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Abstract
Under the continuum hypothesis, there is a compact homogeneous
strong S-space.

1 Introduction

A space X is hereditarily separable (HS) iff every subspace is separable. An S-
space is a regular Hausdorff HS space with a non-Lindel6f subspace. A space
X is homogeneous iff for every z,y € X there is a homeomorphism f of X
onto X with f(z) = y. Under CH, several examples of S-spaces have been
constructed, including topological groups (see [5]) and compact S-spaces (see
[8]). It is asked in [1] (Problem 1.5) and in [6] whether there are compact
homogeneous S-spaces. As we shall show in Theorem 4.2, there are under
CH. This cannot be done in ZFC, since there are no compact S-spaces under
MA + —CH (see [13]); there are no S-spaces at all under PFA (see [14]).

In Section 2, we use a slightly modified version of the construction in [8, 11]
to refine the topology of any given second countable space, and turn it into a
first countable strong S-space (i.e., each of its finite powers is an S-space). In
Section 3, we show that if the original space is compact, then there is a natural
compactification of the new space which is also a first countable strong S-space.
If in addition the original space is zero-dimensional, then the w'® power of this
compactification will be homogeneous by Motorov [10], proving Theorem 4.2.
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2 A Strong S-Space

If 7 is a topology on X, we write 7/ for the corresponding product topology
on X7 likewise if 7/ C 7 is a base we write (7)! for the natural corresponding
base for 7/. If E C X, then cl(F,7) denotes the closure of F with respect to
the topology 7. This notation will be used when we are discussing two different
topologies on the same set X.

The following two lemmas are well-known; the second is Lemma 7.2 in [11]:

Lemma 2.1 If X is HS and Y is second countable, then X xY is HS
Lemma 2.2 X% is HS iff X" is HS for alln < w.
The next lemma, an easy exercise, is used in the proof of Theorem 2.4:

Lemma 2.3 If (z,y) € X xY and S C X x Y, then (z,y) € cl(S) iff y €
cl(m(S N (U xY))) for all neighborhoods U of x, where m : X XY — Y s

projection.

The following is proved (essentially) in [11], but our proof below may be a
bit simpler:

Theorem 2.4 Assume CH. Let p be a second countable T3 topology on X,
where | X| = Ny. Then there is a finer topology T on X such that (wy,T) is a
first countable locally compact strong S-space.

Proof. WLOG, X = w;. For n < w; we write p, for the topology of 7 as a
subspace of (wy, p). Applying CH, list (Jy_,,,[(w1)"]=* as {S, : p € wi}, so
that each S, C p"® for some n(p) with 0 < n(p) < w.

For nn < w; we construct a topology 7, on n by induction on 7 so as to make
the following hold for all £ <7 < wy:

L. e =7,NP(§).
2. 7, is first countable, locally compact, and T5.
3. Ty 2 Py
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Note that (1) implies in particular that £ € 7,; that is, § is open. Thus, if
T = T,,, then (wy,7) is not Lindel6f. Also by (1), 7, for limit 7 is determined
from the 7 for £ < 7. So, we need only specify what happens at successor
ordinals.

For n > 1 and & < wy, let Iseq(n,&) be the set of all f € (w;)™ which
satisfy f(0) < f(1) < --- < f(n —1) = &. The following condition states our
requirement on Tgyq:

4. For each p < £ and each f € Iseq(n,§), where n =n,:
Fed(S, (ren)" X p) = fEd(S, (7en)") -

If n =n, =1, then (7¢41)""' X p just denotes p. That is, (4) requires
Eecl(E,p) = {ecl(B, ) (%)

for all E in the countable family {S, : p < & & n(p) = 1}. It is standard (see
[8]) that one may define 7¢4; so that this holds. Now, consider (4) in the case
n=n, > 2. By (2), 7¢ is second countable, so let 7{ be a countable base for 7.
Applying Lemma 2.3, (4) will hold if whenever U = Uy x -+ x Up_5 € (7{)" "
is a neighborhood of f[(n — 1),

§ed@(SunUx(§+1)),p) = £ecm(Sun (U x(E+1))),7et1)

where 7 : £"71 x (£ 4+1) — (£ +1) is projection. But this is just a requirement
of the form (x) for countably many more sets E, so again there is no problem
meeting it.

Now, we need to show that 7" is HS for each 0 < n < w. We proceed by
induction, so assume that 7™ is HS for all m < n. Fix A C (w;)"; we need
to show that A is 7"-separable. Applying the induction hypothesis, we may
assume that each f € A has all coordinates distinct. Also, since permutation
of coordinates induces a homeomorphism of (w;)”, we may assume that each
[ € A is strictly increasing; that is, f € Iseq(n, &), where £ = f(n — 1). By the
induction hypothesis and Lemma 2.1, A is separable in 7% ! x p. We can then
fix p such that n(u) =n, S, C A, and S, is 7" ! x p-dense in A. Now, say
f e Awith & = f(n—1) > p. Applying (4), we have f € cl(S,, 7). Thus,
A\ cl(S,, ") is countable, so A is 7"-separable. &
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3 Compactification

We need the following generalization of the Aleksandrov duplicate construction.
Similar generalizations have been described elsewhere; see in particular [2],
which also gives references to the earlier literature.

Definition 3.1 If ¢ is a continuous map from the T, space Y into X, then
YU,X denotes the disjoint union of X andY, given the topology which has as
a base:

a. All open subsets of Y, together with
b. All[U,K]:=UU (p U\ K), where U is open in X and K is compact
n Y.

Our main interest here is in the case where X is compact and Y is locally
compact. Then, if |X| = 1, we have the 1-point compactification of Y, and if
Y is discrete and ¢ is a bijection we have the Aleksandrov duplicate of X.

Lemma 3.2 Let Z =Y U,X, with X and Y Hausdorff:

1. X is closed in Z,Y s open in Z, and both X and Y inherit their original
topology as subspaces of Z.

2. If Y s locally compact, then Z is Hausdorff.
3. If X 1s compact, then Z is compact.

4. If X and Y are first countable, X is compact, Y is locally compact, and
each o~ Y(x) is compact, then Z is first countable.

5. If X andY are zero dimensional, X is compact, and 'Y 1s locally compact,
then Z 1is zero dimensional.

6. If X is second countable and Y is HS, then Z* is HS.

Proof. For (3): If U is a basic open cover of Z, then there are n € w and
[Us, K;) € U for i < n such that J,_, U; = X. Thus, |J,_,[U;, K;] contains all
points of Z except for (possibly) the points in the compact set | J,_, K; C Y.

For (4): Z is compact Hausdorff and of countable pseudocharacter.

For (5): Z is compact Hausdorff and totally disconnected.

For (6): By Lemma 2.2, it is sufficient to prove that each Z" is HS. But Z"
is a finite union of subspaces of the form X7 x Y*, which are HS by Lemma

21. &
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4 Homogeneity
The following was proved by Dow and Pearl [4]:

Theorem 4.1 If Z s first countable and zero dimensional, then Z“ is homo-
geneous.

Actually, we only need here the special case of this result where Z is compact
and has a dense set of isolated points; this was announced (without proof)
earlier by Motorov [10].

Note that by Sapirovskii [12], any compact HS space must have countable
m-weight (see also [7], Theorem 7.14), so if it is also homogeneous, it must have
size at most 2% by van Douwen [3]. Under CH this implies, by the Cech —
Pospisil Theorem, that the space must be first countable.

Theorem 4.2 (CH) There is a (necessarily first countable) zero-dimensional
compact homogeneous strong S-space.

Proof. Let X be the Cantor set 2¥ with its usual topology, let Y be 2¢
with the topology constructed in Theorem 2.4, let ¢ be the identity, and let
Z =YU,X. By Lemma 3.2, Z, and hence also Z¥, are zero-dimensional first
countable compact strong S-spaces; Z“ is homogeneous by Theorem 4.1. &

No compact topological group can be an S-space or an L-space. However
under CH there are, by [9], compact L-spaces which are right topological groups
(i.e. they admit a group operation such that multiplication on the right by a
fixed element defines a continuous map). We do not know whether there can
be compact S-spaces which are right topological groups.
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