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Abstract

For X a compact abelian group and B an infinite subset of its dual X̂,
let CB be the set of all x ∈ X such that 〈ϕ(x) : ϕ ∈ B〉 converges to 1. If
F is a free filter on X̂, let DF =

⋃{CB : B ∈ F}. The sets CB and DF are
subgroups of X. CB always has Haar measure 0, while the measure of DF
depends on F . We show that there is a filter F such that DF has measure
0 but is not contained in any CB . This generalizes previous results for the
special case where X is the circle group.

1 Introduction

In this paper we study the pointwise convergence of sequences of characters of
compact abelian groups and its relation to Bohr topologies. We begin with some
abstract definitions. All spaces considered here are assumed to be Hausdorff.

Definition 1.1 If X, Y are topological spaces, then C(X, Y ) is the set of contin-
uous functions from X to Y , and Cp(X, Y ) denotes C(X, Y ) given the topology
of pointwise convergence (i.e., regarding Cp(X, Y ) as a subset of Y X with the
usual product topology). If Y contains a distinguished point 1, then ① denotes
the constant function x �→ 1 in C(X, Y ).
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See Arkhangel’skii [1] for a discussion of such function spaces.
Suppose X is a compact abelian group and Y = T ⊂ C, where T is the circle

group. As usual (see [6, 9, 13]), X̂ denotes the dual group of X; that is, the
group of characters, or continuous homomorphisms into T; then ① is the identity
element of X̂. If G = X̂ and we view G as a discrete abelian group, then X ∼= Ĝ
by the Pontrjagin Duality Theorem. However, if we consider G ⊆ Cp(X, T), then
its inherited topology is the Bohr topology on G, and the closure of G in TX is
the Bohr compactification, bG, of G. G# denotes G with its Bohr topology. Since
the compact group bG is dense in itself, and G# is dense in bG, we have:

Lemma 1.2 If X is an infinite compact abelian group, then X̂ is dense in itself
in the topology inherited from Cp(X, T).

However, X̂ has no pointwise convergent sequences. To study pointwise con-
vergence, we use the following notation:

Definition 1.3 If X, Y are topological spaces, y ∈ Y , and B ⊆ C(X, Y ) is
infinite, then CB(y) is the set of all x ∈ X such that the sequence 〈ϕ(x) : ϕ ∈ B〉
converges to y (that is, every neighborhood of y contains ϕ(x) for all but finitely

many ϕ ∈ B). C̃B =
⋃

y∈Y CB(y). If Y is a topological group with identity 1, then
CB denotes CB(1).

If X and Y are topological groups and B is a family of homomorphisms, then
CB and C̃B are subgroups of X. Clearly, CB ⊆ C̃B. The sequence 〈ϕ : ϕ ∈ B〉
converges pointwise (i.e., in Cp(X, Y )) iff C̃B = X. So when X is compact abelian

and B ⊆ X̂, C̃B can never equal X, but it can be non-trivial. In §2 we prove the
following, which gives some results involving the sizes of CB and C̃B:

Theorem 1.4 Let X be an infinite compact abelian group with G = X̂. Then:

1. C̃B is a Haar null set for each infinite B ⊆ G.

2. For any countable Q ⊆ X, there is an infinite B ⊆ X̂ such that Q ⊆ CB,
CB contains a perfect subset, and CB is dense in X.

3. λ(B) ≤ 1/|C̃B| for all infinite B ⊆ G. Here, B is the closure of B in bG, λ

is the Haar probability measure on bG, and 1/|C̃B| = 0 when |C̃B| is infinite.

So, every C̃B is small in the sense of measure, but by (2), for some B even the

smaller CB is big in other senses. And (3) implies that whenever C̃B is infinite, B
itself is small in the sense that B is a Haar null set in bG.
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When X = T, the fact that CB is null is pointed out in [2, 4].

Note that both CB and C̃B get bigger as B gets smaller, so that the detailed
arguments in this paper will only involve countable B. For example, it is sufficient
to prove (1) for countable B, and the B produced in the proof of (2) will be
countable.

If X = T, then T̂ ⊂ C(T, T) is the set of functions z �→ zn for n ∈ Z; we

identify T̂ with Z. As an illustration of (3), let B = {kn : n ∈ Z}. Then

CB = C̃B = {z ∈ T : zk = 1}, and λ(B) = 1/k = 1/|C̃B| = 1/|CB|.
For X = T, Barbieri, Dikranjan, Milan, and Weber [2] showed that assuming

Martin’s Axiom, there is a Haar null subgroup D of T which is not contained
in any CB. In [7] we showed that this holds in ZFC; in fact, we gave an explicit
definition of such a D which is a Borel set in T.

There are two natural generalizations of these results about C(T, T). First,
one may study the maps (z �→ zn) ∈ C(X, X) for any compact group X; this
was done in [7]. In this paper, we consider the second generalization. For an

arbitrary compact abelian group X, we have B ⊆ X̂ ⊂ C(X, T). We shall produce
(Theorem 1.9) a Haar null subgroup D of X such that D is not contained in any

countable union of the form
⋃

� C̃B�
. As in [7], it is convenient to define the null

group D from a filter:

Definition 1.5 Suppose that X, Y are topological spaces, y ∈ Y , and F is a free
filter on the set C(X, Y ). Then DF(y) =

⋃{CB(y) : B ∈ F}, and D̃F =
⋃{C̃B :

B ∈ F}. If Y is a topological group with identity 1, then DF denotes DF(1).

As usual, a filter F is free iff it contains the complements of finite sets. As in
[7], our null group D will be DF , where F is a filter of sets of asymptotic density
one:

Definition 1.6 For E ⊆ ω, let d(E) and d(E) denote the lower and upper
asymptotic density:

d(E) = lim inf
n→∞

|E ∩ n|
n

≤ lim sup
n→∞

|E ∩ n|
n

= d(E) .

If equality holds, let d(E) = d(E) = d(E) denote the asymptotic density of E.

Definition 1.7 Let X be a compact abelian group and let ϕ = 〈ϕn : n ∈ ω〉 be a

sequence of distinct elements of X̂. Then Fϕ is the filter F generated by all sets
of the form {ϕn : n ∈ E} such that d(E) = 1.
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Proposition 1.8 For Fϕ defined as in 1.7, D̃Fϕ is a Haar null subgroup of X.

Note that D̃Fϕ is clearly a subgroup. We prove that it is null in §2. The group

D̃Fϕ could be trivial; for example, if X = T and ϕn(z) = zn, then D̃Fϕ = {1}. In

[7], our null subgroup of T was of the form D̃Fϕ , where ϕn(z) = zn!.

The null group D̃Fϕ contains DFϕ . Nevertheless, Theorem 1.9 shows that for

suitable ϕ, even DFϕ is not contained in any countable union of C̃B sets.

Theorem 1.9 For any infinite compact abelian group X, there is a D such that:

1. D is a Haar null subgroup of X;

2. D is dense in X;

3. D is not a subset of any countable union of the form
⋃

� C̃B�
, where each B�

is an infinite subset of X̂;

4. D = DFϕ for some sequence of distinct characters ϕ = 〈ϕn : n ∈ ω〉.
The proof of Theorem 1.9 has two parts. In §4, we prove the theorem when

X is one of four types of “stock” compact groups. And in §3, we show that it is
sufficient to prove the theorem for those stock groups. This argument applies the
structure theory for abelian groups to X̂, and is similar to the analysis used in
constructing I0 sets (Hartman and Ryll-Nardzewski [8], Thm. 5; see also [12]).

The stock groups are all second countable (that is, their X̂ are countable).

The |X̂| in Proposition 1.8 and Theorem 1.9 can be an arbitrary infinite cardinal.

However, since C̃B gets bigger as B gets smaller, it is sufficient to prove Theorem
1.9 in the case that all the B� are countable. For countable B, CB and C̃B are
Borel (in fact, Fσδ) sets; likewise, DFϕ and D̃Fϕ are Fσδ sets (see Proposition 5.3).

Our results are related to the notions of g-closure and g-density described by
Dikranjan, Milan, and Tonolo [5]. These notions may be expressed in terms of
an intersection involving our CB:

Definition 1.10 Let X be a compact abelian group, and J ≤ X, with J its (usual

topological) closure. Then gX(J) = J ∩ ⋂{CB : B ∈ [X̂]ℵ0 & J ⊆ CB}.
They call gX(J) the g-closure of J and say that J is g-dense iff gX(J) = X.
Barbieri, Dikranjan, Milan, and Weber [3] ask (see Question 5.7) whether for
every infinite compact abelian group, there is a g-dense subgroup which is a Haar
null set, and they provide an affirmative answer under Martin’s Axiom in some
cases. Our D from Theorem 1.9 provides an affirmative answer in all cases in
ZFC.
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2 Elementary Facts

Proposition 1.8 is easily proved using Cesàro limits:

Definition 2.1 Given rn ∈ C for n ∈ ω and s ∈ C, rn � s means that 1
j

∑
n<j rn

converges to s as j → ∞.

Lemma 2.2 Fix rn ∈ C for n ∈ ω and s ∈ C. Assume that there is an M ≥ 0
such that |rn| ≤ M for all n, and that limn∈E rn = s for some E ⊆ ω with
d(E) = 1. Then rn � s.

The following is proved exactly like Lemma 4.9 of [12], although the basic idea
for the proof goes back to Weyl [15]§7.

Lemma 2.3 Let μ be a probability measure on X. Let ϕn : X → C, for n ∈ ω,
be measurable. Assume that M ≥ 0, |ϕn(x)| ≤ M for all n and x, and the ϕn are
orthogonal in L2(μ). Then μ({x ∈ X : ϕn(x) � 0}) = 1.

Proof of Proposition 1.8. Use Lemma 2.2 and 2.3. Here, the ϕn map into
T, so DFϕ (0) = ∅, so that D̃Fϕ is disjoint from {x ∈ X : ϕn(x) � 0}.

The next lemma is immediate from the Pontrjagin Duality Theorem:

Lemma 2.4 For compact abelian X and Y , if Ŷ is isomorphic to a subgroup of
X̂, then there is a continuous homomorphism π mapping X onto Y .

Given compact abelian X, we can choose Y so that Ŷ is a countable subgroup
of X̂. Then Y is second countable. This sometimes lets us reduce a statement
about arbitrary X to a statement about second countable groups, as is illustrated
in the proof below of Theorem 1.4(2). It is also useful to recall:

Lemma 2.5 If π is a continuous homomorphism mapping the compact group X
onto Y , then π is both a closed map and an open map. Also, λX(π−1(E)) = λY (E)
for all Haar-measurable E ⊆ Y , where λX , λY are the Haar probability measures
on X, Y , respectively.

To prove Theorem 1.4(3), we need:

Lemma 2.6 Every infinite discrete abelian group G is a Haar null subset of bG.
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This lemma is immediate from Varopoulos [14], who proves a more general
result. To prove the result directly for discrete abelian groups, note that for
countable ones, the result is trivial. So for an arbitrary infinite discrete abelian
G, take a homomorphism π from G onto a countable H , and then note that π
induces bπ : bG � bH , with G ⊆ (bπ)−1(H).

The following lemma is also needed for Theorem 1.4(3):

Lemma 2.7 Let X be a compact abelian group with G = X̂, and fix u ∈ X and a
subgroup S of G. Let K = {x ∈ X : ∀ϕ ∈ S [ϕ(x) = ϕ(u)]}. Then λ(K) = 1/|S|,
where λ is Haar measure on X.

Proof. Let π : X � Ŝ be the natural map. Viewing X as the characters of G,
we have

K = {x ∈ X : ∀ϕ ∈ S [x(ϕ) = u(ϕ)]} = {x ∈ X : x�S = u�S} = π−1{u�S} .

Here, u�S is a point in Ŝ. Since π preserves Haar measure (see Lemma 2.5), if S

is infinite then λ(K) = 0, while if S is finite then λ(K) = 1/|Ŝ| = 1/|S|.

Proof of Theorem 1.4. Part (1) is clear from Proposition 1.8, since it is
sufficient to prove it when B is countable.

For (2), we shall produce a perfect subset of X via a tree of open sets indexed

by finite 0-1 sequences. List Q as {qj : j ∈ ω}. We now get distinct ϕn ∈ X̂ for
n ∈ ω and Us ⊆ X for s ∈ 2<ω =

⋃
n∈ω{0, 1}n so that:

☞ Us is open and nonempty.

☞ cl(Us�0) ∩ cl(Us�1) = ∅ and cl(Us�0), cl(Us�1) ⊆ Us.

☞ |1 − ϕn(x)| < 1/n whenever x ∈ {qj : j ≤ n} ∪ ⋃{Us : s ∈ 2n}.
We do this by induction on n. ϕ0 can be arbitrary and U() can be X. If we
are given Us for s ∈ 2n and ϕ0, . . . , ϕn: First, choose distinct ps�0, ps�1 ∈ Us.
Then choose ϕn+1 /∈ {ϕ0, . . . , ϕn} such that |1 − ϕn+1(x)| < 1/(n + 1) whenever

x ∈ {qj : j ≤ n + 1} ∪ {pt : t ∈ 2n+1}; this is possible because ① ∈ X̂ ⊂ Cp(X, T)

and is not isolated in X̂ (see Lemma 1.2). Then, we may choose Ut for t ∈ 2n+1

using the continuity of ϕn+1.
Let K =

⋂
n∈ω

⋃
s∈2n cl(Us), and let B = {ϕn : n ∈ ω}. Then K ∪ Q ⊆ CB.

K is not scattered, since it maps continuously onto the Cantor set, so its perfect
kernel is non-empty.

We still need to get CB dense in X. If X is separable, this is trivial, since we
may assume that the countable Q contains a dense subset of X. So for any X,
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choose a second countable Y with Ŷ < X̂, and let π : X � Y be as in Lemma
2.4. For this separable Y , choose an infinite BY ⊆ Ŷ such that π(Q) ⊆ CBY

, CBY

is dense in Y , and CBY
contains a perfect subset. Then B = {ϕ ◦ π : ϕ ∈ BY }

satisfies (2); since π is an open map (Lemma 2.5), CB = π−1(CBY
) is dense in X.

For (3), define Θ0 : C̃B → T so that Θ0(x) is the limit of the sequence 〈ϕ(x) :

ϕ ∈ B〉 (which exists by definition of C̃B). Note that Θ0 is a homomorphism

from the group C̃B into T, so, since T is divisible, it extends to a homomorphism
Θ : X → T. Then C̃B = {x ∈ X : 〈ϕ(x) : ϕ ∈ B〉 → Θ(x)}. Let Xd denote the
group X with the discrete topology; then we can identify bG with the compact
group X̂d. So, Θ ∈ bG. We can view G# as a dense subgroup of bG, so that
each x ∈ X can be identified with a continuous homomorphism on bG. With this
identification, each x ∈ C̃B satisfies 〈x(ϕ) : ϕ ∈ B〉 → x(Θ), so that x(Φ) = x(Θ)

for each Φ ∈ B\B. Thus, B\B ⊆ {Φ ∈ bG : ∀x ∈ C̃B [x(Φ) = x(Θ)]}, so

that λ(B\B) ≤ 1/|C̃B| by applying Lemma 2.7; the X, G, u, S in 2.7 becomes

bG, X, Θ, C̃B here. Finally, λ(B) ≤ 1/|C̃B| because B ⊆ G, which, by Lemma 2.6,
is a Haar null set in bG.

Just getting a CB that contains a perfect set is trivial in the case that G = X̂
has an infinite subgroup H with infinite index. Let Z =

⋂{ker(ϕ) : ϕ ∈ H}.
Then Z ∼= Ĝ/H is an infinite compact subgroup of X, and Z = CH .

3 Reduction to Stock

In this section, we show that it is sufficient to prove Theorem 1.9 in the case that
X is the dual of one of the groups listed in the following lemma:

Lemma 3.1 Every infinite abelian group contains a subgroup isomorphic to one
of the following:

☞ Z.

☞
∑

n∈ω Zpn, where the pn are primes and p0 < p1 < · · · .
☞

∑
n∈ω Zp, where p is a fixed prime.

☞ Zp∞, for some prime p.

This lemma is part of the structure theory for infinite abelian groups (see
Kaplansky [10], or Hewitt and Ross [9], or [12] §3). The duals of these four
groups are, respectively, T,

∏
n∈ω Zpn , (Zp)

ω, and the p-adic integers; for the last
one, see [9] §25.
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Next, we use the π : X � Y obtained from Lemma 2.4 to translate a ϕ
satisfying Theorem 1.9 for Y to a ϕ ◦ π satisfying Theorem 1.9 for X.

Lemma 3.2 Let X and Y be compact abelian groups, with π a continuous ho-
momorphism mapping X onto Y . Assume that ϕ = 〈ϕn : n ∈ ω〉 is a se-
quence of distinct characters of Y such that DFϕ is not a subset of any count-

able union of the form
⋃

� C̃A� , whenever each A� is an infinite subset of Ŷ . Let
ϕ ◦ π = 〈ϕn ◦ π : n ∈ ω〉. Then, in X, DFϕ◦π is not a subset of any countable

union of the form
⋃

� C̃B� , whenever each B� is an infinite subset of X̂. Also, if
DFϕ is dense in Y then DFϕ◦π is dense in X.

Proof. Let K = ker(π). Since π is an epimorphism, X/K ∼= Y , so characters

of Y correspond to characters of X/K. Note also that each character in X̂

restricts to one in K̂. Since C̃B gets bigger as B gets smaller, we may shrink each
B� to a countable set. Shrinking again to B� = {ψ�

n : n ∈ ω}, we may assume
that for each �, the ψ�

n�K, for n ∈ ω, are either all the same or are all different.
Case 1 : The ψ�

n�K, for n ∈ ω, are all the same. So each ψ�
n·(ψ�

0)
−1 is identically

1 on K, and hence yields a character δ�
n ∈ X̂/K ∼= Ŷ (with ψ�

n · (ψ�
0)

−1 = δ�
n ◦ π).

Let A� = {δ�
n : n ∈ ω} ⊆ Ŷ . By our assumption on ϕ, we can fix a y ∈ Y

such that y ∈ DFϕ and y /∈ C̃A� for all Case 1 �. Note that if x is any element

of π−1{y}, then x ∈ DFϕ◦π . Also, such an x is not in C̃B� for all Case 1 �,
because the non-convergence of 〈δ�

n(y) : n ∈ ω〉 implies the non-convergence of
〈ψ�

n(x) · (ψ�
0(x))−1 : n ∈ ω〉, and hence the non-convergence of 〈ψ�

n(x) : n ∈ ω〉.
We are thus done if we produce x ∈ π−1{y} so that x /∈ C̃B� for all Case 2 �. Fix
x∗ ∈ π−1{y}. Then our desired x will be an element of the coset Kx∗ = π−1{y}.

Case 2 : The ψ�
n�K, for n ∈ ω, are all different. For all Case 2 �, define

f �
n : K → T by f �

n(t) = ψ�
n(tx∗) = ψ�

n(t) · ψ�
n(x∗). Note that each f �

n is the
product of a character ψ�

n�K of K with a number ψ�
n(x∗), so that {f �

n : n ∈ ω}
is an orthogonal family in L2(K). It follows, by using Lemma 2.3, that C̃{f�

n:n∈ω}
is a Haar null set in K. Choose t such that for each Case 2 � the sequence
〈f �

n(t) : n ∈ ω〉 does not converge; then tx∗ /∈ C̃B� .
Finally, to prove that DFϕ◦π is dense in X, use the facts that π is an open

map by Lemma 2.5, and that DFϕ◦π = π−1(DFϕ ).

4 Nice Groups

Definition 4.3 below isolates the key property of the groups Ĝ, for the groups G
listed in Lemma 3.1.
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Definition 4.1 If X is a compact abelian group, then

X̂(X) = {ϕ(x) : ϕ ∈ X̂ & x ∈ X} .

Proposition 4.2 X̂(X) is a subgroup of T.

Proof. Let G = X̂. If G contains an element of infinite order, then X̂(X) = T.

Otherwise, X̂(X) is the group generated by all e2πi/pn
such that p is prime and

G contains an element of order pn.

If G is of finite exponent (= bounded order), then X̂(X) is finite; otherwise,

cl(X̂(X)) = T.

Definition 4.3 The compact abelian group X is nice iff |X̂| = ℵ0 and for all

non-empty open U ⊆ X and all ε > 0: cl(X̂(X)) ⊆ Nε(ϕ(U)) for all but finitely

many ϕ ∈ X̂. Here, Nε(S) = {z ∈ T : ∃w ∈ S [|z − w| < ε] }.

Lemma 4.4 If G = X̂ is an infinite torsion abelian group and {ϕ ∈ G : ϕk = 1}
is finite for each k, then X is nice.

Proof. Note that cl(X̂(X)) = T, so we fix a non-empty open U ⊆ X and an

ε > 0, and we must verify that Nε(ϕ(U)) = T for all but finitely many ϕ ∈ X̂.
Observe that ϕ(X) is finite for all ϕ ∈ G. Translating U and shrinking it, we may
assume that U = {x ∈ X : ∀ψ ∈ F [ψ(x) = 1]}, where F is a finite subgroup of G.
Let Rn = {z ∈ T : zn = 1}, and fix m such that Nε(Rm) = T. For all but finitely
many ϕ ∈ G, the order of [ϕ] in G/F is at least m. Fix any such ϕ; then for some
n ≥ m, ϕn ∈ F but ϕk /∈ F whenever 0 < k < n. Fix y ∈ Hom(G/F, T) such that

y([ϕ]) = e2πi/n; this lifts to an x ∈ Ĝ = Hom(G, T) such that x(ϕ) = e2πi/n and

x(ψ) = 1 for all ψ ∈ F . Identifying Ĝ with X, we have x ∈ U and ϕ(x) = e2πi/n;
so, since U is a group, ϕ(U) ⊇ Rn. Then n ≥ m yields Nε(ϕ(U)) = T.

Lemma 4.5 Ĝ is nice whenever G is one of the groups listed in Lemma 3.1.

Proof. Lemma 4.4 handles the duals of
∑

n∈ω Zpn and Zp∞. For T = Ẑ, note
that for a given U , ϕ(U) = T for all but finitely many ϕ.

For G =
∑

n∈ω Zp and Ĝ = (Zp)
ω, follow the proof of Lemma 4.4. U and F

are exactly the same. Now, X̂(X) = Rp, and ϕ(U) = Rp for all ϕ /∈ F .

We now proceed to prove Theorem 1.9 for nice groups.
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Definition 4.6 Let X be a compact 2nd countable abelian group with metric ρ
and let G = X̂. A nice partition for (X, ρ) is a sequence 〈Φj : j ∈ ω〉 such that
the Φj are finite disjoint nonempty sets whose union is G and, if we set

ρj(x, y) = ρ(x, y) +
∑ {

|ϕ(x) − ϕ(y)| : ϕ ∈
⋃
k≤j

Φk

}
,

then for each j and all ϕ ∈ ⋃
k≥j+2 Φk, all x ∈ X, and all z ∈ cl(X̂(X)), there is

a y ∈ X with ρj(x, y) < 2−j and |ϕ(y) − z| < 2−j.

Lemma 4.7 If X is a nice compact abelian group with metric ρ, then there is a
nice partition for (X, ρ).

Proof. List G as {ϕj : j ∈ ω}. Now, define the Φj by induction. Let Φ0 = {ϕ0}.
Given Φk for k ≤ j, we have the metric ρj on X, so for some finite m, we may
cover X by open sets U0, . . . , Um of ρj–diameter less than ε := 2−j. Now choose

Φj+1 so that cl(X̂(X)) ⊆ Nε(ϕ(U�)) for all � and for all ϕ ∈ G \ ⋃
k≤j+1 Φk. Also

make sure that ϕj ∈
⋃

k≤j+1 Φk so that G will be the union of all the Φj .

Definition 4.8 Suppose that Φ = 〈Φj : j ∈ ω〉 is a nice partition for (X, ρ). A

sequence 〈ϕn : n ∈ ω〉 from X̂ is thin (with respect to Φ) iff each ϕn ∈ Φjn, where
each jn+1 ≥ jn + 2.

Lemma 4.9 Assume that 〈ϕn : n ∈ ω〉 is a thin sequence, ω is partitioned into

two infinite sets, A, B, and a, b ∈ cl(X̂(X)). Then for some x ∈ X,

ϕn(x)−−→
n ∈ A

a AND ϕn(x)−−→
n ∈ B

b .

Proof. Choose xn ∈ X for n ∈ ω as follows: x0, x1 are arbitrary. Given xn−1

with n ≥ 2, use ϕn ∈ ⋃
k≥jn−1+2 Φk, plus jn−1 ≥ 2(n−1) ≥ n, to get xn to satisfy:

☞ ρjn−1(xn−1, xn) < 2−n.

☞ n ∈ A ⇒ |ϕn(xn) − a| < 2−n.

☞ n ∈ B ⇒ |ϕn(xn) − b| < 2−n.

Then each ρ(xn−1, xn) < 2−n, so 〈xn : n ∈ ω〉 converges to some x. Now, fix
n ≥ 1, and we estimate |ϕn(xn) − ϕn(x)|: For all m > n, |ϕn(xm−1)− ϕn(xm)| ≤
ρjm−1(xm−1, xm) < 2−m. Thus, |ϕn(xn) − ϕn(x)| ≤ ∑∞

m=n+1 2−m = 2−n.
Now, if n ∈ A, then

|ϕn(x) − a| ≤ |ϕn(xn) − ϕn(x)| + |ϕn(xn) − a| ≤ 2−n + 2−n → 0 .

The argument is the same for n ∈ B.
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Lemma 4.10 Let X be a compact 2nd countable abelian group with metric ρ and
let G = X̂. Suppose that Φ = 〈Φj : j ∈ ω〉 is a nice partition for (X, ρ) and
ϕ = 〈ϕn : n ∈ ω〉, where each ϕn ∈ Φ3n. Let B�, for � ∈ ω, be any infinite subsets

of G. Then DFϕ �⊆ ⋃
� C̃B�

.

Proof. By a standard diagonal argument, get ϕ′
n for n ∈ ω and E, F ⊆ ω such

that:

1. 〈ϕ′
n : n ∈ ω〉 is thin with respect to Φ.

2. d({n : ϕ′
n = ϕn}) = 1.

3. E ∪ F = ω and E ∩ F = ∅.
4. d(E) = 1.

5. For each �, both {n ∈ E : ϕ′
n ∈ B�} and {n ∈ F : ϕ′

n ∈ B�} are infinite.

Fix z ∈ X̂(X)\{1}. By (1)(3), we may apply Lemma 4.9 and fix x ∈ X such that

ϕ′
n(x)−−→

n ∈ E
1 AND ϕ′

n(x)−−→
n ∈ F

z .

By (2)(4), x ∈ DFϕ . By (5), x /∈ C̃B�
for each �.

Lemma 4.11 Suppose that Φ = 〈Φj : j ∈ ω〉 is a nice partition for (X, ρ) and

ϕ = 〈ϕn : n ∈ ω〉 from X̂ is thin with respect to Φ. Let B = {ϕn : n ∈ ω}. Then
CB is dense in X, so that DFϕ is dense in X.

Proof. This is similar to the proof of Lemma 4.9. Fix a non-empty open U ⊆ X.
We must produce an x ∈ U such that ϕn(x) → 1. We may assume that q ∈ X
and r ∈ ω and U = {x ∈ X : ρ(x, q) < 2−r+1}. Choose xn ∈ X for n ∈ ω as
follows: x0 = x1 = · · · = xr = q. Given xn−1 with n ≥ r + 1, get xn to satisfy:

☞ ρjn−1(xn−1, xn) < 2−n.

☞ |ϕn(xn) − 1| < 2−n.

Then 〈xn : n ∈ ω〉 converges to some x with ρ(x, q) ≤ 2−r, so x ∈ U . As in the
proof of Lemma 4.9, |ϕn(x) − 1| → 0.

Proof of Theorem 1.9. By Lemmas 4.10 and 4.11, the theorem holds for
all nice groups, which by Lemma 4.5, includes the duals of all the groups listed
in Lemma 3.1. Then, by Lemma 3.2, the theorem holds for all X.

Note that not every X with a countable dual is nice; see Example 5.2.
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5 Remarks and Examples

The proof in §2 that D̃Fϕ is null makes essential use of asymptotic density, via

Lemma 2.2; one cannot replace Fϕ by an arbitrary filter F , since D̃F , or even
the smaller DF , might be all of X. By Proposition 1.2 of [7] and Lemma 1.2:

Proposition 5.1 If X is any infinite compact abelian group, then there is a free
filter F on X̂ such that F contains a countable set and DF = X.

It is not clear whether the nice groups are of interest in their own right, or just
an artifact in the proof of Theorem 1.9. Not every dual of a countable discrete
abelian group is nice:

Example 5.2 Z4 × (Z2)
ω is not nice.

Proof. Elements of X = Z4 × (Z2)
ω are of the form 〈x, �y〉, where x ∈ Z4 =

{1, i,−1,−i}, Z2 = {±1}, and �y ∈ (Z2)
ω. X̂(X) = {1, i,−1,−i}. Let ϕn(x, �y) =

x · yn. Let U = {〈x, �y〉 : x = i}. Then the ϕn are distinct characters, and
ϕn(U) = {±i}, so Definition 4.3 fails whenever ε <

√
2.

All the “C” and “D” sets discussed in this paper are Borel:

Proposition 5.3 Let X be any compact abelian group. If B ⊆ X̂ is countably
infinite, then CB and C̃B are Fσδ sets. If ϕ = 〈ϕn : n ∈ ω〉 is a sequence of

distinct elements of X̂, then DFϕ and D̃Fϕ are Fσδ sets.

Proof. Let B = {ϕn : n ∈ ω}. Then x ∈ C̃B iff

∀r ∈ ω ∃s < r ∃k ∈ ω ∀m > k
[
|ϕm(x) − e2πis/r| ≤ π

r

]
,

since T ⊆ ⋃
s<r Nπ/r(e

2πis/r). This displays C̃B as a countable intersection of Fσ

sets. The argument for CB is similar; just replace s by 0. Likewise, x ∈ D̃Fϕ iff

∀r ∈ ω ∃s < r ∃k ∈ ω ∀n > k

[
1

n

∣∣∣{m < n : |ϕm(x) − e2πis/r| ≤ π

r
}
∣∣∣ ≥ 1 − 1

r

]
.

Again, replace s by 0 to see that DFϕ is an Fσδ set.

It is natural to ask whether the countable {B� : � ∈ ω} from Theorem 1.9
could be replaced by a family of ℵ1 sets. Under CH, this is clearly false, since
then |X| may be ℵ1, in which case Theorem 1.4 implies that a union of the
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form
⋃

α<ω1
CBα can be all of X. Assuming Martin’s Axiom (MA), the proof

of Theorem 1.9 implies that our DFϕ is not a subset of any union of the form⋃
α<κ C̃Bα where κ < 2ℵ0 . To see this, note that the countability of the family

{B� : � ∈ ω} was only used in two places. First, in handling Case 2 of Lemma
3.2, we used the fact that a compact group K is not covered by ℵ0 null sets, and
MA lets us replace the “ℵ0” by “< 2ℵ0”. Second, the diagonal argument in the
proof Lemma 4.10 will work with families of size less than 2ℵ0 under MA.

It is also consistent with ZFC to have 2ℵ0 arbitrarily large but T =
⋃

α<ω1
CBα .

This proof resembles the standard construction of an ultrafilter of character ℵ1

(see [11], Exercise VIII.A10). Start with 2ℵ0 large in the ground model V and
iterate forcing ℵ1 times with finite supports, forming Vα for α ≤ ω1. When
α < ω1, let Fα ∈ Vα be a filter on Z = T̂ obtained from Proposition 5.1, and get
Bα ∈ Vα+1 so that Bα ⊂∗ A for all A ∈ Fα. One can even make the Bα generate a
P-point ultrafilter, so that in the final model Vω1 , the F of Proposition 5.1 could
be a P-point of character ℵ1. To do this, make sure that each Bα is chosen so that
0 is a limit point of Bα in the Bohr topology of Z. Note that the F of Proposition
5.1 can never be a selective ultrafilter, since it would then contain thin sets and
run afoul of Lemma 4.9.
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