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Abstract

Assuming Jensen’s principle ♦, there is a compact Hausdorff space X
which is hereditarily Lindelöf, hereditarily separable, and connected, such
that no perfect subspace of X is totally disconnected. The Proper Forcing
Axiom implies that there is no such space. The ♦ example also fails to
satisfy the CSWP (the complex version of the Stone-Weierstrass Theorem).
This space cannot contain the two earlier examples of failure of the CSWP,
which were totally disconnected — specifically, the Cantor set (W. Rudin)
and βN (Hoffman and Singer).

1 Introduction

All topologies discussed in this paper are assumed to be Hausdorff. It is well-
known that if X is compact and second countable and not scattered, then X has
a subspace homeomorphic to the usual Cantor set, 2ω. This is not true of non–
second countable spaces. For example, the double arrow space of Alexandroff and
Urysohn ([1], p. 76) is compact and not scattered, but is only first countable and
does not contain a Cantor subset.

The double arrow space is also HS (hereditarily separable) and HL (heredi-
tarily Lindelöf); that is, all subspaces are both separable and Lindelöf (see [4]
Exercise 3.10.C). It is also a LOTS; that is, a totally ordered set with its order
topology. The double arrow space is also totally disconnected, and it is natural to
ask whether there is a connected version of it. This turns out to be independent
of ZFC. Under the Proper Forcing Axiom (PFA), there is no such space:
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Theorem 1.1 Assuming PFA, every compact HL space is either totally discon-
nected or contains a copy of the Cantor set.

On the other hand, by Theorem 1.3, there will be such a space assuming
Jensen’s principle ♦, which is true in Gödel’s universe of constructible sets.

Definition 1.2 A space X is weird iff X is compact and not scattered, and there
is no P ⊆ X such that P is perfect and totally disconnected.

As usual, P is perfect iff P is closed and nonempty and has no isolated points.
A weird space cannot be second countable. However,

Theorem 1.3 Assuming ♦, there is a weird X such that X is HS and HL.

Note that a compact X is HL iff every closed set is a Gδ (see [4] Exercise
3.8.A(c)). Applying this to the points, we see that X must be first countable.
Examples of weird spaces which are not first countable occur already in the lit-
erature; see Section 6. A weird space cannot be a LOTS; see Corollary 2.7.

We can also get our space in Theorem 1.3 to fail the complex version of the
Stone-Weierstrass Theorem. The usual version of this theorem involves subalge-
bras of C(X, R), and is true for all compact X. If one replaces the real numbers
R by the complex numbers C, the “theorem” is true for some X and false for
others, so it becomes a property of X:

Definition 1.4 If X is compact, then C(X) = C(X, C) is the algebra of contin-
uous complex-valued functions on X, with the usual supremum norm. A � C(X)
means that A is a subalgebra of C(X) which separates points and contains the
constant functions. A�c C(X) means that A � C(X) and A is closed in C(X).
X has the Complex Stone-Weierstrass Property (CSWP) iff every A � C(X) is
dense in C(X).

Classical examples from the 1800s show that the CSWP is false for many X.
In particular:

Definition 1.5 D denotes the open unit disc in C and T denotes the unit circle.
The disc algebra D�c C(D) is the set of f ∈ C(D) which are holomorphic on D.

Then D refutes the CSWP of D, and D�T = {f�T : f ∈ D} refutes the
CSWP of T. Further negative results were obtained in 1956 by Rudin [17] and
in 1960 by Hoffman and Singer [14] (see also [13]):
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1. [17] Every compact X containing a copy of the Cantor set fails the CSWP.

2. [14] Every compact X containing a copy of βN fails the CSWP.

Actually, [14] does not mention βN, and used instead S = the Stone space of a
separable measure algebra, but that is equivalent, since each of S and βN contains
a copy of the other. The first non-trivial positive result is due to Rudin [18], and
some more recent positive results are contained in [12, 15]. In particular,

3. [18] Every compact scattered space satisfies the CSWP.

4. [15] Every compact LOTS which does not contain a copy of the Cantor set
satisfies the CSWP.

By (4), the double arrow space is an example of a non-scattered space which has
the CSWP. Results (1) through (4) might suggest the (highly unlikely) conjecture
that a compact X has the CSWP whenever it contains neither βN nor a Cantor
set. Under ♦, this is refuted by:

Theorem 1.6 Assuming ♦, there is a weird X such that X is HS and HL and
X fails the CSWP.

As Rudin pointed out, (1)(3) imply that for X compact metric, X has the
CSWP iff X does not contain a Cantor subset. By (1)(4), the same “iff” holds
when X is a compact LOTS. By (2), the “iff” does not hold for arbitrary compact
spaces, but one might hope to prove it for some other spaces which are small in
some way. Theorem 1.6 puts some bounds on this hope.

Obviously, Theorem 1.6 implies Theorem 1.3, but we shall prove Theorem
1.3 first. We then explain what needs to be added to the construction to obtain
Theorem 1.6. Both proofs are essentially inverse limit constructions. For Theorem
1.3, we obtain X ⊂ [0, 1]ω1 by an inductive construction; at stage α < ω1, we
determine the projection, Xα, of X on [0, 1]α. Then, X may be viewed as the
inverse limit of 〈Xα : α < ω1〉. For Theorem 1.6, we replace [0, 1] by D.

Theorem 1.3 is proved in Section 2, which also gives some more information
about weird spaces. Theorem 1.6 is proved in Section 4, using a fact about peak
points proved in Section 3. Theorem 1.1 is proved in Section 5, which may be
read immediately after Section 2.

2 Weird Spaces

We list some easy properties of weird spaces:

Definition 2.1 comp(x, X) denotes the connected component of the point x in
the space X.
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Lemma 2.2 If X is weird then:

1. If Y ⊆ X and Y is closed, then Y is either scattered or weird.

2. For some x ∈ X: comp(x, X) is not a singleton, so that comp(x, X) is
weird and connected.

3. X is not second countable.

4. X is not a LOTS.

Proof. For (4), if X is a LOTS, let S ⊂ X be countable and order-isomorphic
to the rationals. Since S cannot be totally disconnected, it contains an interval
isomorphic to the closed unit interval in R, contradicting (1) and (3). ©

We shall see that no subspace of a countable product of LOTS can be weird
either. First:

Lemma 2.3 If X is weird and f maps X continuously onto Y, then either Y is
weird or some f−1{y} is weird.

Proof. Assume no f−1{y} is weird. Then each f−1{y} is scattered.
Note that Y cannot be scattered. To see this, let K be the perfect kernel of

X. If y is an isolated point of f(K), then K ∩ f−1{y} is scattered and clopen in
K, a contradiction.

If Y is not weird, fix P ⊆ Y such that P is perfect and totally disconnected.
Then for x ∈ f−1(P ), comp(x, f−1(P )) ⊆ f−1{f(x)}, which is scattered, so
comp(x, f−1(P )) = {x}. Thus, f−1(P ) is totally disconnected, and hence scat-
tered (since X is weird), which is a contradiction, since P = f(f−1(P )) is not

scattered. ©
Corollary 2.4 Suppose that X is weird and X ⊆∏

j<n Zj, where n is finite and
each Zj is compact. Then some Zj has a weird subspace.

Proof. Induct on n, using Lemma 2.3. ©
We now prove the same result for countable products. First, we introduce

some notation for products and projections:

Definition 2.5 If Zξ are spaces for ξ < β then πβ
α :

∏
ξ<β Zξ �

∏
ξ<α Zξ (for

α ≤ β) and then ϕβ
α :

∏
ξ<β Zξ � Zα (for α < β) and are the natural projections.

If �z = 〈zξ : ξ < β〉 ∈ ∏
ξ<β Zξ, then ϕβ

α(�z) = zα and πβ
α(�z) = 〈zξ : ξ < α〉. We

sometimes write ϕα for ϕβ
α when β is clear from context.
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Lemma 2.6 Suppose that X is weird and X ⊆ ∏
j<ω Zj, where each Zj is com-

pact. Then some Zj has a weird subspace.

Proof. Assume that no Zj has a weird subspace; we shall derive a contradiction.
Let Xn = πω

n(X) ⊆∏
j<n Zj . By Corollary 2.4, no Xn has a weird subspace.

View
⋃

n Xn as a tree, where Xn is the nth level, and the tree order < satisfies
y < z iff y = πn

m(z) whenever m < n, y ∈ Xm and z ∈ Xn. Let Wn be the set of
all y ∈ Xn such that X ∩ (πω

n)−1{y} is weird (equivalently, non-scattered). Note
that

⋃
n Wn is a subtree of

⋃
n Xn; equivalently, πn

m(Wn) ⊆Wm whenever m < n.
First, note that if P ⊆ X is closed and not scattered, then Wn ∩ πω

n (P ) �= ∅
for each n. To see this, use the fact that P is weird and πω

n(P ) is not weird, and
apply Lemma 2.3 to πω

n�P .
It follows that

⋃
n Wn is a perfect tree; that is, if y ∈ Wm, then for some

n > m, there are more than one z ∈ Wn such that πn
m(z) = y. To see this,

let P0, P1 be disjoint perfect subsets of X ∩ (πω
m)−1{y}, and choose n such that

πω
n (P0) ∩ πω

n (P1) = ∅. If z� ∈ Wn ∩ πω
n(P�) (for 	 = 0, 1), then z� ∈ Wn and

πn
m(z�) = y and z0 �= z1.

But now we can choose a Cantor subtree. That is, we can choose finite
nonempty Fn ⊆ Wn so that m < n → πn

m(Fn) = Fm and for each m, there is an
n > m such that |Fn ∩ (πn

m)−1{y}| ≥ 2 for all y ∈ Fm. Then {x ∈ X : ∀n[πω
n (x) ∈

Fn]} is homeomorphic to the Cantor set, a contradiction. ©
In particular, by Lemma 2.2, and the observation that every closed subspace

of a compact LOTS is a compact LOTS:

Corollary 2.7 Suppose that X ⊆ ∏
j<ω Zj, where each Zj is compact and is

either second countable or a LOTS. Then X is not weird.

We now turn to a proof of Theorem 1.3, which obtains a weird subspace of an
uncountable product, [0, 1]ω1. There are many such constructions in the literature;
we follow the specific approach in [2]§4, which uses irreducible projections (see
[4] Exercise 3.1.C) to ensure that the space is HS and HL.

2.1 The Construction

We shall get X = Xω1 ⊆ [0, 1]ω1 with Xα = πω1
α (X) ⊆ [0, 1]α satisfying:

0. X1 = [0, 1].

1. Xα is connected whenever 1 ≤ α ≤ ω1.

2. πβ
α : Xβ � Xα is irreducible whenever 1 ≤ α ≤ β ≤ ω1.



2 WEIRD SPACES 6

In particular, πω1
1 : Xω1 � X1 will be irreducible, so X will be separable and have

no isolated points. To make X HS, we get Pα and Pα for 1 ≤ α < ω1 so that:

3. Pα is a countable family of closed subsets of Xα and Pα ∈ Pα.

4. For all P ∈ Pα:

a. πα+1
α : (πα+1

α )−1(P ) � P is irreducible, and
b. (πβ

α)−1(P ) ∈ Pβ whenever α < β < ω1.

Lemma 2.8 Requirement (4) implies that πβ
α : (πβ

α)−1(P ) � P is irreducible
whenever P ∈ Pα and α ≤ β ≤ ω1.

Proof. Induct on β. ©
To get X to be HL and HS, we add the next requirement:

5. If F ⊆ X is closed, then πω1
α (F ) = Pα for some α < ω1.

Lemma 2.9 Requirements (4)(5) imply that X is HL and HS.

Proof. To see that X is HL, use (5) and (4) to see that every closed F ⊆ X
is a Gδ: For every closed subset F of X, we have πω1

α (F ) = P ∈ Pα. Then by
irreducibility, F = (πω1

α )−1(P ), so that F is a Gδ. Also by (5), all closed F ⊆ X

are separable, so X is HS (since it is HL and hence first countable). ©
Conditions (0)–(5) are consistent with all πβ

α being homeomorphisms, which
would make X homeomorphic to [0, 1]. To make X weird, we also choose hα, pα,
and qn

α for n < ω and 0 < α < ω1 so that:

6. pα ∈ Xα and hα ∈ C(Xα\{pα}, [0, 1]) and Xα+1 = hα.

7. qn
α ∈ Xα\{pα}, and 〈qn

α : n ∈ ω〉 → pα, and all points of [0, 1] are limit
points of 〈hα(qn

α) : n ∈ ω〉, and {pα} × [0, 1] ∈ Pα+1.

8. For each P ∈ Pα, either pα /∈ P , or pα ∈ P and qn
α ∈ P for all but finitely

many n.

As usual, we identify hα with its graph, which is a subset of Xα × [0, 1]; we also
identify [0, 1]α × [0, 1] with [0, 1]α+1.

Lemma 2.10 Requirements (0)(6)(7) imply requirements (1)(2).

Proof. Induct on α. By (6), πα+1
α : Xα+1 � Xα is one-to-one at all points not

in (πα+1
α )−1{pα}. The first part of (7) implies that {pα} × [0, 1] ⊆ Xα+1. ©
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Lemma 2.11 Requirements (0) – (8) imply that if C ⊆ Xα is closed and con-
nected, then (πω1

α )−1(C) is connected.

Proof. It is enough to prove that (πα+1
α )−1(C) is connected. Using (6), this is

clear unless pα ∈ C, in which case apply (7), which implies that {pα} × [0, 1] ⊆
(πα+1

α )−1(C). ©
Lemma 2.12 Requirement (4a) follows from (6)(7)(8).

Proof. Irreducibility is clear unless pα ∈ P , in which case apply (7)(8). ©
To help make X weird we add the requirement:

9. If F ⊆ X is closed and not scattered, then for some α < ω1, πω1
α (F ) = Pα

and Pα is not scattered and pα ∈ Pα.

Note that we cannot simply omit (5) in favor of (9), since Lemma 2.9 uses (5) for
all closed F , including singletons.

Lemma 2.13 Requirements (0) – (9) imply that X is weird.

Proof. By (9), every closed non-scattered F ⊆ X satisfies πω1
α (F ) = Pα, for

some α < ω1, with Pα not scattered and pα ∈ Pα. Such F therefore contain
(πω1

α+1)
−1({pα}× [0, 1]). By (7) and Lemma 2.11, each (πω1

α+1)
−1({pα}× [0, 1]) is a

connected subspace of X. ©
Proof of Theorem 1.3. To get (5) and (9), use ♦ to capture all closed

subsets of [0, 1]ω1. To get (7)(8) for a fixed α: First, list Pα as {Qn : n ∈ ω},
with Q0 = Pα. Let d be a metric on Xα. Choose perfect F n ⊆ Xα for n ∈ ω so
that diam(F n) ≤ 2−n and each F n+1 � F n. Let {pα} =

⋂
n F n and let qn

α be any
point in F n+1\F n. Make sure that F 0 ⊆ Q0 = Pα whenever Pα is uncountable,
so that pα ∈ Pα is as required by (9). Also make sure that for every n, either

F n ⊆ Qn or F n ∩Qn = ∅, so that (8) will hold. ©
3 Peak Sets

Fix α < ω1. The function hα occurring in the proof of Theorem 1.3 is easy
to construct because Xα is a compact metric space. Note that there are also
uniformly bounded gα,n ∈ C(Xα) (for n ∈ ω) with gα,n(x) → hα(x) whenever
x �= pα. In the proof of Theorem 1.6, we shall furthermore require that each
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gα,n ∈ Aα, where Aα�c C(Xα). This is not always possible. For example, if
Xα = D and Aα = D, the disc algebra, then we could not find such gα,n and hα

unless pα ∈ T, since hα is required to be discontinuous at pα. For α = 1, we shall
avoid this problem by defining X1 to be T; then a suitable h1 can be concocted
using standard facts about H∞ (see [10, 13, 16, 19]). To obtain suitable hα on
Xα for α > 1, we shall apply Lemma 3.3 and require that all points of Xα be
peak points; the following is easily seen to be equivalent to the usual definition
(see, e.g., [9]):

Definition 3.1 Assume that X is compact, A � C(X), and H is a closed subset
of X. Then H is a peak set (with respect to A) iff there is an f ∈ A such that

1. f(x) = 0 for all x ∈ H.

2. �(f(x)) > 0 for all x /∈ H.

PSA(X) is the set of all H ⊆ X which are peak sets with respect to A. p ∈ X is
a peak point iff {p} is a peak set.

Every peak set is a closed Gδ set, but not conversely. For example, if H is
clopen and A�c C(X), then by Runge’s Theorem, H is a peak set iff χH ∈ A.
Also, for the disc algebra, p ∈ D is a peak point iff |p| = 1.

Our primary interest here is in the peak points. However, we mention peak
sets because these will be used to prove that PSA(X) contains singletons by
applying the following well-known fact:

Lemma 3.2 If A�c C(X), then PSA(X) is closed under countable intersections
and finite unions.

Proof. For intersections, fix Hn ∈ PSA(X) for n ∈ ω, and let H =
⋂

n Hn.
Let fn satisfy (1)(2) of Definition 3.1 for Hn, and assume that ‖fn‖ ≤ 2−n. Let
f =

∑
n fn. Then f ∈ A because A is closed, and f satisfies (1)(2) for H .

For unions, let H = H0 ∪H1, and let f0, f1 satisfy (1)(2) of Definition 3.1 for
H0, H1 respectively. Define f(x) =

√
f0(x)

√
f1(x). Again, f ∈ A because A is

closed, since
√

z can be uniformly approximated by polynomials on any compact

subset of {z ∈ C : �(z) ≥ 0}, and f satisfies (1)(2) for H . ©
Lemma 3.3 Assume that X is compact, A�c C(X), and p ∈ X is a peak point.
Let 〈qn : n ∈ ω〉 be a sequence of points in X\{p} converging to p. Then there
are functions h and gn for n ∈ ω such that:
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1. Each gn ∈ A.

2. Each ‖gn‖ ≤ 1.

3. h ∈ C(X\{p}, D).

4. On X\{p}, the gn converge to h uniformly on compact sets.

5. |h(x)| → 1 as x→ p in X\{p}.
6. Every point in T is a limit point of the sequence 〈h(qn) : n ∈ ω〉.

Proof. Let f0 be the function given by Definition 3.1. We plan to obtain h
by composing f0 with a suitable Blaschke product. The notation will be easier if
we define the product in the upper halfplane; see, e.g., [10],§II.2. Let

V = {z ∈ C : 0 < −�(z) < �(z)} .

If f(z) = e5πi/8 · 4
√

f0(z), then f ∈ A, f(p) = 0, and f(x) ∈ V for all x �= p.
When �(α) > 0, let

Bα(z) =
z − α

z − α
.

Then |Bα(z)| is 1 on the real axis and less than 1 in the upper halfplane. Let
z� = f(q�) ∈ V ; then z� → 0. We shall choose αn in the upper halfplane and form
the Blaschke products:

B(n)(z) =
∏
m<n

Bαm(z) B(z) =
∏
n∈ω

Bαn(z)

They will satisfy:

a. B(n)(z) → B(z) uniformly on compact subsets of V .

b. |B(z)| → 1 as z → 0 in V .

c. Every point in T is a limit point of the sequence 〈B(z�) : 	 ∈ ω〉.
Assuming that this can be done, the lemma is satisfied by letting gn = B(n)◦f and
h = B ◦ f . gn ∈ A because each B(n) is holomorphic in a convex neighborhood
of f(X), and hence can be uniformly approximated on f(X) by polynomials.

To obtain (a)(b)(c), we choose the αn, along with a subsequence, 〈z�n : n ∈ ω〉,
of 〈z� : 	 ∈ ω〉, to satisfy:

d. αn = ξn + iηn and 0 < ξn = (n + 1)ηn.

e. z�n = xn + iyn and ηn = yn.

f. n > m ⇒ ξn ≤ 2−nηm.

g. n > m ⇒ | arg(Bαm(z�n))− arg(Bαm(0))| ≤ 2−n.
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So, αn is to the right of V and ξ0 ≥ η0 ≥ ξ1 ≥ η1 ≥ ξ2 ≥ η2 ≥ · · · . The αn and
z�n can easily be chosen by induction to satisfy (d)(e)(f)(g), using z� → 0 and the
continuity of Bαm at 0. We now verify (a)(b)(c). Observe that ηn/ξn → 0 but∑

n ηn/ξn = ∞; this will allow us to prove (b) without having limz→0 B(z) exist,
which would contradict (c).

For (a), note that if α = ξ + iη and z = x + iy then

Bα(z) =
x− ξ + iy − iη

x− ξ + iy + iη
= 1− 2iη

x− ξ + iy + iη
.

Then, as usual with Blaschke products, (a) follows from
∑

n ηn < ∞, which in
turn follows from (d)(f).

For (b), we need to estimate |Bα(z)|, where α = ξ + iη, z = x + iy ∈ V , and
0 < η ≤ ξ. Now

|Bα(z)|2 =
(ξ − x)2 + (y − η)2

(ξ − x)2 + (y + η)2
= 1− 4yη

(ξ − x)2 + (y + η)2
.

Clearly,

1 > |Bα(z)|2 ≥ 1− 4η

y
1 > |Bα(z)|2 ≥ 1− 4y

η
, (∗)

and these are useful when η � y or y � η. But also note that:

1 > |Bα(z)|2 ≥ 1− 4η

ξ
. (†)

To prove this: If y ≥ ξ then (†) follows from (∗). If y ≤ ξ then, since x ≤ 0,
|Bα(z)|2 ≥ 1− (4yη)/(ξ2) ≥ 1− (4η)/ξ.

To prove (b), fix z = x + iy ∈ V with y ≤ η1. Next fix n ≥ 1 such that
ηn+1 ≤ y ≤ ηn. We show that |B(z)| = 1 − o(1) as n ↗ ∞ by estimating each
|Bαm(z)|2. Applying (†) and (d), we get |Bαn(z)|2 ≥ 1− 4ηn/ξn = 1− 4/(n + 1),
and likewise |Bαn+1(z)|2 ≥ 1− 4/(n + 2). For m < n use (∗) and (d)(f) to get

1 > |Bαm(z)|2 ≥ 1− 4y

ηm

≥ 1− 4ηn

ηm

= 1− 4ξn

(n + 1)ηm

≥ 1− 4 · 2−n

n + 1
,

so
∏

m<n |Bαm(z)|2 ≥ 1− 4 · 2−n. For m > n + 1 use (∗) and (d)(f) to get

1 > |Bαm(z)|2 ≥ 1− 4ηm

y
≥ 1− 4ηm

ηn+1
≥ 1− 4 · 2−m ,

so
∏

m>n+1 |Bαm(z)|2 ≥ 1 − 2−n+1. Putting these estimates together, we get
|B(z)| = 1− o(1).
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To verify (c), note that (b) implies that (c) is equivalent to the assertion that
{arg(B(z�n)) mod 2π : n ∈ ω} is dense in T. We estimate arg(B(z)), using:

arg(Bα(z)) = arctan
η − y

ξ − x
+ arctan

η + y

ξ − x
= arctan

2η(ξ − x)

(ξ − x)2 + y2 − η2
.

We are using arctan(u) + arctan(v) = arctan((u + v)/(1− uv)); this applies here
because all three of arg(α − z), arg(α − z), and arg(Bα(z)) are in the range
(−π/2, π/2). Let θm

n = arg(Bαm(z�n)). Then arg(B(z�n)) ≡ ∑
m θm

n mod 2π.
Define:

σm := arg(Bαm(0)) = 2 arctan
ηm

ξm
= 2 arctan

1

(m + 1)
,

and observe that we have:

1. 0 < σm → 0 and
∑

m σm = ∞.

2. θn
n → 0.

3.
∑

m>n |θm
n | ≤ 2−n+2.

4. m < n ⇒ |θm
n − σm| ≤ 2−n.

(1) holds because σm ≈ 2/m. (2) follows from (e) and xn ≤ 0, which yields

θn
n = arctan

2ηn

ξn − xn

= arctan
2ηn

(n + 1)ηn − xn

≤ arctan
2ηn

(n + 1)ηn

→ 0 .

For (3), use (d)(f) to get, for m > n:

|θm
n | = arctan

2ηm|ξm − xn|
(ξm − xn)2 + η2

n − η2
m

≤ arctan
4ηmηn

η2
n

≤ 4ξm

(m + 1)ηn

≤ 4 · 2−m ,

so that
∑

m>n |θm
n | ≤ 4 · 2−n. (4) is immediate from (g).

Finally, (1) implies that the values
∑

m<n σm mod 2π (for n ∈ ω) are dense in

T, and (2)(3)(4) imply that as n →∞, these values get close to arg(B(z�n)). ©
We remark that there are well-known interpolation theorems of Pick, Nevan-

linna, Carleson, and others (see [10, 13, 16]) which involve constructing Blaschke
products to have given values on a given sequence of points. However, because of
our requirement (b) in the above proof, we do not see how to obtain our Blaschke
product simply by quoting one of these theorems.
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4 Subspaces of Polydiscs

We now return to the construction of §2.1, and show how to modify the space so
that it also fails the CSWP. To get a function algebra witnessing this failure, it is
easier to construct the space in D ω1 rather than [0, 1]ω1, so we start by replacing
[0, 1] with D in the requirements of §2.1.

We shall get X = Xω1 ⊆ D ω1 , with Xα = πω1
α (X) ⊆ D α. Let REQ− denote

the requirements consisting of conditions (1)–(5) and (8)–(9) of §2.1 plus:

0̃. X1 = T.

6̃. pα ∈ Xα and hα ∈ C(Xα\{pα}, D) and Xα+1 = hα.

7̃. qn
α ∈ Xα\{pα}, and 〈qn

α : n ∈ ω〉 → pα, and all points of T are limit
points of 〈hα(qn

α) : n ∈ ω〉, and |hα(x)| → 1 as x → pα in Xα\{pα}, and
{pα} × T ∈ Pα+1.

Note that we have the slice {z ∈ D : (pα, z) ∈ Xα+1} equal to T, not D, as
one might expect. This will enable us to prove that all points in each Xβ are
peak points; see Lemma 4.5. Since T is connected, the argument is essentially
unchanged, and we get a weird HL space as before, using ♦.

Along with the Xα, we need a function algebra on Xα refuting the CSWP.
We use the obvious analog of the disc algebra:

Definition 4.1 Pα � C(D α) is the algebra generated by the projections {ϕξ :
ξ < α} (see Definition 2.5 ), and Dα�c C(D α) is the uniform closure of Pα. Let
Aα be the uniform closure of Pα�Xα = {f�Xα : f ∈ Pα}.

For finite α, Pα is the algebra of polynomials in α complex variables on the
polydisc D α, and Dα is the algebra of continuous functions which are holomorphic
in the interior of the polydisc. For all α > 0, Dα �= C(D α). In constructing the
Xα, we also make sure that Aα �= C(Xα). To do this, we choose all hα in H∞.
More precisely, we use the following definition to transfer H∞(T) to Xα:

Definition 4.2 Let λ = λ1 be the Haar probability measure on X1 = T. For
1 ≤ α < ω1, let λα be the unique Borel probability measure on Xα such that
λ1 is the induced measure λα (πα

1 )−1. For 1 ≤ α ≤ β < ω1, define the map
(πβ

α)∗ : L∞(Xα, λα) → L∞(Xβ, λβ) by (πβ
α)∗([f ]) = [f ◦ πβ

α], where [g] ∈ L∞

denotes the equivalence class of g.

Here and in the following, we frequently use πβ
α, ϕβ

α to denote their restrictions,
πβ

α�Xβ, ϕβ
α�Xβ. Note that each λα is unique because all points in X1 outside the

countable {πξ
1(pξ) : 1 ≤ ξ < α} have a unique preimage under πα

1 . Likewise, (πβ
α)∗

is a Banach algebra isomorphism.
Let REQ consist of the requirements of REQ−, along with this requirement on

the hα:
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1̃0. For 1 ≤ α < ω1, [hα] ∈ (πα
1 )∗(H∞(T)).

This makes X fail the CSWP. Requirement (1̃0) is used explicitly in the proof
of the next lemma. Lemma 4.4 follows, and produces a continuous function not
in Aω1.

Lemma 4.3 Fix β with 1 ≤ β < ω1. Suppose requirement (1̃0) holds for all
α < β. Then [k] ∈ (πβ

1 )∗(H∞(T)) for each k ∈ Aβ.

Proof. Since Pβ�Xβ is generated by {ϕα : α < β}, it suffices to prove that each

[ϕα] ∈ (πβ
1 )∗(H∞(T)). Now, [ϕ0] = (πβ

1 )∗([I]), where I(z) = z. For 1 ≤ α < β,
[ϕα] = (πβ

α)∗([hα]) = [hα ◦ πβ
α]. By (1̃0) for α < β, [hα] = [h ◦ πα

1 ] for some

h ∈ H∞(T). So [ϕα] = [h ◦ (πα
1 ◦ πβ

α)] ∈ (πβ
1 )∗(H∞(T)). ©

Lemma 4.4 Suppose requirements REQ hold. Then Aω1 �= C(X).

Proof. Let I ∈ C(X1) denote the usual complex conjugation given by I(z) = z.
Then I ◦ πω1

1 (i.e., �z �→ z0) is not in Aω1. To see this: it suffices to show that
I ◦ πβ

1 /∈ Aβ for all β < ω1. Since I /∈ H∞(T), (πβ
1 )∗([I]) /∈ (πβ

1 )∗(H∞(T)) for all

β < ω1. So the result follows from Lemma 4.3. ©
Lemma 4.5 Fix β with 1 ≤ β < ω1. Suppose requirement (1̃0) holds for all
α < β. Then each y ∈ Xβ is a peak point with respect to Aβ.

Proof. We induct on β. For β = 1, this is clear, since X1 = T.
If β is a limit, then {y} =

⋂
α<β(πβ

α)−1{(πβ
α)(y)}. Applying the lemma induc-

tively, each (πβ
α)(y) is a peak point in Xα with respect to Aα, which implies that

each (πβ
α)−1{(πβ

α)(y)} is a peak set in Xβ with respect to Aβ. The result now
follows using Lemma 3.2.

Now, say β = α + 1, let v = πβ
α(y) and let H = (πβ

α)−1{v}, which, as above,
is a peak set in Xβ. If v �= pα, then H = {y}. If v = pα, then y ∈ H = {v} × T
(using condition (7̃)). If y = (v, eiθ), then K = {x ∈ Xβ : ϕα(x) = eiθ} is also a

peak set, and {y} = H ∩K. ©
Proof of Theorem 1.6. We need to show inductively that requirements

REQ can indeed be met. Suppose that we have constructed Xβ so that they hold
for all α < β. Get pβ ∈ Xβ and 〈qn

β : n ∈ ω〉 converging to pβ as in the proof of

Theorem 1.3. By Lemma 4.5, pβ is a peak point. Now get h ∈ C(Xβ\{pβ}, D)

and gn ∈ Aβ as in Lemma 3.3. Then each [gn] ∈ (πβ
1 )∗(H∞(T)) by Lemma 4.3,

so [h] ∈ (πβ
1 )∗(H∞(T)) since gn → h on Xβ\{pβ}. Thus, taking hβ = h satisfies

(1̃0) for β. Lemma 3.3 also guarantees that this choice of hβ will satisfy the rest

of (7̃). The remaining requirements are satisfied as for Theorem 1.3. ©
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5 Some Forcing Orders

Definition 5.1 Order 2<ω1 by: p ≤ q iff p ⊇ q. Let � = ∅, the empty sequence.

So, 2<ω1 is a tree, with the root � at the top. Viewed as a forcing order, it is
equivalent to countable partial functions from ω1 to 2. This forcing is countably
closed, and thus preserves all ♦ sequences, and thus preserves the weird space
constructed in the proof of Theorem 1.3. To kill such spaces, we shall force with
subtrees of 2<ω1 which satisfy a weakening of countable closure.

Definition 5.2 A Cantor tree of sequences is a subset {ps : s ∈ 2<ω} ⊆ 2<ω1

such that each ps�μ < ps for μ = 0, 1, and each ps�0 ⊥ ps�1.

That is, ps�0 and ps�1 are incompatible extensions of ps.

Definition 5.3 P ⊆ 2<ω1 has the Cantor tree property iff:

1. � ∈ P and P is a subtree: q ≥ p ∈ P → q ∈ P.

2. If p ∈ P then p
0, p
1 ∈ P.

3. Whenever {ps : s ∈ 2<ω} ⊆ P is a Cantor tree of sequences, there is at least
one f ∈ 2ω such that

⋃{pf�n : n ∈ ω} ∈ P.

Of course, then in (3) there must be uncountably many such f ; in fact the set of f
satisfying (3) must meet every perfect subset of the Cantor set 2ω, since otherwise
we could find a subtree of the given Cantor tree which contradicts the Cantor
tree property. It is also easily seen by induction that P is a normal subtree; i.e.:

Lemma 5.4 If P ⊆ 2<ω1 has the Cantor tree property, then whenever p ∈ P and
dom(p) < α < ω1, there is a q ∈ P ∩ 2α such that q < p.

If P has the Cantor tree property, then it is proper and forcing with it adds
no ω-sequences. Such orders are called totally proper ; see Eisworth and Roitman
[3], which gives a number of equivalents, which we use in:

Lemma 5.5 If P ⊆ 2<ω1 has the Cantor tree property, then P is totally proper.

Proof. Fix a suitably large regular cardinal θ, and let M ≺ H(θ) be countable
and fix p ∈ P∩M . Following [3], it is sufficient to find a q ≤ p such that whenever
A ⊆ P is a maximal antichain and A ∈M , there is an r ∈ A ∩M with q ≤ r.

To get q, let {An : n ∈ ω} list all the maximal antichains which are in M ,
and build a Cantor tree {ps : s ∈ 2<ω} ⊆ P ∩ M such that p∅ ≤ p and ps

extends an element of An ∩M for each s ∈ 2n. Then choose f ∈ 2ω such that
q :=

⋃{pf�n : n ∈ ω} ∈ P. ©
Thus, assuming PFA, this P will have an uncountable chain. By Lemma 5.7,

a weird space will yield such a P, and hence cannot be HL under PFA.
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Lemma 5.6 If X is compact, connected, and infinite, and U ⊆ X is a nonempty
open set, then there is a closed K ⊆ U such that K is connected and infinite.

Proof. Let V be open and nonempty with V ⊆ U , fix p ∈ V , and let K =
comp(p, V ). If K = {p}, then there is an H which is relatively clopen in V such

that p ∈ H � V . But then H would be clopen in X, a contradiction. ©
Lemma 5.7 Assume that X is compact, HL, and not totally disconnected, and
assume that X has no subspace homeomorphic to the Cantor set 2ω. Then there
exists a P with the Cantor tree property which has no uncountable chains.

Proof. Along with P, we shall choose sets Hp for p ∈ P with the following
properties:

1. Hp is an infinite closed connected subset of X.

2. If p ∈ P, then p
0, p
1 ∈ P and Hp�0, Hp�1 are disjoint subsets of Hp.

3. If p ∈ 2γ, where γ is a countable limit ordinal and p�α ∈ P for all α < γ,
then Hp =

⋂{Hp�α : α < γ}, and p ∈ P iff Hp is infinite.

H� can be chosen because X is not totally disconnected. Given p ∈ P, we can
choose Hp�0, Hp�1 by applying Lemma 5.6 to Hp. To verify the Cantor tree
property, let {ps : s ∈ 2<ω} ⊆ P be a Cantor tree of sequences. For f ∈ 2ω, let
pf =

⋃{pf�n : n ∈ ω}. If none of these pf are in P, then each Hpf
would be a

singleton, {xf}. But then {xf : f ∈ 2ω} is homeomorphic to the Cantor set. ©
Proof of Theorem 1.1. By Lemmas 5.5 and 5.7. ©
It is well-known that PFA entails large cardinals. PFA implies the existence

of inner models with many measurable cardinals, and in the usual construction
of a model of PFA, the ω2 of the extension is supercompact in the ground model.
However, to get the result of Theorem 1.1, it is sufficient to shoot paths through
various P with the Cantor tree property, and this can easily be done by a finite
support iteration of Suslin forcing over any model of V = L. We first note that
under ♦, we can put a Suslin tree inside P:

Lemma 5.8 If P ⊆ 2<ω1 has the Cantor tree property and ♦ holds, then there is
a subtree S ⊂ P such that S is a Suslin tree.

Proof. Call A ⊆ 2<ω1 thin iff A ∩ 2<α is countable for all α < ω1. By ♦, choose
countable Aα ⊆ 2<α for α < ω1 such that {α : A ∩ 2<α = Aα} is stationary for
all thin A ⊆ 2<ω1. Now, build S in the usual way by constructing inductively
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S ∩ 2≤α. We assume inductively that these are normal trees; that is, whenever
p ∈ S and dom(p) < α, there is a q ∈ S ∩ 2α such that q < p.

If p ∈ S, then p
0 ∈ S and p
1 ∈ S; this handles the successor stage.
If γ < ω1 is a limit and we have decided on S ∩ 2<γ, then we form S ∩ 2≤γ

by putting countably many nodes into S ∩ 2γ so that normality is preserved. In
addition, if Aγ ⊆ S and Aγ is a maximal antichain in S ∩ 2<γ, then we make
sure that every node in S ∩ 2γ is below some element of Aγ. This is all possible,

staying within P, because of the Cantor tree property. ©
Theorem 5.9 Assume that in the ground model V , we have ♦ on ω1, together
with ♦ on the ω1-limits of ω2. Then, in V , there is a ccc forcing order M such
that whenever G is M-generic over V , V [G] will satisfy MA plus 2ℵ0 = ℵ2 plus the
statement that every compact HL space is either totally disconnected or contains
a copy of the Cantor set.

Proof. Do the usual finite support iteration to make MA true, with M =
⋃{Mδ :

δ < ω2}, where each |Mδ| = ℵ1, so that the Mδ extension will satisfy ♦. Then
the “usual bookkeeping” plus Lemma 5.8 will let us ensure that in V [G], every
subtree of P ⊆ 2<ω1 with the Cantor tree property has an uncountable chain, so
that the result holds by Lemma 5.7.

Observe that P ⊆ 2<ω1 will have size ℵ2, and will be described in V by an
M-name Ṗ which is forced to have the Cantor tree property. Then, in V , there
will be a club C of ω1-limits in ω2 such that for δ ∈ C, the Mδ-name Ṗ�Mδ is also
forced to have the Cantor tree property in V [G ∩Mδ]. The “usual bookkeeping”

uses ♦ on the ω1-limits to ensure that we eventually handle P. ©
6 Remarks and Questions

We do not know if the result of Theorem 1.1 is consistent with CH: is there a model
of ZFC + CH in which every compact HL space is either totally disconnected or
contains a copy of the Cantor set? Clearly, by Theorem 1.3, ♦ would be false
in this model. Furthermore, one cannot form this model by a naive iteration of
the totally proper orders from Lemma 5.5, since the argument in Gregory [11]
shows that CH (or even 2ℵ0 < 2ℵ1) implies that there is a tree with the Cantor
tree property which has no uncountable chains. We also do not know if one could
modify Gregory’s argument to replace ♦ by CH in the proof of Theorem 1.3.

CH is sufficient to produce a weird space; examples in the literature are not
first countable, but have other interesting properties; see Fedorchuk, Ivanov, and
van Mill in [8], and the earlier papers of Fedorchuk [6, 7]. The space in [8],
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produced from CH, has the property that every infinite closed subspace is strongly
infinite dimensional. In particular, there are no convergent ω–sequences, so such
a space cannot be first countable.

Our weird space construction of Theorem 1.3, in contrast to that of [8], can
(using ♦) generate a one dimensional space. Specifically, we can get our space X
to have small inductive dimension one (ind(X) = 1). This implies that X also
has large inductive dimension and covering (or Čech – Lebesgue) dimension one;
see [5], Theorems 2.4.3, 3.1.29, and 3.1.30. Recall (see [5], Definition 1.1.1) that
ind(X) = 1 iff X is not zero dimensional and the family of all open sets with zero
dimensional boundaries forms a base for X. In a weird space, these boundaries
must be scattered, and hence countable if the space is HL.

Theorem 6.1 Assuming ♦, there is a weird space X such that X is HS and HL
and ind(X) = 1.

We shall prove this by refining the inductive construction of Subsection 2.1.
Let B(X) be the family of all open subsets of X with countable boundaries. Note
that ∂(U ∪ V ) ⊆ ∂U ∪ ∂V and ∂(U ∩ V ) ⊆ ∂U ∪ ∂V , so B(X) is closed under
finite unions and intersections. We shall make sure inductively that each B(Xα)
is a base for Xα. To guarantee that there are sufficiently many sets in B(Xα+1),
supplement requirement (6) by:

6+. {x ∈ Xα\{pα} : hα(x) = a} is countable for each a ∈ Q.

To ensure that boundaries of basic open sets stay countable at successive stages
of the inverse limit construction, supplement requirement (3) by:

3+. For 1 ≤ α < ω1, Xα has a countable base Eα ⊆ B(Xα) such that for all
U ∈ Eα, ∂U ∈ Pα and ∂U ⊆ Pα.

First, to meet requirements (6) and (6+) along with requirement (7), we need two
lemmas on Urysohn functions:

Lemma 6.2 Suppose that Y is a compact metric space such that B(Y ) is a base
for Y . Let H, K be disjoint closed subsets of Y . Fix reals r < s and a countable
dense D ⊆ (r, s). Then there is an h ∈ C(Y, [r, s]) such that H ⊆ h−1({r}),
K ⊆ h−1({s}), and h−1({a}) is countable for every a ∈ D.

Proof. Following the usual Urysohn construction, we choose Ua ∈ B(Y ) for
a ∈ D∪{r, s}, so that a < b→ Ua ⊆ Ub. Start with Ur, Us satisfying H ⊆ Ur and
K ⊆ Y \Us. List D in type ω, and choose the other Ua inductively. Each Ua may
be chosen in B(Y ) because Y is compact and the base B(Y ) is closed under finite
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unions. Define the Urysohn function h : Y → [r, s] by h(x) = inf{a : x ∈ Ua} for
x ∈ Us, and h(x) = s for x ∈ Y \ Us.

To ensure that the h−1({a}) are countable, construct the Ua so that for each
a ∈ D :

Ua =
⋃
{Ub : b ∈ D ∩ (r, a)} and Ua =

⋂
{Ub : b ∈ D ∩ (a, s)} . (∗)

This can easily be done by the usual bookkeeping, using the fact that each Ua is
an Fσ and each Ua is a Gδ. Now, suppose h(x) = a ∈ D. Then x ∈ ⋂

b>a Ub (by

the definition of h), so x ∈ Ua by the second half of (∗). But also x /∈ Ua by the

first part of (∗). Therefore, h−1({a}) ⊆ ∂Ua, which is countable. ©
Lemma 6.3 Suppose that X is a compact metric space such that B(X) is a base
for X. Fix p ∈ X and qn ∈ X \ {p} with 〈qn : n ∈ ω〉 → p. Then there is an
h ∈ C(X \ {p}) such that:

1. all points of [0, 1] are limit points of {h(qn) : n ∈ ω}, and

2. h−1(a) is countable for every a ∈ Q.

Proof. Replacing 〈qn : n ∈ ω〉 by a subsequence, we may assume that we have
a local base {Vn : n ∈ ω} ⊆ B at p with V0 = X and Vn+1 ⊆ Vn for each n ∈ ω,
and each qn ∈ V2n \ V2n+1. To get (1): let {rn : n ∈ ω} list a set of irrationals
dense in [0, 1], and for each n ∈ ω define h ≡ rn on the closed set V2n \ V2n+1.
To get (2): apply Lemma 6.2 to interpolate h between each pair V2n \ V2n+1 and

V2n+2 \ V2n+3. ©
Applying Lemma 6.3, we construct X so that B(X) is a base for X.

Proof of Theorem 6.1. We follow the inductive construction of Subsection
2.1, verifying at each stage β ≤ ω1 that B(Xβ) is a base for Xβ.

Fix β ≤ ω1, and assume that for all α < β, B(Xα) is a base for Xα. For limit
β, B(Xβ) is a base because it contains all sets of the form (πβ

α)−1(U) whenever
α < β and U ∈ Eα, for the Eα of (3+). If β = α+1 for some α, apply Lemma 6.3 to
choose hα so that it meets requirements (6),(6+), and (7). Then by (6+), B(Xα+1)
contains all open sets of the form Xα+1 ∩ ϕ−1

α ((a, 1]) and Xα+1 ∩ ϕ−1
α ([0, a)) for

a ∈ Q∩(0, 1), where ϕα is projection (see Definition 2.5). Note that B(Xα+1) also
contains sets of the form (πα+1

α )−1(U) whenever U ∈ B(Xα) and pα /∈ ∂U . Then,
B(Xα+1) is a base because it is closed under finite intersections. To get (3+), for
all β < ω1, use the fact that Xβ is second countable to choose a countable base

Eβ ⊆ B(Xβ). ©
We do not know whether there is a one dimensional version of our weird space

that also fails the CSWP.
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We also do not know if, under any set-theoretic axioms, there is a weird space
satisfying the CSWP. The known methods [18, 15, 12] for establishing the CSWP
focus on totally disconnected spaces, and would fail for weird spaces.
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