lemma 4.5 G is nice whenever G is one of the groups listed in Lemma 3.1.

Proof. Lemma 4.4 handles the duals of > _ 7, and Zj~. For T = Z, note
that for a given U, p(U) = T for all but finitely many ¢.

For G =) . 7Z, and G = (Z,)“, follow the proof of Lemma 4.4. U and F
are exactly the same. Now, X(X) = R,, and o(U) = R, for all ¢ ¢ F. []

We now proceed to prove Theorem 1.9 for nice groups.
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Definition 4.6 Let X be a compact 2" countable abelian group with metric p
and let G = X. A nice partition for (X, p) is a sequence (®; : j € w) such that
the ®; are finite disjoint nonempty sets whose union is G and, if we set

pila,y) = plz,y) + > {I@(w) R ZC)RRCES U%} :

~

then for each j and all p € Uk2j+2 Oy, allz € X, and all z € (X (X)), there is
ay € X with p;(x,y) <277 and |p(y) — z| < 277.

Lemma 4.7 If X is a nice compact abelian group with metric p, then there is a
nice partition for (X, p).

Proof. List G as {g; : j € w}. Now, define the ®; by induction. Let &y = {¢o}.
Given @, for k < j, we have the metric p; on X, so for some finite m, we may
cover X by open sets Uy, ..., U, of pj—diameter less than ¢ := 277. Now choose

~

@41 so that cl(X(X)) C N(p(Up)) for all £ and for all p € G\ Uy<;;q Pk Also
make sure that ¢; € Uk§j+1 ®;. so that G will be the union of all the ®;. []

Definition 4.8 Suppose that ® = (®; : j € w) is a nice partition for (X, p). A
sequence (g, 1 n € w) from X is thin (with respect to ®) iff each v, € ®,,, where
each jni1 2 Jn + 2.

Lemma 4.9 Assume that (¢, : n € w) is a thin sequence, w is partitioned into

~

two infinite sets, A, B, and a,b € cl(X(X)). Then for some z € X,
on(T) — a AND on(T) =5 b .

Proof. Choose z,, € X for n € w as follows: xg,x; are arbitrary. Given x,_;
with n > 2, use ¢, € U,an_IJr2 ., plus j,—1 > 2(n—1) > n, to get z,, to satisfy:
Ced (2o, 2,) <277
Cok A = |o,(z,) —al <27
Cok B = |p,(x,) — b <27
Then each p(x,_1,x,) < 27" so (x, : n € w) converges to some z. Now, fix

n > 1, and we estimate |@,(z,) — ¢n(x)|: For all m > n, |, (Tm-1) — ©n(xm)| <

Pjmr(Tm—1,Zm) < 27™. Thus, |, (z,) — @n(z)] < z;’j:nﬂ 9-m _ 9—n_
Now, if n € A, then

on(2) — al < len(2n) = @n()] + [@n(2n) —al <27 +27" =0 .
The argument is the same forn € B. []
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Lemma 4.10 Let X be a compact 2" countable abelian group with metric p and
let G = X. Suppose that ® = (®; : j € w) is a nice partition for (X, p) and
@ = (p, :n € w), where each p, € ®s3,. Let By, for { € w, be any infinite subsets
of G. Then Dr, Z |, 53[

Proof. By a standard diagonal argument, get ¢/ for n € w and E, F C w such
that:

(¢!, :n € w) is thin with respect to ®.

d({n: ¢, =¢n}) =1.

FUF=wand ENF = 0.

d(E) = 1.

For each ¢, both {n € E: ¢/ € B,} and {n € F : ¢/, € By} are infinite.

Ol W=

Fix z € X(X)\{1}. By (1)(3), we may apply Lemma 4.9 and fix # € X such that
pul@) ez 1 AND g (r) i 2

By (2)(4), z € Dx,. By (5), v ¢ Cp, for each ¢. []

Lemma 4.11 Suppose that ® = (®; : j € w) is a nice partition for (X, p) and
@ = (¢ :n €w) from X is thin with respect to ®. Let B = {¢, :n € w}. Then
Cp is dense in X, so that Dx, is dense in X.

Proof. This is similar to the proof of Lemma 4.9. Fix a non-empty open U C X.
We must produce an z € U such that ¢,(z) — 1. We may assume that ¢ € X
and r € wand U = {z € X : p(x,q) < 27"}, Choose x, € X for n € w as
follows: ©g =2y =--- =x, = q. Given x,,_; with n > r + 1, get z,, to satisfy:

I——p-j‘!wl(xn—hxn) <27
Cd, (zn) — 1] <27

Then (z, : n € w) converges to some x with p(x,q) < 27", so x € U. As in the
proof of Lemma 4.9, |p,(x) — 1| — 0. []

Proof of Theorem 1.9. By Lemmas 4.10 and 4.11, the theorem holds for
all nice groups, which by Lemma 4.5, includes the duals of all the groups listed
in Lemma 3.1. Then, by Lemma 3.2, the theorem holds for all X. []

Note that not every X with a countable dual is nice; see Example 5.2.
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5 Remarks and Examples

The proof in §2 that 5@ is null makes essential use of asymptotic density, via

Lemma 2.2; one cannot replace F, by an arbitrary filter F, since 15;, or even
the smaller Dg, might be all of X. By Proposition 1.2 of [7] and Lemma 1.2:

Proposition 5.1 If X' is any infinite compact abelian group, then there is a free
filter F on X such that F contains a countable set and Dy = X.

It is not clear whether the nice groups are of interest in their own right, or just
an artifact in the proof of Theorem 1.9. Not every dual of a countable discrete
abelian group is nice:

Example 5.2 Z, x (Z3)“ is not nice.

Proof. Elements of X = Z, x (Z)“ are of the form (x,¥), where z € Zy =
{1,i,—1,—i}, Zy = {£1}, and 7 € (Z)*. X(X) = {1,i,—1,—i}. Let @n(z,7) =
T -y, Let U = {(x,7) : = i}. Then the ¢, are distinct characters, and
©n(U) = {=£i}, so Definition 4.3 fails whenever £ < /2. []

All the “C” and “D” sets discussed in this paper are Borel:

Proposition 5.3 Let X be any compact abelian group. If B C X is countably
infinite, then Cp and Cp are Fys sets. If ¢ = (¢, : n € w) is a sequence of
distinct elements of X, then Dg, and Dz, are F,; sets.

Proof. Let B = {¢, : n € w}. Then z € Cp iff

Vrewds<ridkewvVm >k []gam(x) — e2mis/r| < z} :
”

since T C |J,_, Nyp/r(e2™/7). This displays Cp as a countable intersection of F,

sets. The argument for Cp is similar; just replace s by 0. Likewise, x € 25@ iff

s<r

1 . 1
Vrewds<rikewvVn>k [— ){m <nlom(z) — 2T < z}) >1-— —]
n r r
Again, replace s by 0 to see that D, is an F,s set. []
It is natural to ask whether the countable {B; : ¢ € w} from Theorem 1.9
could be replaced by a family of N; sets. Under CH, this is clearly false, since
then |X| may be ¥y, in which case Theorem 1.4 implies that a union of the
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form (J,.,, Cp, can be all of X. Assuming Martin’s Axiom (MA), the proof
of Theorem 1.9 implies that our Dz, is not a subset of any union of the form

Ua<s 5Ba where k < 2%, To see this, note that the countability of the family
{By : ¢ € w} was only used in two places. First, in handling Case 2 of Lemma
3.2, we used the fact that a compact group K is not covered by Xy null sets, and
MA lets us replace the “N,” by “< 2%”_ Second, the diagonal argument in the
proof Lemma 4.10 will work with families of size less than 2% under MA.

It is also consistent with ZFC to have 2% arbitrarily large but T = J,, <oy CBa-
This proof resembles the standard construction of an ultrafilter of character N;
(see [11], Exercise VIII.A10). Start with 2% large in the ground model V and
iterate forcing W; times with finite supports, forming V, for a < w;. When
a < wy, let F, €V, be afilter on Z = T obtained from Proposition 5.1, and get
B, € V1 so that B, C* A for all A € F,. One can even make the B, generate a
P-point ultrafilter, so that in the final model V,,,, the F of Proposition 5.1 could
be a P-point of character X;. To do this, make sure that each B, is chosen so that
0 is a limit point of B, in the Bohr topology of Z. Note that the F of Proposition
5.1 can never be a selective ultrafilter, since it would then contain thin sets and
run afoul of Lemma 4.9.
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